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Abstract—Powered Two-Wheeled vehicles (PTWv) are an
increasingly popular means of transport. The cost and the risks
of the development phase of this vehicles has to be diminished
in order to ensure acceptable levels of comfort and safety for
riders upstream of hazardous driving situations. It is required
to study motorcycle while riding in cornering and lane-keeping
to interpret the dynamics behavior. Thus, we need to obtain
dynamic model that tightly adjusts to the real lateral behavior
of the motorcycle, in the way that it will lead to precise
simulation and experimental results.

A technique for cascade identification of parameters based
on data and optimization algorithm, is presented here. This
methodology makes profit of the possibility given by this type of
algorithm for solving multiple objectives function consecutively.
After the identification method is outlined, simulations and
experimental results are presented in order to confirm the
accuracy of the parameters estimation under the persistent
condition of the inputs.

1. INTRODUCTION

There are a broad range of mathematical models that are
often used in engineering applications, trustworthy models
are therefore crucial to describe the actual process before
synthesizing a control law or an observer.

However, even if a parametric model can be derived, the
parameters value are not so. It is therefore necessary to
identify the value of these parameters. We must first find
the right compromise between the fidelity and simplicity of
the model to be used in the parametric identification process.

Optimization methods are of major importance in pa-
rameter identification problems. One can distinguish two
main classes of techniques to solve an optimization problem,
gradient methods require the calculation of the gradient of the
function to be minimized and stochastic methods [?] which
have a major place in non-differentiable optimization. The
choice of a method depends on the nature of the problem
(differentiable, non-differentiable, ...). The gradient methods
are simple to implement and often yield good results. For
this reason, they are generally used in practical applications
21, [?D.

This article is focused on the identification of a mathe-
matical model of a two-wheeled vehicle from measurement
carried out on a motorcycle benchmark software. Thus,
we have first developed an estimation strategy based on
the gradient method applied on a two bodies Sharp model
[?]. It solves an algorithm for multi-objective optimization
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problems based on initial values close to the global minima.
This model contains several parameters, some of which are
unknown and hence have to be identified. The complexity of
the model and representation suggests an iterative cascade
algorithm to solve step-by-step the objective-functions, so
we manage the equations in order to avoid algebraic loop.
Multi-objective techniques applied to model identification
have achieved great results in many cases, as shown in ([?],
[?] and [?] ). First, a general study of the Sharp model is
conducted under the BikeSim software. This study allowed
us to draw up a balance sheet of the various knowledge
and elements to be included in the identification problem,
some geometric equations are also added in order to simplify
the complexity of the resolution problem, while ensuring a
certain precision and realism.

To the knowledge of the author, works on the parametric
identification of the PTWv have been very few, main research
were achieved without considering the physical model of
the two-wheeled vehicle. In [?], the author considers an
autoregressive model of motorcycle to estimate the state
space model of lateral dynamics without identifying pa-
rameters. This method allowed statistical estimation of state
space models under manual control. There are other research
axes which are concerned with the identification of the
controller parameters to stabilize the two-wheeled vehicle,
in ([?],[?]) the authors consider the rider control as a linear
PID controller, this control model is fitted to data and aim
to mimic realistic rider control behavior.

The main difficulty in identifying the values of parameters
is the complexity of the model and the choice of the persis-
tent input to well exciting the dynamic of all the parameters.
In the present contribution we will provide a procedure to
identify parameters of a linear gray-box motorcycle model.

However, our approach is, to the best of the authors
knowledge, new in the sense that we can both identify values
of parameters and also state space vector of the motorcycle
in order to estimate the cornering motion and the unstable
mode of the vehicle without using observer. The paper is
organized as follows. Section II, describes the Out-of-plane
motion of PTWvs. Section III, presents the identifiability and
motorcycle model identification with an optimization method
to identify parameters of the Sharp model. Section IV,
provides some simulation results, present the vibration modes
and the lateral stability of the identified model. Section V,
analyze the estimated model. Finally, section VI concludes
the paper.



2. TWO-WHEELED LATERAL DYNAMICS
DESCRIPTION

2..1. Motorcycle Description

The model developed by Sharp in 1971 [?] is a founding
study that has contributed to the modeling of motorcycles
([?1, [?]). This model allows to simulate the 4 DoF which
are the lateral displacement, the roll and the yaw motion, as
well as the steering dynamics. The author represented the
motorcycle as a set of two bodies linked by the steering
mechanism (figure ??).

1. The first Gy body is the front frame, consisting of the
front wheel, the fork, the handlebars and the couplings.

2. The second body G, is the rear frame, consisting of
the main structure, engine-gearbox assembly, fuel tank, seat,
rear swingarm, rear wheel and a rigid jumper.

3. The rider is rigidly connected to the rear body, and its
motion is not taken into account.

Fig. 1.

The motorcycle geometrical description

2..2. Out-of-Plane motion

Here, the lateral dynamics of a motorcycle are due essen-
tially to the effect of lateral forces from the front and rear
wheels (Fyy and Fy,) and the yaw and roll motions under
rider’s steering actions. These motions are expressed by the
following equations :

« Lateral motion

My + 00 + (Myj+Mh) § + 6,8 + My = Fyp + Fy, (1)
¢ Yaw motion

01 (Vy + i W) + 046 + 63 + 056 — O, d
—67v:8 = [ Fyp — 1, Fyy 2
« Roll motion
(ij-i-M,-h) Vy+ O30 + 04 + 098 — 10V
—011v:8 = (Myj+M,h) gsin(¢) + 612sin(8)  (3)
« Steering motion
02Vy + B + 05+ 0130 + 011V — O1avy
—0150 = B1psin(¢) + Oy25in(€)sin(8) —NFp+1  (4)
These equations are comprehensive and not all states and

parameters are known, geometric parameters (I, Iy, [, h, 1,
€), and inertial parameters( M = M+ M,) are usually known.

0, : are parameters to be identified. Some of them are
depicted in figure (??).
In most cases, sensors allow to measure different state
variables. For our PTWv, we measure the following state:
« the roll and yaw rates ¢, \,
« the longitudinal velocity vy,
« the steering angle § and its time-derivative rate § and
S,
« the lateral acceleration which verifies the equation :
May, = Fyr + Fy, .
Let us first investigate what we know about the motorcy-
cle.

k= (a+e)cos(e)— fsin(e)
j=(a+e)sin(€) + fcos(€g)

b _
a= cos(€) n S
l=1r+1,
Zp =Yg

Z, = —(Mf +Mr)g+Zf
3. MOTORCYCLE MODEL IDENTIFICATION

The parametric identification consists in determining the
best values of parameters in sense of an appropriate criterion,
this is an optimization problem whose resolution quickly
becomes arduous as soon as the number of parameters to be
identified increases. Moreover, the parameter identification
is a challenge in terms of choosing the estimation method
and the shape of the model.

The purpose of this section is to present a method for
identifying parameters of the 2-body model using all the
information that can be harvested on the model as well as
some test scenarios on the motorcycle.

3..1. Identifiability

Theoretical models derived from physical laws describe
well the behavior of the systems to be identified, but these
models usually suffer from problems of identifiability [?].

The objective of identifiability is to verify that two vectors
of different parameters do not lead to the same input-output
behavior, it requires that different parameter values give
different model outputs, which results in:

3 (u, x9) € (U x R™) such that

yu(t,u,0) =y (t,u,0"), Ver, 6=0"

where 6 and 0" belong to &2, a set of admissible pa-
rameters. This intrinsic property of the model is a necessary
condition to ensure that the adjustment procedure leads to a
single value of the parameter 6 and thus to reliable model
predictions.

For more detail on identifiability please refer to ([?],
[?1.[?] and [?]).

According to Ollivier, F ([?] [?]), it is of interest to test
numerically the local identifiability.

Theorem 1: [?] A linear system with zero initial condi-
tions (A, B and C : the states-matrix ) is identifiable if the
application

p: 6~ [C(8)B(6),C(6)A(6)B(6). - ,C(0)A(6)"'B(6)]



is invertible on a dense open set.

It is locally identifiable if and only if the application p
is locally invertible in the neighborhood of any point of a
dense open set.

One can test the existence of a left inverse for p by
a standard basic computation, but this is only a sufficient
condition of identifiability.

If p is invertible to the left, its determinant can not be
zero, it is easy to verify: if £ is the inverse to the left of p,
we have

det(p)det(§)=1#0
3..2. Multi-Objective Optimization

In engineering problems, it is a common issue to deal
with situations that require multi-criteria optimization. Due
to this fact, addressing these problems from the standpoint
of classical optimization could be insufficient.

Any multi-objective optimization problem can be stated
as:

)1361}{,}(5(9) =[C1(6),C2(0)...Co(0)] (©6)

Generally, it will not be possible to find a solution 6 that
satisfies all requirements and minimizes all the cost function
%(0) in the same time. Scenarios of test are chosen to well
excite the parameter to be identified. So, this method allows
an identification in cascade even if we have more parameters
then equations.

it is necessary to make some approximations to start
the identification algorithm and to decouple equations with
respect to parameters. Under some hypothesis, we know that
M, > My and h ~ j, thus:

{ M=M;+M,

Mh=Myj+Mh ™

We manipulate the system of equations (2?-??-22-2?)
to extract each unknown parameter separately in order to
identify the parameters in cascade i.e the first system allows
to identify 6, then the second parameter 6, is identified based
on the knowledge of 6; and so on.

thus:
y1=f(v,60,61)
Y2 :j(y39079]762)
= ,00,01,6,,0
y3 f(y 0,Y1,02 3) (8)
yi = f(1,60,61,6,...,6))
Where:

« y; : measured outputs of the motorcycle.
e 6 : initial value of parameters.
With:i=1,...,9 j=1,...,15
01
0= : 9)
6

Please refer to Appendix for the expressions of y; and 6;.

To solve the stated above, any Multi-Objective optimizer
can be used. In this work, the gradient algorithm has been
chosen.

3..3. Identification of vector parameters 0 by the multiple-
gradient method

The aim of this part is the identification of the parameters

of a motorcycle body model while setting up an algorithm
for the automatic estimation of parameters. The processing
of the input / output data is done through a recursive method
based on the optimization by the gradient algorithm.
The advantages of gradient method is that every iteration
is inexpensive and does not require second derivatives.
Approach: The methodology used for the identification of
the parameters is as follows :

o First, we use the parameters initialized from the ap-
propriate data close to our motorcycle in terms of
characteristics, so we have determined the priori value
of parameters.

« Secondly, we seek the persistent input which excites all
the dynamics of the motorbike to have the measured
data. This is possible in simulation, but in practice this
can be difficult to reproduce.

o Finally, the gradient method is used to estimate the
vector of parameter in cascade. We consider the
lateral motion of the powered two-wheeled vehicle, as
a two bodies, the riders torque is the input of the system.

Recording outputs on the system will allow us to identify
the model parameters described in the equations (?7?).

The gradient method is an iterative optimization algorithm
for solving problems of the form (??) with the search
directions defined by the gradient of the function at the
current point. The criterion chosen is a quadratic function:

criteria : Ci(ty) = %'Z(yim (te) —J’i(fk))z

sensibility : Si(1) = jgff (10)
gradient : g;(tx) = X.(vi, (&) — yi(t))-Si
Where:

¢ ¥i,: Measured outputs.
e y; : Model output approximation at the instant #.
o 1; : Moments of measurement.

with:i=1,...,9 j=1,...,15
01
0= : (11)
015
In our case, the vector 6, = (0, 6>, 03,64, 65, 66, 67, 65, 615)"
can be identified from different kind of riding scenario, after
the identification algorithm, we deduce the other motorbike
parameters :

6, = (k,e,a, f,j, rz,ify,iry, 09,010,011, 612,013, 014)"



which are combination of the identified one. The following
system is used to deduce 6 :

tan(e)  sin(e
Jj=(a+e)sin(e) + fcos(e)
I, — B5—Myek
2= “cos(e)
lfyy= sin(€)
iry = "ﬁlgf’f" R,
__ —6
011 = " tan(e)
010 = —Myj+Mh+ 6
614 = —Mf.e—l-ify/Rf.sin(S) =—-0,—6
99 = Mf.e.j+lfz. Sin(E)
013 = Ifz ‘|’1uf'e2
012 = Myeg —NZy

12)

This method depends heavily on the input excitation, for
example, 0; can be identified only from lateral dynamics
when the roll and yaw will be well excited.

As an example, we identify the value of 8; via the gradient
method from equation of lateral motion (??) we know that
May = Fyr + Fy,, we choose a scenario when the second
derivative of steering angle was null 5 =0 ie (The curve
of & is a ramp) thus, from equation 1 of the system (??) we
find :

Mvy+ 61+ (Mh) ¢ + Mv,y = Ma,

We consider in this case : y; =

__ (Mh¢+Mvyy+Mvy—May)
y1= 6,

Mh§+Mvy+Mvy—May)

v (13)

_dy _ (
Sl—w—

g1 = Y.(yimesure(t) —y1(2)).S;

We applied the algorithm to find the value of the first
parameter 6;, then to deduce the geometrical parameter

k= 1371,-' The algorithm runs as follows:

1) From an initial starting point 6, (#), we calculate the
criterion Ci(fp) and the gradient gi(f), this gradient
indicates the direction of the largest increase of y; .

2) Calculating a new value of
01 (t) = 61 (tr—1) — oeg1(tx—1)

Thus, we calculate a new value of Ci(f;) and g (#)
taking 0, (#) ( the point on the direction of the previous
gradient away by step )

3) If the second criterion is smaller, keep the new param-
eter value of the corresponding 6, (f;). Increase o for
efficiency. And increment the counter k.

4) Otherwise keep the old value of 0;(#_;) and reduce
a to seek a nearest local minimum.

5) Evaluate various stopping criteria for exit loop: accu-
racy on the criteria, the gradient, maximum number
of effective iteration, tolerance between the last two
values of 0.

4. RESULT AND SIMULATION
4..1. Parameter Estimation and Model Validation

In order to obtain data that can be employed in adjusting
the physical parameters, the designed experiments simulate
such short maneuvers. Thus, each system of equation has
been excited separately and, after that excitation, the motor-
cycle reacts and the appropriate parameter is well excited.
After identification, these parameters are used to calculate
the response of the identified model and test stability. We
excite the actual system and the identified model with the
same steering torque input (figure ??) in order to validate
the identification method, so figures show the lateral models
found by the optimization algorithm and the error between
real system and estimated response of the model.

o For pneumatic parameters that are influenced by tire
types and road condition, the typical values presented
in ([?]) are used while the other accessible parameters
are taken from data sheet of the motorcycle.

« By the nature of the system, the model is unstable.
It was necessary to add a corrector to guarantee the
stability of the system so a state feedback deduced by
the placement of poles is used.

o The choice of the excitation input by simulation so that
the output will be well excited to allow identification.

« Note that the prior inertial parameters are computed
from BikeSim using the Huygens theorem.

To validate the model, it is sufficient to retrieve the
input data measurements acquired during the experiment
for exciting the identified model to observe the outputs
responses, thus comparing it with the measured output. I
chose a scenario where the motorcycle was turning on the
mini-roundabout to better check the variation of the roll
angle.
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Riders torque
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From graphs (??-22?-2?-??) of the state estimates and
their estimation errors, we verify many results that are
consistent with response of actual system with a very close
look. Figures (2?) show the evolution of the riders torque
T taken as a persistent excitation signal, applied in the
proposed estimation algorithm to identify parameters and
states variables of the motorbike, in figures (??) we see that
the lateral speed and the steering angle are well estimated
from the resulting identified parameters with an error around
zero, figures(??) plot the roll and yaw rate for the motorbike
and their corresponding state estimation, then in figures(??),
the rear and front lateral forces are given as a comparison
between the actual and identified state. We obtain results of
simulation that converges well to the output of the state space
model of motorcycle.

The method works. However the accuracy of the identified
values depends on the initial parameter value and the coef-
ficient o in each iteration of the algorithm.
As can be seen, The cornering behavior of the motorbike
is well identified, these indicate that the proposed parameter
and state estimation algorithm is effective.

4..2. Vibration modes and lateral stability of the identified
model PTWvy

Motorcycles, are a complex mechanism that gather a set of
actions and physical phenomena during motorcycle driving
[?]. It is very important to know how a motorcycle reacts,
to be able to transmit the right orders to keep the control.

Considering the linear Sharp model given by equations
(?2-22-22- 22), the variation of the eigenvalues of the state
matrix as a function of the longitudinal velocity v, is given in
figure (??). From the plots of eigenvalues (figure ??), there
are three distinct instability modes of the identified model,
these modes of instability are differentiated by the speed at
which they occur :

Wobble : This instability occurs mainly at high speed.
It is between 9 and 15 Hz. This mode occurs when the
handlebar begins to oscillate from one side to the other until
the motorcycle falls.

Weave : It is an oscillating mode, it has a very low
frequency which climbs to 4 Hz as the speed increases.
It occurs between the rear wheel which leans and the
front wheel which changes direction. It affects the whole
motorcycle.

Capsize: Is a non-oscillating mode well damped at low
speeds and with a decreasing damping in medium and high
speeds. In this mode, the wheel is steered in the roll direction
but not sufficiently to avoid the fall.

Stability in the speed range 0-50 m/s

50
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Fig. 6. The real parts of the eigenvalues of the identified Sharp model as
a function of the longitudinal velocity.
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Fig. 7. The imaginary parts as a function of the real parts of the eigenvalues
of the state matrix of the identified Sharp model.

5. ANALYZING THE ESTIMATED MODEL

5..1. Theil Inequality Coefficient (TIC)

the Theil inequality coefficient (TIC) is the standardized
root mean-squared error, used in the sensitivity analysis
to measure the model predictive accuracy and to facilitate
comparison between the actual and identified model.

The TIC is bounded by 0 and 1, the lower boundary is the
ideal case of perfect forecast, zero being the case for which
the model perfectly predicts the data, and 1 is the case for
which the model has no predictive capability.



The following formula measure the forecast accuracy [?]:
VA0, (1) — i(1)?

VA B0, 002+ /L X 0i(0))?

where y; —are the actual output observations containing n
samples and y; are the corresponding predictions, resulting
from estimated parameters.

TIC; = (14)

TABLE I
THEIL INEQUALITY COEFFICIENT (TIC)

Output y; [ ¢ 5 [ vy v |
TIC, | 0.0010 | 0.0016 | 0.0020 | 0.0012 |
Output y; ) 5 Fy F,,

TIC; 0.0041 0.0158 0.0014 | 0.0015

Model output sensitivities are quantified in terms of output
variation percentage, this coefficient is denoted “’Fit”, to com-
pare the performance of the models that we have estimated.

The “Fit” value is calculated as follow:

1= Il(vi—v;
i 100,001 6)1) s
(i, —mean(y,,))|l
TABLE 1T
FIT VALUES
Output y; [ ¢ [ & [ v [ v |
Fir; % | 997440 | 99.6054 | 995089 | 99.6370 |
Output y; | ¢ [ 8 [Fr [ A l
Fit; % | 99.1790 | 96.8506 | 99.6540 | 99.6259 |

Good motorcycle models are vital for control concepts,

and predicting risks to ensure safety for riders. From Tables
1 and 2, we can draw the following conclusions :
The small values of TIC, show a good forecast accuracy and
prove the reliability of the model. The table of the fit value
above indicate that the estimated parameters ensure a good
model predictive characteristics. The accuracy influence is
clearly checking.

6. CONCLUSION

A methodology for iterative, cascade identification of
PTWv model has been proposed for the estimation of
unknown parameters. Equations that describe the lateral
dynamic are used to form the resulting problem that is solved
using a multiple-objective optimization algorithm adapted to
the complexity of our model.

In order to find the lateral dynamics we had to solve a linear
gray-box problem by gradient method. The method has been
successfully evaluated by simulation.

In future works, it is interesting to couple the identification
and observer which may include additional parameters and
state. Another perspective is to take into account the geome-
try of the road that has been considered flat and to consider
the effect of the rider in the dynamics.

APPENDIX

The parameters defined in the table are similar to ones

given in [?] and are listed in table ??.

TABLE III
MOTORCYCLE DYNAMIC VARIABLES

Motorcycle
T steering torque
My, M, , M mass of the front frame, the rear frame

and the whole motorcycle
K damper coefficient of the steering
Zs, 2, front and rear vertical forces
Cr1, Cn front and rear tire cornering stiffness
Cp, Cp2 front and rear tire camber stiffness
oy, Oy coefficients of relaxation of the front

and rear pneumatic forces
J» b, k, e, lp, I, linear dimensions
ifys iry polar moment of inertia of front and rear wheels
Ry, R, radius of front and rear wheels
€ caster angle
K damper coefficient of the steering mechanism
n mechanical trail
Ipy, Iy front and rear frame inertias about X axis
I, 1, front and rear frame inertias about Z axis
Crz rear frame product of inertia, X and Z axis
g acceleration due to gravity

TABLE IV

MOTORCYCLE PARAMETERS EXPRESSIONS AND NUMERICAL VALUES

parameters 6; co

ntain the geometrical parameters of the motorcycle

6, =Mk , 6,

=Mye

23] :Msz +1,z+[fxsin2£+1fzcosze s
0, :ijkfcm+ (Ifz 71fx)bin8COSS

05 = Myek+ 1y cos€ , O =

lf\ iry _ /\
+ % 6; = R sing 1

63 = M/} +M,h? +I;X+I/Xcos £+I/~sm €,0)=Mej+1Is sine

610 = —(Myj+Mh+ f‘+l") 011 =—

013 =1y, +Mfe

f #>cos€ , O =Mreg—nZs

, O14 = — (Mfe+R hln&‘) 05 =—-K

Numerical values of 6; and physical parameters of the motorcycle
deduced from the vector 6

0 = 14.6685, 6, =0.1269, 63 =24.7957, 64 =5.0585, 05 =

0.3441,

66 = 4.3007, 6; = 0.7774, 63 = 68.0543, 89 = 0.1310, 6,9 = —96.6900,

011 = —1.8126, 0, = 38.0886 , ;3 = 0.2010, 6;4 = —0.9721,

015 = —11.7332 )
[=1.3m , My = 16kg . M, = 170kg , M = My +M, K—11.7332N. s/rad

g=9.81m/s* Iy, = 0.200kg/m” ,

iy = 0.4000kg/m’ , iry = 0.4608kg/m>

a=0.949m , ¢ =0.0079m , f7701527m h= 0509m R =0.2m,

R, =02m,n=
1, =035m, If

=0.95m , emp =

0.08m , & = 0.4363rad k =0.9168 , j =0.2589
I+, . Zy = 49135, Cpy = 18592,

Cpp =1195.2, G, = 19209.58, C;p =960.48 6y =02, 6, =0.2

The system equation used in the identification algorithm :

d, = (V} + vxl//)

dy = sin(¢) + sin(€) sin(6)



(1]
[2]

(3]
[4]
(51

(6]

(71

(8]
(91

_ (Mh¢+Mv, y+Mvy,—May)

1=
B |
 (Mh$-+6,Y+Mv i+ Mv,—May)
Y2 = 9,
_ —=01d, =0V Y+ Ep—I, Fy,
y3 = [
_ 79]d\,793W*’lexljlﬁ*lfvafl,.F:‘.,
Y4 = 0,
79]d1793q’/794¢‘+lfF-ffl,F:\‘,
Vs = : s
_ —61d,—65—640—055+I Fp—I,Fy
Y6 = vibs .
_ —61d, =03 —040—050+05v. 0+, F s~ Fyr
y1 = R ]
yg = —Mhvy+04+6090— 019V, — 01 v, 0+Mhgsin(¢)+ 6y, sin(J))
- . = 68 .
_ —(629y+690+65+61304611v,:0 — 14 +612d, — N Fyp+17)
Y9 = Ors
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