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Abstract

In this paper, a robust braking controller is proposed for motorcydtesaim is to control both longitudinal
slips of the vehicle to optimal ones using a sliding mode controller. The todss of this controller is proved with
respect to change of road adherence, load transfer, tires chiatizieand lateral movements. The optimal target
slip is computed thanks to an algorithm inspired from the Maximum Power Hoatking (MPPT) methods. The
objective of this algorithm is to seek the appropriate longitudinal brakinge®and to avoid rear wheel’s loss of

contact. Simulations on a multibody simulator are given to enhance therparices of the controller in different
scenarios.

Index Terms
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I. INTRODUCTION

Riders of motorcycles are considered among the most vditerdrivers. In France, riders of powered two-
wheeled vehicles are present in orily% of the road traffic but at the same time, they are involve@4f% of
fatal accidents. In this context, it is essential to devedppropriate safety systems for motorcycles. This includes
preventive safety systems such as airbags, active safetgmsy like braking and traction control assist [1] and
observers for motorcycle’s dynamics [2]. The hard brakimgm important issue and is often blamed as a source
of accidents for motorcycles. The problem of braking is eweore dangerous when road adherence becomes
insufficient.

For wheel slip control, several commercial devices alreaxigt such as anti-lock braking systems (ABS) for
standard cars [3]. Wheel slip control have been developatkthtm technological advancement in hydraulic braking
actuators which allow a continuous modulation of the brgKkiorque. In this context, many approaches have been
proposed to control wheel slip: a sliding mode controllef4h a fuzzy controller in [5] and LQR scheduling
gain controllers in [6], [7]. However, all these works do rake into account uncertainties in the tire-road friction
forces, variations in road adherence and/or lateral dycami

To overcome to this problem, robust controllers seem to lms gmlutions. In [8], a nonlinear output controller

is proposed but its main drawback is the generation of a liydte for some set-points longitudinal slips. In [9], a
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nonlinear cascaded feedback and feedforward algorithmesepted. However, the vehicle was considered braking
on a straight line and the vertical forces are consideredtaon In [10], authors use a second order sliding mode
controller for the traction control for motorcycles. Hovegythey do not study the robustness to lateral solicitation
and the controller’s gains depend on several unknown balfggtions which depend on the engine torque.

Moreover, in the above papers, the optimal target slip isiclemed known and constant which is not really true

because it varies with respect to pneumatic parameterscautcharacteristics. This remains an open problem, but
few papers have presented some ideas [11]. This problemeis mwore difficult in the case of motorcycle where
load transfer and risk of tire’s loss of contact should bestered more seriously. In [12], a solution was presented
to prevent tire's loss of contact. An algorithm was used ta@dwbetween a slip controller and a load controller.
However, the optimal slip for the controller was considecedistant and known. Another solution was proposed
in [13] to take into account lateral dynamics but with theuasgtion of knowledge of current road condition, and
the optimization is done off-line.

The contributions of this paper are:

« The control of front and rear longitudinal slips using stigimode techniques. The proposed controller is
robust to load transfer, tire characteristics and lateyalachics. Moreover, the tire force model is no more
needed. The controller can be applied for the control oftfmrear wheels separately and can also be applied
for the control of both wheels.

« An on-line algorithm is given to find the best longitudinapsthat maximizes the longitudinal braking forces
and avoid rear wheel's loss of contact. In this work, longjibal acceleration is used by the algorithm and
front and rear slips are controlled to the same target slipwéver, if longitudinal forces are measured or
estimated [14], the algorithm may be modified in order to cangéach slip to its optimal value. For brevity,

only the first case is considered in this paper.

Il. PROBLEM FORMULATION

throughout the paper, The important variables to be usedefieed in the Table I. For brevity, the indéxor a
variable z; refers to both fronti= f) and rear { = r) wheels’ variables. For example; = h(z;,y;) means that
zp = h(zs,ys)

2y = h(:l?r, yr)
he main contribution of this work is the algorithm to find tlemgitudinal slip guaranteeing maximum desired

deceleration. First the influence of longitudinal slip oe tbngitudinal forces is examined on figure 1.

This figure is obtained for a straight-line braking scenanm for a suitable road adherence. The longitudinal
forces and the wheel slip are negatives. Note that therdseaisongitudinal slip ofA ~ —0.12 which gives the
maximum longitudinal force. So, to obtain the maximum dexaion, the longitudinal slip must be controlled to
this peak\*. However, this optimal target slip varies with respect te tkertical forces, the road adherence, the
tire characteristics and the lateral dynamics. Using ttedhd the vehicle characteristics to find analytically this
optimal longitudinal slip seems to be impossible. This isyvem innovative method is proposed in this paper to

find empirically this optimal slip.
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TABLE |
PARAMETERS' DEFINITION

Parameters Definition

By, By braking torques applied to the front and the rear wheel
Vg , Qg longitudinal velocity and acceleration
Fpp, Far front and rear longitudinal forces

F.r, Fur front and rear vertical forces

wf , W front and rear wheel angular speeds

Rs , Ry front and rear tire radii

ify iy front and rear rotational inertia of wheels
M = M, + M, sum of the motorcycle and rider masses
Af o Ar front and rear longitudinal slips

B road adherence

af, ar front and rear lateral slip angles

Maximal.longitudinal force

0 005 01 015 02 025 03 035 04
N

Fig. 1. Plot of the longitudinal friction coefficient as fufan of the longitudinal wheel slip

Another critical phenomena can be observed for motorcyelééch makes the optimal braking more difficult
than four-wheeled vehicles. For example, for a given mgtecon a dry asphalt, an adequate braking control law
is used to control the front longitudinal slip td° = —0.09. The results of simulation on tHgikeSm simulator are
given in figure 2. Att = 3.5 s, it can be seen that because of the load transfer, the recaldorce vanishes.
This will cause loss of rear tire’s contact to the ground arelforward flip over of the motorcycle, calletbppie.

This phenomenon is even more important when the road adterisrsuitable (dry surfaces) because it is easier to
reach large decelerations.

According to [15], the critical deceleration that must net éxceeded depends on the position of the center of
gravity of the motorcycle, its longitudinal velocity and iaerodynamics characteristics. It is given by the equation

—dz li Cyv?

g =My @

whereC}; is the drag aerodynamic coefficient and the others paramaterdefined above.
Finally, it is concluded that longitudinal forces have alp&alue with respect to the longitudinal slip which

guarantees the maximal deceleration. If the road adheriengecarious, there is no risk to reach the critical flip

October 30, 2015 DRAFT



0.1 1500

1000

I I
I I

| I

I I

| I

< o Consant slip target (=0.09) N i
| 500 t

-0.05 I |

I

i i

3.2 34 3.6 3.8 4 4.2 3.2 3.4 3.6 3.8 4 4.2
time (s) time (s)

F, (N

!

20 T 170

160

150

pitch angle (°)
vy (m/s)

I
I
I
I
I
5 140 E
I
0 130 :
I

|
-5 120
3 3.2 3.4 3.6 3.8 4 4.2 3 3.2 3.4 3.6 3.8 4 4.2

time (s) time (s)

Fig. 2. Braking maneuver at constant target s)hp = —0.09. Top left: front slip. Top right: rear vertical force. Bottoleft: pitch angle.
Bottom right: longitudinal velocity.

over deceleration limit and the optimal braking involvee tontrol of the longitudinal slip to the optimal one. If
the road adherence is suitable (dry surfaces), the critieakleration may easily be reached and it is useless and
even dangerous to try attempting the optimal longituditigl s

In this paper, the problem of optimal braking is discussetblaws. In section Ill, a model for the motorcycle’s
tires and braking system is described. Section IV is devttethe design of the controller and section V to the
algorithm used in the search of the optimal longitudingd.sBection VI assesses the effectiveness of the proposed

controller and algorithm with different simulation sceiearon a multibody simulatorBjkeSm).

IIl. M OTORCYCLE TIRES AND BRAKING SYSTEM MODELLING

In this section, the equations describing the tires andibgagystems are given. Even simple, the proposed model

will take into account all the important aspects of the vighigith respect to the longitudinal dynamics.

A. Wheels dynamics

For the wheels’ dynamics, the following assumptions aresicared:

Assumption 1:

« a hydraulic braking actuator is considered, but the fluidagiyits are neglected. So, the relation between the
braking torque and the braking fluid pressure is linear. Henethe braking actuator dynamics will be taken
into account in the validation phase ;

« the suspension dynamics are neglected.

One of the objectives of this work is to control front and ré&argitudinal slips of a motorcycle to a reference

one under braking. So, only the braking torques are coreidas external moments for wheels’ dynamics. Thus,
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the wheels’ rotational model is given by the set of equati®)s

I = —R;Fyi + B;
Ma, = Frf+FM—Cdv§ (2)
)\i — Riwi—vm

maz{vy,Riw; }
B; is the braking torque and is always negative. When braking> R;w; and the longitudinal slip is governed
by: \; = Hiwizte

Vg

Let us consider the following state vector:

T4 A
= 3
o 3)
T2 R; a Oz
with a, = d;;. The following state space representation is obtained:
drii _  T2i—T1i04
dt - v,
e 4
dzy; _ _ BRI dF, | R;dB; _ day )
dt T,; dt T, dt dt

From the above model, longitudinal velocity, longitudirzadceleration and its derivative may be seen as external
varying parameters. In this model, the equation relatinthéocoupling between the acceleration and the tyre force
is not visible, but this choice of model does not imply that toupling between acceleration and forces is neglected.
Remark 1: The paper focuses on the control of longitudinal front aral iips under the assumption that the
longitudinal velocity is available (measured or estimatdédonly one wheel is used for braking, the vehicle speed
may be estimated from the other wheel as it is done for tradi®]. However, if braking is done on the two
wheels, speed estimation for motorcycles remains an opariggn. Some recent works focus on the estimation of

vehicles’ speed like [17]. Throughout the paper, longitadliivelocity is assumed available.

B. Tire dynamics

Before detailing the tires’ dynamics, let us make some apsons:

Assumption 2:

« The road adherence is considered piecewise constant.

« The drag, lift and pitch aerodynamic forces are neglected.

« The time-derivative of the longitudinal acceleration ipgased known. Note that if the longitudinal acceleration
is measured, it is easy to estimate its derivative even ifldhgitudinal acceleration is noised thanks to new
differentiation methods such as the super-twisting atgori[18].

« The motorcycle can be subject to a lateral motion but thecitgiof the lateral slip angle must be bounded
(i.e. the lateral slip angle must be of clagy).

The longitudinal tire forces are often considered propoadl to the vertical forces [19]. Then, the longitudinal

forces are modeled as follow:
Foi = Foipi(Ni, o, B) %)
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wheref is the adherence of the road. The functiaii);, «;, 3) is called longitudinal friction coefficient. It depends
on longitudinal slip);, lateral slipa; and road adherence. Several mathematical formulas exist describing the
longitudinal friction coefficient [19].

Form the assumption 2, the time derivative of the longitatifiorces is given by the following:

dFy; %@+3indai+anz@
dt oN; dt Oay; dt OF,; dt (6)

- FZZH;(AMOZHB)+/J’1(Al7ozi7ﬁ)d5t“

where:

i (Niy i, B) = Oni(Ni, i ) (x% - xliaw) i Opi(Ni, i, B) dav;

(9/\1 Bai dt

Thanks to the assumption 2, the vertical forces are expdsgéehe following expressions [19]:

Uz

_ M(l,g—hay)
F.; = T+, @)
F _ M(lfg+ham)
zro L+l

wherel; andl, are the distances between the motorcycle’s center of makéramt and rear wheels respectively
and h is the height of the center of mass relative to the groundnThe

= (-1 —— 8
dt (=1) ly+1. dt ®)
wherej =1if i= fandj=2if i =r.
C. New time-scale model
From equations (6) and (8), the second equation of the gtateesrepresentation (4) is rewritten as:
dxo; , R; dBi  da, - R? Mh
= —i(Fai)p; (N, vy — 1) —pi(Ni, o, B)—— + 11 9
. F O 00, 8)+ 7 5 = T () T B +1) ©)
with: ¢;(F.;) = gFZ, By consideringl; = %%, it follows:
dw2i / Uz Az
7:_72in ')\i7 (2] - 10
G = ~GE O 00 B) = (10)
. Qg R?
where:A; = v, 9% ((—l)ﬂ m“i()‘ivo‘%ﬁ)z;\fﬂ + 1).
The system (4) will be rewriten in a time scale as follow§:) = fot vf(TT) which implies that:dt = v,ds. If
one considersy = 2X, then:y = X4t = 9x;,  The system (4) combined to the equation (10) gives:
T i = X2; — T1;0y
1 2 1 (11)
to; = —ci(Fui)ui( M, o, B)+U; — A,

This model takes into account the most important featurdhefongitudinal tires’ dynamics: nonlinear longitu-
dinal forces, load transfer, lateral slip angle and vasiaf the road adherence. The following section is devoted
to the control of this system. In what follow% will refer to the time-derivative of andy = % to the derivative

in the new time-scale.
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IV. CONTROLLER DESIGN

The present work aims to control motorcycle’s longitudisip to a target one. This objective will be reached
using a sliding mode controller. The synthesis methodolisggimost the same if front or rear wheel braking is
considered. In what follows, the braking is considered donéoth wheels Firstly, a discussion about the choice
of the sliding surface is given. Once done, a control law @ppsed to control the state vector towards this sliding

surface.

A. Siding surface

Let us assume that the reference front and rear longitudiings are:zj, andz7,. These reference slips are

considered at least piece-wise constant. The followindjrgji surface is chosen:
Sy = ki(w1i — a1;) + (w20 — 23;) 12)
On the sliding surface, the system will be reduced to:
xo; = x5, — ki(x1; — 27;) (13)

and:

i’li = ‘[;z — X1;Qp — kl(.%h — LL) (14)
If 25, = az7;, the sliding surface becomes:
Si = ki(z1i — x1;) + (22; — agy;) (15)

and the reduced system becomes:
&1 = — (ki + ag)(x1; — 27;) (16)

On the sliding surface with the reduced system, the longitidslip ;; converges to the reference ong,. The
speed convergence @f;; to z}, depends on the constant gdin the acceleratiom, and the longitudinal velocity
v, (because the system is expressed in a new time-scale).dnibeensure a fast convergenceagf to z;; on the

sliding surface regardless of the longitudinal velocityl @tceleration, the gaih; must be sufficiently large.

B. Attractiveness of the dliding surface and control law

Now, the objective is to control the sliding surfaSgto zero in a finite time by means of the contid). From

equations (11), (12) and (15);; can be rewritten as follows:

Under the assumption that the longitudinal target slip eceiwise constant, the dynamic of the sliding surface is

given according the equations (11) and (17) by:

Si = k [—(k‘l + aw)(xli — I‘L) + Sz] +U; — CleL + A; (18)
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where: A = —A; — ¢;(F,;)pi(\;). Let us consider the following Lyapunov function:

1
Vi= 582 (19)

In order to achieve finite-time convergence of the systen), (b following condition should be satisfied:

av; 1
< Vi, >0 (20)
dt
which is equivalent to:
Vi< —n'VE L =, (21)

The time-derivative ofV; in the new time-scale is computed as follows:
Vi = Si(ki[—(ki +ay) (1 — x3;) + Si] + Ui — agay; + Al) (22)
If the following control law is considered:

Ui = —ki [~ (ki + az)(v1; — 27;) + 8] + az27; + v (23)
wherev; is the forcing term and the other elements are the equivalentrol law. The forcing ternv; will be
designed in order to counter the uncertain tekhn

From the equality (22) and the above control law, one obtains
Vi =5 (A + ) (24)
Now, let us try to find an upper bound td&\/].

« First of all, sincev, is always positive andl;| is always bounded by; ,,,4., One obtains:

R?2 Mh day
Ai = Uy 71 i,max 1 25
| | v (Zyi lf + Z’r’u ’ + ) dt ( )
7

» F,; is always bounded and one obtainsi(F,;)| < =~ Mg.

« Since u; (A, o, B) is Lipschitz with respect to\; and «; (see [19], [15]),‘%&‘“@) can be bounded by

/ Opi(Ni,aq,0) /
/’Lli7maI and ’ Oo; by M?iﬁmam'

« Moreover, from the assumption jde%

can be bounded by . which leads to:

R?
|CZ(F21)M;(>‘Z7 Qs 5)| < TMQ (lu‘/li,m,ax |x2i - xliam| + lu‘/li,m,axa;,maz) (26)
yi
Consequently:
R?2 Mh da R?
A/ < T — i,Mmax 1 - —M 1 i AR i :
‘ z‘ > v (Zyz lf +ITM7 + ) di + iyi g (Mlz,maw |l’2 T14Q. |+Mlz,mawaz7ma$>
= [Alll (27)

Thus, ifv; is given by:

vi = —([Aill + o) sign(S:) (28)
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1 if §;>0

with o; > 0 and sign(S;) = — it follows:
-1 if S;<0
Vi < —oy |5
< V20,V (29)

then, the control lawJ; that bringsS; to zero in finite time is:
Ui = —ki[=(ki + az)(z1i — 27;) + Si] + aox; — (1A}l + 04)sign(Ss) (30)

The constant gains; are set to adjust the finite time convergence of the slidinfasassS; to zero. This gain
must be carefully chosen. If it is chosen high enough, therober will be robust to uncertaintied, ; however,
it can be conservative and induce a large control authdsity. a trade-off can be observed in the choice of the
controller’s gain in order to be robust and to avoid largete@rauthority.
The finite time convergenck of the sliding surface is obtained as follows: suppose thakibg starts at = ¢,
and between, andt; > ty, x3; is constant, the longitudinal velocity forc [to, ;] should be less tham,o = v, (o)
(because the vehicle is in a braking). Then, from the inetyug?9), one obtains:
d‘;;t(t) < _;f(j)l V2 (1)
\/501'
Vz0
By integrating (31) over the time interva} < r < ¢ with (¢ < ¢1):
VA < V2% 1 v (1) (32)

Vz0

Consequently};(t) reaches zero in finite-time that is bounded by [20]:

\/év.’ro
o
_ Va0 1Si(to)] (33)

o

< Yy (31)

tr <

Vi? (to)

Becauser;; is piece-wise constant (and not always constant), aftem ehange ofr, at instantt.;, the sliding

surface moves away zero and the new finite-time for the glidiwrface to reach once again zero is:

T4

tr - tch S (34)

From the last equation, it can be seen that the finite-timeHersliding surface to converge to zero depends
on the velocity of the vehicle. This should be taken into actdo better choose the gain. Finally, the braking

torque to apply, in standard time scaling, in order to cdrttie longitudinal slip is given by:

t
Lyi

The proposed braking controller has been proved to be rdbusingitudinal and vertical forces, road adherence

and lateral slip angle.
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V. SEEKING OF THE OPTIMAL LONGITUDINAL SLIP

It has been said before that the longitudinal slip giving thaximal longitudinal force is very hard to find
analytically. However, one can see that there exists a enigptimal longitudinal slip. So, a new method is proposed

here to find this optimal slip empirically.

A. Algorithm Perturb & Observe (MPPT)

The proposed algorithm is inspired from the Maximum PowemnP®racking (MPPT) methods used in the
photovoltaic panels [21]. Among MPPT algorithms, the Pdrtand Observe (P&0O) method is the most common
for simplicity, ease of implementation, and good perforoef21]. The principle of the Perturb & Observe algorithm
is the following.If the operating longitudinal slip is paerbed in a given direction and the longitudinal force for the
corresponding wheel increase%(f‘ > (), this means that the operating slip has moved towards ttimmalpone
(see figure 1) and, therefore, the longitudinal slip mustusthér perturbed in the same direction. Otherwise, if the
longitudinal force decreaseélﬂ% < 0), the operating slip has moved away from the optimal one tretefore,
the direction of the slip perturbation must be reversed.

The Perturb & Observe algorithm allows to find the longitadislip corresponding to the peak of the friction
curve. However, if the road adherence is favorable, betoeeoptimal longitudinal slip is reached, one can attempt
the critical deceleration that causes the forward flip ovethe motorcycle (figure 2). In this case, the previous
algorithm must be turned off before reaching this criticateleration.

Remark 2: Note that this algorithm requires knowledge of the longitatiforces which is not obvious (see [14]).
To overcome to this problem, two options are proposed:

« Consider only the front braking (which is sufficient in fasbte road adherence). In this case and if the
drag aerodynamic forces are neglected, the front longialdbrce can be approximated from the longitudinal
acceleration by Ma, = Fy;.

« If one wants to use both front and rear braking, the tires ansidered having approximately the same optimal
target slip. Both front and rear slips will be controlled teetsame target slip. Moreover, the longitudinal
acceleration is also used to approximate the sum of thetlotigal forces as followsMa, = Fip 5 + Fyr.

In this work, both front and rear braking are used. So, thersgoption is considered. The algorithm is resumed

in the next section.

B. Advanced algorithm for optimal longitudinal slip seeking

The proposed algorithm is based on the following principles

« The algorithm is triggered only when the rider requests ai@ant braking torque estimated as a hard braking.
This can be detected by comparing the braking fluid pressye gnd P,,) to a maximal imposed one™(").
Moreover, to avoid chattering phenomenon when compariagbtiaking fluid pressures to the maximal one,

a hysteresis functiorf; (P;) is used (see the following figure and the flowchart in figure 3).
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« If the algorithm is triggered and if the longitudinal decefon of the motorcycle is less than the critical
deceleration €a, < —a}), the P&O algorithm is started to find the optimal longituaislip corresponding
to the peak of the friction curve.

« If the longitudinal deceleration is greater than or equahwcritical one, the P&O algorithm must be disabled
and another algorithm is started in order to move away froenphak of the friction curve. In this case, the
algorithm will perform the inverse task of the previous P&@aaithm.

« ldeally, this switching occurs when the longitudinal decetion is equal to the critical one; in practice, the
critical deceleration-a is replaced with—a’ —d,_. This is important to guarantee a minimum amount of the
vertical force on the rear wheel. Moreover, a hysteresistfan f»(a, ) is also used here for the comparison
(61 = 1m/s? and 6, = 2m/s?) to avoid multiple switching between the two subprograntectiabove (see
the following figure and the flowchart in figure 3).

« The algorithm must be executed at a frequency relativelyetativan the frequency of the controller, in order
to satisfy the condition of* piece-wise constant, and also to allow the convergenceeofaingitudinal slip

to the reference one before the next call of the optimizeoréthym.

F1(Ppg(k)) =1
or
f1(Ppp (k) =1

[

|
T
—a

— —ax(m/s?)
.

Fig. 3. Architecture of the whole program for the optimal brak

The architecture of the proposed algorithm is given in tharég3. Because the longitudinal acceleration is used
in this algorithm instead of the longitudinal forces, it isvious that with the proposed algorithm, it is not possible
to find the optimal front and rear longitudinal slips sepelsatSo, only the longitudinal front slip will be used in
the computation of the optimal slip. The choice of the framditudinal slip is due to the fact that the front slip
is more important in the braking phase (because of the |lcatster).

The subprogram 1 is excuted in the case when the longitudigagleration is less than the critical one. In this

case, the objective is to find the longitudinal slip whichegivthe maximum longitudinal force. Thus, the P&O
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algorithm is called (figure 4 with the above red dashed regédnThe subprogram 2 is called when there is a risk
to reach the critical deceleration. In this case, the cadlgioprogram will have the task to move the longitudinal
slip away the maximum longitudinal force point and will pmrh the inverse task of the subprogram 1. This is

explained in the figure 4 with the bottom red dashed rectangle

Readay (k) , Af(k) < N

ANag = ag (k) — ax(k — 1)
Axp=Ap(k) = Ap(k — 1)
Y

no
no ‘G yes no ‘G yes

az(k —1) = az(k)
Ai(k —1) = Xi(k)

Fig. 4. Flowchart of the subprograms 1 and 2

Remark 3: The algorithm is not designed for the case when no wheel €lgk fis present in the friction curve.
In this case, the algorithm is supposed to converge towaelsiaximum target slip near -1, which corresponds to

wheel lock. In this case, the algorithm may be saturated dieroto avoid wheel lock.

VI. RESULTS OF SIMULATION

To test the performances of the proposed controller, sitiomis are carried out on a motorcycle simulator
(Mechanical Simulation CorBikeSm) based on the AutoSim symbolic multi-body software [22],athtakes into
account all the motorcycle dynamics and the road-tiresact®n forces [19]. Several scenarios are simulated to
check the performances of the proposed controller. All iheukgitions are carried out with a sampling frequency
of 2 kHz, which is available on motorcycle ECUs, except théimjzer algorithm which is executed at a lower
frequency 5 Hz. Moreover, in order to test the controller e presence of measurement noigg,and w; are
assumed to be affected by a centered and random noise withitondg 8% of the maximal values of the measured
variables. For the longitudinal velocity, a more importamtor signal is considered to take into account noises and
estimation uncertainties. It is assumed to be affected bgrnageced and random noise with magnituie.s—!.

In addition, braking fluid dynamics and actuator dynamias &ken into account in the simulations. Whole
braking actuator is considered as a first order system witla tonstant. = 0.061s. The following parameters

are considered for the controllesi; = o, = 103, oy = 2.10° et o, = 103. For the algorithm, the following
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parameters are considereff* = 4 MPa andAX = 0.004. For the time derivative oti,, the super twisting

algorithm is used [18].

A. Dry asphalt and straight line

First of all, a straight line and constant adherences abBeat0.85 is considered. In this case, the road adherence
is suitable and the load transfer may be important. Restils$naulation of this scenario are depicted on figure 5.
In this scenario, the road adherence is favorable and it9g taattempt the critical deceleration. This is why the
subprogram 2 is often sought. From figure 5, the rear verfarak is positive when braking and a safety margin
is always ensured to guarantee a minimum amount of the gefticce on the rear wheel. From simulation results,
the braking torque to apply is reasonable and the chattésingt present thanks to the integral action in (35) and

also to the fluid dynamics.

2
N
S 15
-
€
< S 1
S
g
2 05
%]
0
4 6 8
Time (s) Time (s)
1500 0
E .- -~ —_ Bf 3
£ 200 Y ___.B
_. 1000 2 .
z’,_ §' -400
“" 500 =
€ -600
[
m
0 -800
4 6 8 4 6 8
Time (s) Time (s)

Fig. 5. 8 = 0.85. (Top left) longitudinal front and rear slips and refererstip. (Top right) Mode of control: subprogram 1 or 2. (Bottdett)
Vertical rear force. (Bottom right) Braking torques.

B. Wet asphalt and straight line

Now, a wet asphalt and a road adherencg ef 0.5 are considered in a straight line. The associated results wi
the proposed controller are given in figure 6. Since the rafttbi@nce is low, it is difficult to attempt the critical
deceleration. In this case, only the first subprogram wilsbaght. This can be seen from figure 6. The proposed
algorithm converge to a reference longitudinal slip of abe0.06 corresponding to the maximum longitudinal force
slip point. Is this longitudinal slip the optimal one? Usitige braking control law (35) and considering the target

longitudinal slip constant, the fastest braking is obtdifer \* = —0.064 with a braking distance of72.40m. The
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braking distance when the optimizer algorithm is operatng72.49m. This confirms that the proposed algorithm

has find approximately the optimal target slip.
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Fig. 6. 8 = 0.5. (Top left) longitudinal front and rear slips and refererstip. (Top right) Mode of control: subprogram 1 or 2. (Bottdeft)
Vertical rear force. (Bottom right) Braking torques.

C. Change of road adherence and straight line

In the following scenario, a change of road adherence ooshien braking at = 5.4s. Before this time, the
road adherence was favorable £ 1) and there was a risk of loss of contact of the rear wheel. Ehishy the
subprogram 2 is sought and longitudinal slips converge tmrad \* = —0.04. From figure 7, the rear vertical
force is always greater than zero to avoid rear wheel's lbsootact. Aftert = 5.4s, the road adherence changes
to 8 = 0.5. Because of this change, the acceleration changes suddedlyn the same way the vertical forces.
Thus, aftert = 5.4s, only subprogram 1 will be sought. Moreover, form figure & tobustness of the proposed

controller to sudden changes in road adherence is alsdexisib

D. Change of road adherence and cornering

In the last case, a braking scenario is considered insideng auith a change of road adherencetat 3.8s
B=1 Ry dl 0.5). The results of simulation are given in figure 8 for the Idndinal dynamics and in the figure 9
for the lateral dynamics. From figure 8, the same previousarksnmay be stated. Moreover, the robustness of the
controller with respect to lateral movements is also shdwom the figure 9, the influence of the change in road

adherence is visible @t= 3.8s and the influence of braking is also visible fram= 5.2s.
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Fig. 7. B varies from1 to 0.5. (Top) longitudinal front and rear slips and reference $tipm the algorithm. (Medium) Mode of control:
subprogram 1 or 2. (Bottom) Vertical rear force.
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Fig. 8. Braking in a curve with low adherence. (Top) longitad front and rear slips and reference slip from the algaomit (Medium) Mode
of control: subprogram 1 or 2. (Bottom) Vertical rear force.
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Fig. 9. Braking in a curve with low adherence. (Top) Late@ices. (Bottom) Lateral slip angles.

E. Discussions about the obtained results

Finally, to better appreciate the performances of the megantelligent braking controller, the previous scergrio
of braking are considered and the braking distances wilkdnepared. For each scenario, comparison is done between
the following cases:

« Using the braking control law (35) and the optimization fl:adt in figure 3.

« Using the braking control law (35) and considering the tatgegitudinal slip constant\* = —0.02, —0.05,
—0.1, —0.2).

TABLE I

BRAKING DISTANCES

A Our algorithm | —0.02 —0.05 —0.1 —0.2
Braking distance(m)
B =0.85 130.44 215.60 129.14 Stoppie Stoppie
B =0.5 172.49 238.27 174.36 176.93 196.35
pB=1 T3, 0.5 139.69 227.76 Stoppie | Stoppie Stoppie
B = 0.5 and curve 45.80 64.64 46.38 47.06 Loss of control

The comparison is proposed in the table Il. Using the slidimgde controller and considering the target slip
constant, optimal braking (corresponding to low brakingtatice) is obtained for some scenarios when the constant
target slip is about\* ~ —0.05. However, when the road adherence is acceptable, if thettaigp is not well
chosen, the rear wheel may lose contact with the ground (secaf the load transfer) and an overturn of the
motorcycle étoppie) occurs. Moreover, in a curve, an inadequate choice of ttgetalip may cause skidding of

the motorcycle. In the other cases when there is no dangée ifarget slip is not well chosen, the fastest possible
braking is not sure to be obtained.
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These remarks show that it is important to carefully chodmetarget slip which is often considered constant
and known in classical slip controllers [12], [9]. This dealge was overcome with the proposed intelligent braking
controller which automatically select the best target s$tiporder to avoid dangerous situations and provides
approximately the fastest possible braking. Furthermboth sliding mode controller and intelligent algorithm

for the target slip seeking are robust to changes in roadradbe.

VIl. CONCLUSION

As an alternative to conventional ABS systems, the proppsger presents an innovative method to handle hard
braking for motorcycles. First of all, a model for motoraggltires and braking system was proposed and written
in a new-time scale. After, the innovative braking systenprigposed in two parts. First, an inner-loop braking
controller is presented to track the longitudinal slip toaeget one using a sliding mode controller. Second, an
outer-loop algorithm is discussed to seek the best targetirslorder to avoid dangerous situations and provides
approximately the fastest possible braking. The perforearof whole this innovative method are tested in the
BikeSm multi-body simulator.

The future research will be devoted to:
« Resolve some limitations of the proposed work like the uséheflongitudinal velocity which is not always

measurable.
o Study in more details the influence of the lateral dynamicghen braking action and the influence of the

braking on the lateral stability.

« The experimental validation of the control strategies.
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