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Steering and Lateral Motorcycle Dynamics
Estimation: Validation of Luenberger-like LPV

Observer Approach
Pierre-Marie Damon, Dalil Ichalal and Hichem Arioui

Abstract—In this paper a validation of the Luenberger-like
nonlinear observer, proposed in one of our recent work, is
performed by means of a commercial motorcycle simulator.
The previous paper has introduced the design of a nonlinear
Luenberger observer to simultaneously estimate both the motor-
cycle lateral dynamics and the rider action. The vehicle lateral
motion is described with a two-body linear model which takes
into account the longitudinal speed variation as a time-varying
parameter. Then, the Takagi-Sugeno approach combined to the
Lyapunov theory, linear matrix inequalities tools and L2-gain
property are used to demonstrate the observer’s convergence
through an input-to-error stability. Finally, the effectiveness and
the robustness of the observer are tested on three different
realistic riding scenarios by means of the well-know multibody
simulator BikeSim. Finally, the estimation performances are
compared to previous works.

Index Terms—Motorcycle, Observation, Luenberger, Valida-
tion and Simulator.

I. INTRODUCTION

NOWADAYS Powered Two-Wheeled Vehicles (P2WV)
play an important role in our society. Their compact size,

their abilities to avoid congestion and to be easily parked,
their low fuel consumption and their attractive selling price
explain why motorcycles are one of the most popular mean of
transportation. Although P2WV are common on all continents,
their use is much higher in Asian countries than elsewhere. In
2015, in Thailand, Vietnam, Indonesia and Malaysia almost
90% of the households had a motorcycle or a scooter which
represented around 70% of the total number of registered
vehicles in each country [1].

Unfortunatly, the growing number of P2WT users, in-
evitably, leads to an increasing amount of motorcycle accidents
and related fatal injuries which alarms some organizations.
According to the World Health Organization (WHO) in Global
status report on road safety 2015 [2]: “Motorcyclist safety
must be prioritized too”. For several years rider accidents are
became a major social concern because they formed one of
the most vulnerable group of road users. Nearly a quarter of
all road traffic deaths are among motorcyclists in the world.
Despite of the human cost of road accidents there are real
economic stakes hidden behind these issues. In France, during
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the year 2015, the lack of road safety has cost more than 40
billion e which represented 2.2% of the GDP [3].

The P2WV accidents are such important subject in our
societies that specific organizations work on the understanding
of the P2WV accidents as Motorcycle Accidents In Depth
Study (MAIDS). MAIDS, which is an European non-profit
organization, has investigated in detail no less than 921 mo-
torcycle accidents in five European countries during one year
[4]. This study highlights clear results:
• The main primary contributing factors in the accidents

involving motorcycle were the riders (37.4%) and the
other vehicle (OV) drivers (50.5%).

• Main rider contributions to accident causality are pre-
sented in table I.

• In 32% there is a loss of control of the P2WV, it was
mostly related to braking and a subsequent change in
vehicle dynamics.

• Infrastructure, weather, mechanical problems are also
identified factors responsible of accidents.

Human factor Contribution
Traffic strategy 32.2%

Traffic-scan error 27.7%
Visual obstructions 18.5%
Speed difference 18%
Rider inattention 10.6%

Table I: Rider contributions to accident causation

This paper is organized as follows: section 2 presents the
motivations and states the problem. Then, section 3 reminds
the basis of motorcycle modeling whereas section 4 deals with
the main steps of the observer design. In section 5, results of
validation have been discussed. Finally, section 6 ends this
paper through a conclusion.

II. MOTIVATION AND CONTEXT

In the past, the first action established by many governments
to answer to the concern of road fatalities was to push up
the use of passive safety systems such as the seat belt in our
Powered Four-Wheeled Vehicle (P4WV) or the helmet for the
P2WV riders (researches [2] have shown that wear a helmet
can reduce the risk of death by almost 40% and the risk of
severe injury by approximately 70%). Depth investigations
as MAIDS have highlighted that human is one of most
contributing factors to accident causality especially riders who
are responsible up to 37.4% of the total number of accidents
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involving at least one P2WV. Moreover, a loss of control of the
motorcycle happens in 32% among all the P2WV accidents.
This finding is very crucial because adequate systems could
help the rider to avoid a loss of control and hence the accidents.
That is why there is a real challenge to develop Advanced
Rider Assistance Systems (ARAS) to assist the rider during
dangerous riding scenarios and to avoid critical situations. It
is very encouraging because similar systems equip our car
for almost 10 years and they have significantly contributed to
decrease the number of road accidents.

Lot of specificities of P2WV do not allow the motorcycle
makers to use the already existing systems for P4WV and
it explains the delay in the development of ARAS. The
complexity of P2WV motions especially the lateral dynamics
which involves yaw, roll, steering angles and lateral motion,
the extreme load transfer phenomena (wheelie and stoppie),
the ratio between the mass of the rider and the vehicle, their
compact size, their cheaper cost, are undeniable obstacles to
the development of such systems. Nevertheless, for the last
3 years, several ARAS have been proposed on the P2WV
market. One can cite: the Antilock Braking System (ABS),
the Electronic Stability Control (ESC), the Traction Control
System (TCS) or the Motorcycle Stability Control (MSC).
Unfortunately, most of them are installed only on high-end
motorcycles.

In general, active and semi-active safety systems for vehicle
work in a similar way, they are based on a mathematical
model of the vehicle. Their efficiency is often closely linked
to the capability of the model to be faithful regarding the
real dynamics. The rich literature dealing with motorcycle
modeling demonstrates how much the topic has been addressed
for almost 50 years. However, very few works discuss the com-
plete dynamics model of P2WV, they are often separated into
2 categories: “In-plane” describing the longitudinal dynamics
and “Out-of-plane” for the lateral dynamics. It exists a large
diversity of P2WV model whose the most simple is the single
body one similar to an inverted pendulum. However, much
more complex models have been developed like in [5] or in
[6] where the motorcycle is divided into 8 different bodies
(the fork, the steering mechanism, the front and rear wheels,
the swing arm, etc). Although these multibody models are
very accurate and reliable regarding the real P2WV dynamics,
it is quite impossible to use them to design any algorithm
for ARAS because of their intrinsic complexity with strong
nonlinearities. Moreover, describe the vehicle with several
bodies involves to determine all the parameters relative to
each body especially the static and the dynamic features. It is
sometimes very difficult to measure some of these parameters
like the inertia. In this case, identification approaches as in
[7] can be used to determine the corresponding parameters.
Hence, in addition to the intrinsic complexity, the difficulty
to identify all the needed parameters make them not adapted
for ARAS design but very useful tools to proceed in a first
validation of ARAS before testing them on real vehicles. Note
that the commercial motorcycle simulator BikeSim (BS) which
is used below to perform the validation is based on a 8 bodies
mathematical model. Fortunately, intermediate models have
been developped like in [8], [9] or the well-know model in

[10]. In our work and more generally in the literature, the
works dealing with algorithm design for motorcycle dynamics
state estimation and control purposes use the Sharp’ 71 model.
It is popular because with its two-body description it is a great
compromise between simplicity and ability to catch all the
lateral dynamics phenomena. Moreover, considering only two
bodies considerably reduces the number of parameters to be
identified.

Obviously, in addition to the choice of the mathematical
model, the success of ARAS or ADAS is highly dependent of
the embedded electronics systems. Most of them are based
on the same pattern, they use an Electronic Control Unit
(ECU), a whole of sensors and according to the kind of system
some actuators. That is why ARAS currently equipped only
premium vehicles because of their costs, their reliability, their
integration constraints, etc. This paper aims to bypass these
problems by introducing an observation algorithm to estimate
the lateral dynamics. It allows to replace some sensors, doesn’t
need any mechanical maintenance, is directly implemented
into the ECU, is free of integration constraint and is cheaper.
Moreover, the proposed observer enables to estimate un-
measurable states like the tire forces or the rider action.
Indeed, the rider torque applied on the handlebar is a typical
unmeasurable information because even if strain gauges can
give an idea about it, it is impossible to separate the rider
contribution from the road aligning action contribution. While
self-driving P4WV vehicles appears on the roads, autonomous
P2WV are still in development [11],[12], [13]. In this kind
of application observers are very useful because it is crucial
to understand the steering torque dynamics since the rider
action is replaced with an electric motor. The observers for
the P2WV dynamics estimation have been seriously studied for
10 years. In 2008, precursor work was published about state
estimation for motorcycles in [14]. In a first time, researchers
have commonly addressed the estimation of the lean angle
[15], [16], [17] and rapidly the aim was to estimate the whole
dynamics states [18], [19] and more recently in [20] and
[21]. These works dealing with P2WV dynamics estimation
highlight the strong potential of these techniques. In [22] or
in [23] authors have already proposed a validation of their
observation works by means of BS whereas in [24] and [17]
experimental tests have been performed but only roll angle
estimation was considered. In [15] authors have proposed a
more complete experimental investigation to validate estimated
states with extended Kalman filter. Nevertheless, regarding the
number of works addressing motorcycle dynamics observation
few are validated with experimental tests or with a high
performance simulator like BS.

The main contribution of this paper is the validation of
the Luenberger-like nonlinear observer proposed in [20] with
the P2WV commercial simulator BikeSim (BS). In [20],
the authors have only discussed the performances of the
approach by testing the algorithm on the simple linear two-
body model used for the observer design. These first results
have shown the potential of the proposed observer and this
paper aims to confirm it with realistic simulations. Moreover,
the performances comparison based on the Root Mean Square
Error (RMSE) is performed with previous works dealing with
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P2WV estimation especially [25] and [26]. In addition, to be
as close as possible to real experimentation, real sensors have
been considered during the observer’s design by introducing
measurement noises in the observation equation. Let us remind
that with its very simple design, its ability to rapidly and
simultaneously estimate the lateral dynamics and the rider
action without any restriction on the longitudinal speed, this
observer turns out to be a perfect candidate for real time
applications.

III. MOTORCYCLE DYNAMICS

This section aims to remind the main steps of the devel-
opment of the P2WV mathematical model used for observer
synthesis. Let us recall that the dynamics equations are derived
in the reference frame whose the origin is the projection of
the gravity center on the road and its Z-axis is perpendicular
to the road. Notice that this reference frame is different from
the body-fixed frame which is attached to the P2WV. Note
that, the notation Xb f is used when the dynamics state X is
expressed in the body-fixed frame. For those expressed in the
reference frame there is no specific notation.

A. Linearized two-body Model

Let us remind that the model discussed below is based on
the well-know Sharp’ 71 model initially presented in [10]. In
his work, the author has modeled the motorcycle as a set of two
rigid bodies joined by the steering mechanism. The front body
includes the front wheel, the fork and the steering mechanism
whereas the rear body involves all the remaining parts of the
P2WV (main frame, rear wheel, swing arm, etc) and the rider
which is considered rigidly fixed to the rear frame. Figure 1
illustrates the geometric features of the two-body model. Note
that the points G f and Gr denote respectively the location of
the front and rear gravity centers. For more details, please refer
to [10].
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Figure 1: Sharp’ two-body motorcycle kinematics

This model provides a total of 4 Degrees Of Freedom
(DOF): the roll φ , the yaw ψ , the steering δ and the lateral
motion vy. The pitch dynamics is neglected into this model.

Note that this assumption is important to derive the relation-
ship between the angular rates in the body-fixed frame and
the reference frame. Although this model allows to catch the
main part of the lateral dynamics, it does not take into account
any tire contribution. In [10], the author has also demonstrated
how much it is essential to consider the tire forces since their
dynamics play a crucial role into the vehicle stability. To this
end, the tire relaxation phenomenon is commonly considered.
It is defined by the following expression:

σyi

vx
Ḟyi +Fyi = Fyi0

(1)

where i = f ,r represent respectively the front and rear com-
ponents. Fyi are the lateral tire forces, σyi is the lateral tire
relaxation length and Fyi0

are the initial lateral tire forces. To
completely define the tire model (1), the terms Fyi0

need to
be determined with an adequate expression. It exists many
models describing the tire forces, as in [27] where the authors
introduced a theoretical approach based on friction theory.
Whereas in [8], the author used a semi-empirical method to
develop his tire model also well-known under the name of
“magic formula”. This last is one of the most used because
it precisely describes all the tire dynamics phenomena, its
parameters can be identified with experimental tests and it can
be easily linearized. Finally, for P2WV, the magic formula, in
its linear form, is expressed by the following equations:

Fyi0
=Ci1αi +Ci2λi (2)

where Ci1 and Ci2 are respectively the cornering stiffness and
camber coefficients of the tire i. The side slip angles αi are
approximated with the linear expressions:{

α f =
vy+l f ψ̇−ηδ̇

vx
−δ cos(ε)

αr =
vy−lrψ̇

vx

(3)

whereas the camber angles λi are linearly given by:{
λ f = φ +δ sin(ε)
λr = φ

(4)

For more details about the derivation of the linear expres-
sions, please refer to [9].

Finally, we get a set of 6 dynamics equations: - Lateral
motion:

m33v̇y +m34ψ̈ +m35φ̈ +m36δ̈ = r34vxψ̇ +Fy f +Fyr (5)

- Yaw motion:

m34v̇y+ m44ψ̈ +m45φ̈ +m46δ̈ = r44vxψ̇ + r45vxφ̇

+r46vxδ̇ + r47Fy f + r48Fyr (6)

- Roll motion:

m35v̇y+ m45ψ̈ +m55φ̈ +m56δ̈ = r51φ + r52δ + r54vxψ̇

+r56vxδ̇ (7)

- Steering motion:

m36v̇y+ m46ψ̈ +m56φ̈ +m66δ̈ = r61φ + r62δ + r64vxψ̇

+r65vxφ̇ + r66δ̇ + r67Fy f + τ (8)
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- Front tire motion:

Ḟy f = r71vxφ + r72vxδ + r73vy + r74ψ̇ + r76δ̇ + r77vxFy f

(9)

- Rear tire motion:

Ḟyr = r81vxφ + r83vy + r84ψ̇ + r86δ̇ + r88vxFyr (10)

Please refer to [28] to get the explicit expressions of the
coefficients mi j and ri j.

The set of equations (5)-(10) can be transformed into
matrix formalism. This leads to the following Linear Parameter
Varying (LPV) state-space representation:

˙̄x = Ā(vx)x̄+ B̄τ (11)

where x̄ = [φ ,δ ,vy, ψ̇, φ̇ , δ̇ ,Fy f ,Fyr ]
T denotes the vector of

states, Ā(vx) the state matrix which depends on the time
varying forward speed vx. B̄ is the input vector and τ is the
rider’s steering torque.

B. Augmented Model

The rider torque applied on the handlebar denoted τ is
unmesureable. Indeed, even if strain gauges can give an idea
about this torque, it is currently impossible to identify the
distribution between the pure rider’s action and the road
aligning moment contribution. In this context, several complex
approaches were investigated as in [21] and [25]. In the
latter, the authors proposed the use of an unknown input
observers to bypass the unmeasurability of τ . Finally, without
any information on τ in the model (11), it is not possible
to directly implement a Luenberger observer. In practice, the
rider torque is naturally continuous and bounded because it is
a human action. It means that its first derivative always exist
and is denoted τ̇ . Hence, if we augment the state vector x̄
with the state τ , then this turns out to be a great solution to
bypass the lack of information about τ . In order to express the
augmented system in an exact form, the rider torque dynamics
is added to the previous system 11 as it follows:

ẋ = A(vx)x+Pp (12)

where x = [φ ,δ ,vy, ψ̇, φ̇ , δ̇ ,Fy f ,Fyr ,τ]
T denotes the augmented

vector of states and p = τ̇ is the rider torque dynamics. The
matrices A(vx) and P are defined as follows:

A(vx) =

[
Ā(vx) B̄
01×8 0

]
and P =

[
08×1

1

]
C. Exact T-S model of the augmented model

The well-known sector nonlinearity approach presented in
[29] is one of the most used to deal with nonlinear problem.
This last allows to describe nonlinear system with a whole of
linear sub-systems extending the use of many technical tools
originally dedicated to linear problems. It is important to note
that this technique keeps an exact expression of the initial
nonlinear system in a compact set of the state space set. It
does not need any assumption except that the nonlinearities
have to be bounded. Nevertheless, for n nonlinearities we get
r = 2n sub-models. For models with multiple nonlinearities,

this rapidly leads to a plenty of expressions. In our case, the
Takagi-Sugeno (TS) method allows to take into account the
longitudinal speed variation during the observer design.

By following the TS approach, the system (12) can be
exactly expressed in a polytopic form as follows:

ẋ =
r=2

∑
i=1

µi (vx)Aix+Pp (13)

Note that the time varying longitudinal velocity vx is the only
nonlinearity (n = 1). Hence, the system (12) can be described
with 2 linear sub-models. The variables µi(.) are the weighting
functions also called the membership functions which are
computed as it follows:{

µ1 =
vxmax−vx

vxmax−vxmin

µ2 =
vx−vxmin

vxmax−vxmin

(14)

and they must satisfy the following convex sum property:
r=2
∑

i=1
µi (vx) = 1

0≤ µi (vx)≤ 1; i = 1,2
(15)

At this point, the TS approach applied on the augmented
system (12) allows us to implement a nonlinear Luenberger
observer whose the design is discussed in the next section.

IV. OBSERVER DESIGN

This section aims to remind the main steps concerning
the design of the nonlinear Luenberger observer initially
introduced in [20].

A. Observation equation

Before designing the observer we need to clearly define the
measured states. The observer existence conditions are highly
correlated to this choice. Regarding the high interest of the
motorcycle makers to embed more and more electronics (sen-
sors, ECU, etc), it is consistent and common to consider that
the P2WV is equipped with a gyroscope and an accelerometer.
Let us consider these sensors are installed as close as possible
to the gravity center and provide the measures of the angular
pitch, yaw, roll rates, the lateral and vertical accelerations. It
is important to note that these measures are given in the body-
fixed frame rigidly attached to the vehicle in contradiction with
the reference frame used to derive the model. Hence, the latter
are respectively denoted θ̇b f , ψ̇b f , φ̇b f , ayb f and azb f .

Like ay is not an explicit state of the model, the following
expression May = Fy f +Fyr is introduced with M = M f +Mr
the total mass. Nevertheless, there is a subtlety because the
accelerometer provides the measures in the body-fixed frame
whereas ay is the lateral acceleration in the reference frame
which is not affected by the roll motion. Consequently, it
is necessary to express ay as a function of the body-fixed
measures. Under the assumption that the pitch dynamics is
neglected as in the development of the Sharp’ model, the
measured accelerations in the body-fixed frame along Y -axis
and Z-axis can be expressed by:{

ayb f = ay cos(φ)−gsin(φ)
azb f =−ay sin(φ)−gcos(φ) (16)
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Although, the lateral accelerations ayb f and ay are expressed
in different frames, they systematically have the same sign.
If we square the two equations (16) and we sum each other.
Then, the lateral acceleration in the reference frame ay can be
expressed by the following expression:

ay = sign(ayb f )
√

a2
yb f

+a2
zb f
−g2 (17)

A similar problem affects the yaw and roll rates respectively
denoted ψ̇ and φ̇ . Indeed, the gyroscope provides the angular
rate measurements in the body-fixed frame whereas the state
used in the observation equation are in the reference frame.
The kinematics of moving frames was largely addressed in the
literature as in [?]. The reader can refer to this last for more
details on the transformation between the angular rates in the
body-fixed and the reference frame. According to [?], the roll,
pitch and yaw rates given in the reference frame respectively
denoted φ̇ , θ̇ and ψ̇ can be expressed by:φ̇

θ̇

ψ̇

=

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)/cos(θ) cos(φ)/cos(θ)

 φ̇b f
θ̇b f
ψ̇b f

 (18)

Let us consider again the assumption that the pitch dynamics
is neglected and the gyroscope is properly calibrated. In
other words θ̇ = 0 and θ = 0. Then, using the exactly the
same technique as above between (16)-(17) for the two last
equations of the system, we obtain:

ψ̇ = sign(ψ̇b f )
√

θ̇ 2
b f + ψ̇2

b f (19)

Under the above assumptions, the expression of the roll rate
in the reference frame is trivial and given by:

φ̇ = φ̇b f (20)

Finally, we will consider ay, ψ̇ and φ̇ as measured in
the observation equation since their algebraic expressions
only depend on the gravity acceleration g, the accelerometer
measurements (ayb f and azb f ) and the gyroscope measurements
(φ̇b f , θ̇b f and ψ̇b f ).

In addition, the steering angle δ is also measured. To that
end, let us consider that the P2WV is equipped with a simple
encoder installed on the steering axis. Moreover, efficient
numerical differentiation techniques were recently proposed as
in [30]. This approach allows to estimate the first and second
time derivatives of a given function. In our case, it allows to
estimate the steering dynamics δ̇ .

Finally, the observation equation is given by:

y =Cx+Dd (21)

where y is the vector of measures defined by: y =
[δ , ψ̇, φ̇ , δ̇ ,ay] with ay = (Fy f + Fyr)/M and C is the corre-
sponding observation matrix. Note that the inertial measure-
ments in y are expressed in the reference frame. Nevertheless,
they can be rewritten as a function of the sensor measures as
in equations (17)-(20). In order to be as close as possible to
a real experimentation, sensor noises are considered. To that
end, d denotes the noise vector whereas D is the corresponding
matrix.

Finally, these five measures ensure the strong observability
of the lateral model whatever the longitudinal speed except
for vx = 0. Nevertheless, in the context of this work we
assume that vx > 0 because the objectives are to develop safety
system for forward riding scenario. Backward riding and static
maneuvers are not considered here since they are not the most
dangerous situations.

B. Observer synthesis
Let us consider the general TS model: ẋ =

r
∑

i=1
µi (ρ)Aix+Pp

y = Cx+Dd
(22)

where x ∈ Rn, p ∈ Rnp , y ∈ Rny and d ∈ Rnd are respectively
the vector of states, the vector of perturbations, the vector
of measures and the vector of disturbances. Note that this
last contains the measurement noises. r is the number of sub-
models given by r = 2n with n the number of nonlinearities
and µi(.) are the membership functions. ρ ∈ Rnρ denotes the
premise variable which is considered as measurable for the
following section.

Consider the well-known Luenberger observer in its TS
form:  ˙̂x =

r
∑

i=1
µi (ρ)(Aix̂+Li (y− ŷ))

ŷ = Cx̂
(23)

with Li the observer gain matrices which ensure the error
convergence. The estimated state and output vectors are re-
spectively denoted x̂ and ŷ. Now, let us consider the state
estimation error as follows:

e = x− x̂ (24)

Its dynamics is given by the following expressions:

ė = ẋ− ˙̂x

=
r

∑
i=1

µi (ρ)Aix+Pp−
r

∑
i=1

µi (ρ)(Aix̂+Li (y− ŷ))

=
r

∑
i=1

µi (ρ)(Aie−LiDd)+Pp

=
r

∑
i=1

µi (ρ)(Aie−Sis) (25)

with Ai = Ai−LiC, Si =
[

P −LiD
]

and s =
[

pT dT ]T
Then, in order to analyze the error convergence, let us

introduce the following Lyapunov function denoted V :

V = eT Xe (26)

with X a symmetric and positive definite matrix such that:
X = XT > 0.

Its time derivative V̇ leads to:

V̇ =
r

∑
i=1

µi (ρ)(eT (A T
i X +XAi)e+ sT ST

i Xe+ eT XSis) (27)

To attenuate the effect of the perturbation s on the estimation
error e, let us define the L2-gain as the quantity:

sup
‖s‖2 6=0

‖e‖2
‖s‖2

≤ γ
2 (28)
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with γ a positive scalar and ||.||2 the L2-norm. For a given
vector z(t), its L2-norm is:

‖z(t)‖2 =

 ∞∫
0

zT (t)z(t)dt

1/2

(29)

Hence, it comes the following inequality:

eT e− γ
2sT s < 0 (30)

Considering that V̇ < 0, it follows:

V̇ + eT e− γ
2sT s < 0 (31)

Note that even with the presence of a disturbance term s,
if the inequality (31) is verified then the convergence of the
estimation error is ensured.

Considering the notation Z̃i =
r
∑

i=1
µi(ρ)Zi, the expression of

V̇ given in (27) and the equation (31), we obtain a Linear
Matrix Inequality (LMI) problem:[

e
s

]T [ ˜A T
i X +X ˜Ai + I XS̃i

S̃T
i X −γ2I

][
e
s

]
< 0 (32)

Since the weighting functions satisfy the convex sum
property, sufficient conditions ensuring the convergence of
estimation error are given by:[

A T
i X +XAi + I XSi

ST
i X −γ2I

]
< 0, i = 1, ...,r (33)

In order to obtain solvable LMI conditions, the changes of
variable L̄i = XLi, Ai = Ai +LiC and γ̄ = γ2 are necessary. It
leads to the final LMI:[

AT
i X +XAi− L̄iC−CT L̄T

i + I XSi
ST

i X −γ̄I

]
< 0, i = 1, ...,r (34)

Finally, given a scalar γ , if there exists a symmetric and
positive definite matrix X and matrices L̄i, i = 1, ...,r such
that the LMI (34) is satisfied. Then the error is stable and
the transfer from the perturbation s to the estimation error e is
bounded by γ . Note that the observer gain matrix L is obtained
by:

L =
r

∑
i=1

µi(ρ)X−1L̄i (35)

In practice, to get better estimation performance, it is pos-
sible to transform the previous LMI (34) into an optimization
problem. To that end, γ can be considered as an adjustable
parameter of optimization that the designer can control.

V. OBSERVER VALIDATION

This section deals with the main contribution of this paper.
Indeed, this observer was already introduced in [20] but the
algorithm was only tested on the two-body linear model
used for the observer design. This two-body model is quite
simple and based on many assumptions (linear dynamics, rigid
bodies, pitch dynamics neglected, etc.). Although, the results
discussed in [20] highlight very good estimation performances.
This does not mean that it will be as efficient in a realistic
case because of the restrictive assumptions. Moreover, our
previous work considered ideal sensors. It did not take into

account any measurment noise during the observer design. To
go further, this paper presents a more realistic validation since
it proposes to test the observer by means of the commercial
motorcycle simulator BikeSim while considering realistic sen-
sors. This software is commonly used in P2WV research and
development field as in [31], [32] or in [25]. It is a complete
simulator which is based on the multibody model introduced
in [5]. where the authors modelled the motorcycle as a set
of 10 different bodies. This model allows a total of 29 DOF
leading to a very complex and highly nonlinear equations.
Even if no real experiment is carried out, BS allows us to test
the observer in conditions very close to a real riding test. In
addition, simulators like BS turn out to be more and more
attractive since they allow to test dangerous situations without
any real risk for the rider. To conclude the validation, the
observer performances are quantified with the RMSE criteria
and compared to similar works.

Let us remind that the objective of this observer is to
estimate the non-measured motorcycle lateral states and the
rider action applied on the handlebar whatever the longitudinal
speed. To that end, the estimated states are the roll angle φ ,
the lateral speed vy, the lateral tire forces Fy f , Fyr and the
rider torque τ . Note that the lateral speed estimation is not
addressed below. The first reason is that the lateral speed is a
better indicator for comfort than for critical situation detection
like a rollover scenario. In this last case, other states like the
roll angle and its rate are much more important. The second is
that vy is lowly excited leading to significant estimation errors.

The observer is tested on three distinct scenarios. A first one
which represents a track at varying forward speed in order
to simulate a daily life riding. Then, a second and a third
scenarios whose the aims are to test the observer on extreme
maneuvers which highly excite the lateral motorcycle dynam-
ics. They simulate respectively a slalom with a simultaneous
acceleration and a Double Lane Change (DLC) at constant
speed with noisy sensors.

As discussed in the observer design section, we turner the
LMI (34) into an optimization problem by assuming γ as a
chosen optimization parameter. Finally, we set γ = 0.0464
which ensures a excellent compromise between estimation
performances and computing resources. Indeed, with this value
of γ , the algorithm is largely able to perform real time
estimations without any hardware optimization at that time.
Note that, the tests was carried out on macOS with a 3.1 GHz
Intel Core i7 CPU.

A. Track scenario

With its straight lines, its large and narrow turns and its
rapid speed variations included between 30 and 100 km/h,
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Figure 2: Track scenario

the riding track scenario introduced in figure 2 is very
representative to common riding situations. The objective of
this first simulation is to test the ability of the proposed
observer along a scenario as close as possible to a daily life
use of a P2WV.

As discussed above, accelerometers, gyroscopes and en-
coders became affordable and common sensors in vehicle
embedded instrumentation. In our case, these three sensors
guarantee the observability conditions of the system (12).
Let us recall that the measures states ψ̇ , φ̇ and ay, in the
observation equation (21) are expressed in the reference frame
whereas the sensors provide the measures in the body-fixed
frame. They are considered as measured since their algebraic
expressions only depends on the measurements as explained
in the equations (17)-(20). Note that the encoder gives directly
the measure of the steering angle δ without any frame trans-
formation. In addition, a prior differentiator allows to estimate
its dynamics δ̇ like in [28].
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Figure 3: Measured states along the track scenario
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Figure 4: Estimated states along the track scenario

Figure 3 introduces the measured states along the track. One
can remark the small value of the steering regarding some
turns. this endorses that the lateral control of a P2WV is the
result of several complex actions (handlebar steering, vehicle
leaning, etc.).
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Figure 4 presents the lateral dynamics states and the rider
torque simulated in blue and their estimation in red. It clearly
shows all the capabilities of the nonlinear Luenberger observer
to estimate the rider action and the motorcycle lateral dynam-
ics. Note that, the observer initial conditions were willingly
chosen different from the model to show the ability to rapidly
converge toward the simulated value.

B. Extreme slalom test

In contrast to the first scenario, the slalom aims to sim-
ulate an extreme riding maneuver since it highly excites
the lateral dynamics. Moreover, the forward speed increases
simultaneously with the lateral rider action in order to test
the estimation performances independently of the longitudinal
speed variations. Figure 5 depicts the lateral trajectory and the
simultaneous acceleration from 50 to 100 km/h.
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Figure 5: Slalom scenario

Figure 6 introduces the measured states during the slalom
test. Whereas in figure 7, the simulated dynamics states are
plotted in blue and their estimation in red. One can remark
that the successive rider torque peaks which illustrate the
high dynamics solicitations. As for the track case, the initial
conditions were chosen different from the initial dynamics
states of the P2WV. This scenario endorses that this observer
is able to estimate the lateral dynamics and the rider action
even for extreme riding scenarios. Nevertheless, some small
estimation errors are visible especially in the peak areas. Let
us remind that the observer is derived from a linear two-
body model whereas BS is a highly nonlinear multi-body
simulator which could explain these errors. In addition, in the
observer algorithm the lateral tire forces are approximated by
their linear expressions leading to significant errors when the
saturation phenomenon appears.
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Figure 6: Measured states during the slalom
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Figure 7: Estimated states during the slalom

C. Double lane change test with noisy sensors

This section aims to test the robustness of the observer
regarding sensor noises. Moreover, a double lane change
(DLC) scenario at high speed is introduced. Note that the
DLC which, in practice, represents an avoidance maneuver
is among the most important riding cases to test the algorithm
performances for safety system applications. Hence, behind
this section there are two objectives, the first is to test the
sensor noise sensibility and the second to demonstrate the
observer capabilities in a typical dangerous riding situation.
Figure 8 shows the motorcycle trajectory during the DLC
whereas the forward speed vx is constant at 100 km/h.
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Figure 8: DLC scenario

Although is able to faithfully simulate the whole of mo-
torcycle dynamics, the sensor imperfections are not taken
into account. To be as close as possible to an experimental
validation a centered white noise has been added on each
measure such that the noise is bounded between 5 and 10
% of the maximum value of the considered measure.
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Figure 9: Measured states with noise during the DLC

Figure 10 presents the measures perturbed with the sensor
noise. In contrast with the two previous simulations were the
steering angle was up to 2 degrees, for the DLC in figure
8 it is included between -0.5 and 0.5 degree although the
lateral displacement is significant. This observation highlights
the correlation between the rider action on the handlebar and
the forward speed. In practice, to negotiate a turn a rider has
to increase the steering angle as far as the forward speed is
slowing down.
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Figure 10: Estimated states during the DLC

Figure 10 shows the consequences of noises on the estima-
tions of the lateral dynamics and rider action. One can clearly
remark that the rider torque is the most affected estimated state
and consequently the front lateral tire force. The rear tire force
and the roll angle are practically insensitive to sensor noises,
the observer acts as a real filter for these two estimated states.
The different noise sensitivities between front and rear tire
forces are explained by the fact that the steering dynamics
mostly affects the front tire dynamics as it is expressed in (9).
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Figure 11: Estimated states during the DLC

Nevertheless, signal processing techniques such as a low-
pass filter turns out to be an efficient solution in order to
attenuate the effect of the noises on the estimations. A third
order Butterworth filter with adequate cut-off frequency is
sufficient to denoise the data without leading to a significant
delay. Figure 11 presents the filtered estimated rider torque
and the obtained front tire force.

D. Observer performances quantification

In [26] or [25], authors have already proposed a solution
to quantify the performances of their observer through the
root mean square error comparison. Nevertheless, these RMSE



10

studies was only devoted to roll angle estimation. Let us
remind that the RMSE is defined by:

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)2 (36)

Considering that the RMSE is proportional to the square of
the estimation error, less is the RMSE better are the estimation
performances.

In [26] authors have proposed to compare roll angle es-
timation performances thanks to a vision system, a Kalman
filter based on an inertial measurement unit (IMU) and the
combination of the two methods. The approaches are tested
on an experimental track scenario. Whereas in [25], the
performances of an Unknown Input Observer (UIO) have been
presented for two cases, a first with ideal sensors and a second
with sensor noise consideration. In this work, the author tested
his observer through track scenario simulations with . Note that
the scenario used to compute the RMSE in [25] is exactly the
same as in section V.A. The results of these two papers are
summarized below in table II.

Method RMSE
Vision system, [26] 2.24

IMU-Kalman filter, [26] 2.01
Mean vision/IMU, [26] 1.20

UIO with ideal sensors, [25] 1.28
UIO with realistic sensors, [25] 1.85

Table II: RMSE results from previous works

Finally, table III introduces the performance of the Luen-
berger nonlinear observer. For each scenario, the RMSE of
the roll angle estimation is computed in a first time with ideal
sensor free of noise and then by taking into account sensor
noises. For the noisy case the RMSE is computed from the
raw roll angle estimation, it means that no prior filter has been
used to denoise the data.

The RMSE results for the track scenario demonstrates the
potential of our observer compared to previous works. Indeed,
in [25], the authors have already tested their UIO on the
same track scenario with ideal and realistic sensors. Without
any noise consideration the performances of the Luenberger
observer are 38% better and with noisy measures around 54%.
Although in their paper the authors have used a more complex
alternative to the two-body linear model by taking into account
the nonlinearity of the roll and steering angle to be closer to the
real dynamics, the performances of our observer, only based
on the simple linear model, are better.

Regarding table III, the poorer RMSE results obtained
for the slalom and the DLC scenarios highlight the greater
difficulty to perfectly estimate the roll angle during extreme
maneuvers than for a normal riding case like the track simula-
tion. The modeling assumptions are responsible to estimation
error especially the linear approximation of the motorcycle and
the tire models. Note that even if the RMSE results of these
two scenarios are higher, they are better than those obtained
in table II.

Finally, the small variations of the RMSE results between
noise free and realistic sensors cases for a same scenario

illustrates the prior observation about the fact that the roll
angle estimation is almost insensitive to the sensor noise.

RMSE
Scenario Ideal sensors Real sensors

Track 0.79 0.84
Slalom 1.09 1.53
DLC 1.08 1.55

Table III: RMSE results for the proposed Luenberger observer

VI. CONCLUSION

This paper has presented a concrete validation of the
nonlinear Luenberger observer through simulations performed
with the commercial simulator BikeSim. Moreover, realistic
sensors have been considered during the design to synthesis a
robust observer against measurment noises. The lateral vehicle
dynamics basis and the main step of the observer design have
been reminded. The Lyapunov theory, the LMI tools and the
L-2 gain property applied on the Sharp’ 71 linear two-body
model have contributed to fully design the robust observer and
ensure a bounded estimation error with the ISS property. The
approach has shown that even if the observer design is based
on a simple linear two-body model and the convergence is only
bounded, it is able to take into account all the complexity
of the motorcycle motion and to perfectly estimate in the
same time the lateral dynamics states of the P2WV and the
rider action. Then, a slalom and a DLC maneuvers have
demonstrated the observer robustness regarding extreme lateral
riding scenarios and realistic sensor consideration. Finally a
RMSE study, has shown the impressive performances of the
proposed observer in comparison with the two previous works
[26] and [25].

The future work will consist in real time validation of this
observer through experimental tests.
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