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Abstract— In this paper, we investigate a vision-based ap-
proach for online lane change prediction and detection dedi-
cated Powered Two-Wheeled Vehicles. The approach is com-
posed of two steps. First, the road geometry (clothoid model)
and the motorcycle position with respect to the road markers
are deduced based an inverse perspective mapping algorithm.
The relative position is represented by the vehicle lateral
displacement and heading estimated by means of an Inertial
Measurement Unit and a monocular camera. The second step
consists of predicting the Lane Crossing Point which allows to
predict the distance and time before the motorcycle crosses the
lane. The algorithm is achieved without the use of any steering
sensor.

To assess the effectiveness of the proposed approach, the
estimation and the prediction schemes are validated on the
BikeSim framework. To this end, two scenarios are discussed :
1- straight road with non-zero relative heading, and 2- curved
road and circular vehicle trajectory.

I. INTRODUCTION

The study of the road accidents shows that the human fac-
tors (57%) appear far before the meteorological or technical
issues [1]. The most frequent human causes: alcohol and
speed are responsible respectively of 31% and 25% of fatal
accidents. Distraction is also an important human factor in a
road accident that can be highlighted by, for example, lane
crossing or abnormal steering behavior. Hence, the prediction
of the steering rider behavior is a crucial issue for Advanced
River Assistance Systems (ARAS) to warn dangerous drive
situations.

This work focuses on lane crossing prediction for pow-
erred two-wheeled vehicles (P2WV). To the best of the
author’s knowledge, the problem has never been addressed
for P2WV. The aim is to predict, whether a simple perception
system, the spacial and temporal lane change information.
Such information can be predicted uising the Time to Lane
Crossing (TLC) and the Distance to Lane Crossing (DLC)
which are key components to be estimated in order to predict
critical situations.

Several safety systems for lane departure are already
integrated in modern cars. Departure Lane Assist (DLA)
systems make the vehicles more autonomous, allowing to
inspect the surrounding vehicles position and to detect the
driver hypo-vigilance. Lane detection can be done through
different technologies [2]: Lane Departure Warning (LDW)
system [3], Lane Keeping Assistance System (LKAS), etc.
All those systems have been discussed, as well as their
interoperability issue in [4], [5], [6], [7], [8].
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In some ways, the P2WV size can be seen as a weakness.
They tend to frequently change travel direction and speed,
regardless number of lanes or their width. Consequently, the
lane crossing may create hazardous situations. To reduce
safety risks, riders should try as much as possible to avoid
the middle and the overtaking lanes since that would expose
them to left side and right-side hazards posed by adjacent
vehicles [9].

Currently, relevant works are planned to study the design
of Lane Departure Warning for motorcycles from the control
point of view [10]. In [11], the lane-keeping controller
for motorcycles was evaluated through computer simulation
with a rider-control model, in which the lane-following
performance was improved by using a virtual-point regulator.
In [12], the authors developed a Lane Change Decision aid
system (LCDAS), which detects backward vehicles and mo-
torcycles under weather and environmental. At the end, they
used a change using single camera, in order to inform the
driver of dangerous situations during lane change maneuvers.
Futhermore, an optimal control theory to the lane keeping
controller for motorcycles was presented in [13].

Nevertheless, there is a lack of literature review related
to the problem of Lane Crossing Point (LCP) detection for
motorcycles. Therefore, DLA systems for motorcycles need
more thorough investigations to be embedded in modern two-
wheelers.

The remaining of this paper is organized as follows.
Section II motivates the paper’s topics. Section III reviews
our previous work on Inverse Persepctive Mapping (IPM)
techniques for motorcycles. Section IV discusses the distance
to lane crossing estimation. Whereas, sections V and VI
present the results, conclude the paper and outline the future
works.

II. PROBLEM STATEMENT

The detection and tracking of the LCP for motorcycles
involve several technical problems that must be overcome.
The Whereas prediction is realized in most cases through
monocular cameras by reconstructing the road profile as well
as the current position of the vehicle. This is also done under
some assumptions such as flat roads and perfectly parallel
markings.

In the case of motorcycle riding, both previous assump-
tions are violated because of a bike dynamics. Indeed, the
P2WV can reach significant roll angles (the world record
is about 68◦) and undergo load transfers during braking
or acceleration phases (pitch angle significant). Following
this, the images recorded by the front camera undergo note-
worthy deformations and do not allow a direct use without



a projection in a more advantageous plan (bird-eye-view
for example). The next section recalls our previous work
on a vision based approach for accurate vehicle position
reconstruction.

This allows to recover crucial information such that the
DLC or the TLC which are both proportional regarding the
vehicle speed. The second step presents the algorithm able
of tracking the LCP.

Fig. 1: Captured camera image with reprojected road lanes,
predicted trajectories and LCP

III. VISION-BASED INFORMATION

The contribution of this paper is based on the
results initially introduced in [14]. The reader
could refer to the following videos https:
//www.youtube.com/playlist?list=
PLRTI62SuvNymK2Dx-YKha-1a4Sp54IVs8 for
visual illustrations. In [14], the authors used the IPM
technique combined with a road lanes filter allowing to
generate a bird-eye-view of the road markers (as presented
in figure 3). Then, a clothoid model of the road is used
to extract pertinent information such that the P2WV
relative lateral displacement and heading angle to the road
markers. They are respectively denoted ∆Yi and ∆ψi,
where i ∈ {l, c, r} indicates left, center and right markers. It
allows to recover crucial information regarding the P2WV
location on the road.

Furthermore, the clothoid model allows to predict the road
curvature and its rate respectively named C0 and C1. Both
parametres allow to faithfully reconstruct the road trajectory
in the selected Region Of Interest (ROI). Note that, even if
the ROI limit ahead of the P2WV is chosen about 30 meters
(see [14]), each road marker trajectory can be extended since
we know its third degree polynomial approximation.

Let us remind that each road lane is approximated in the
cartesian coordinate system with the following expression for
i ∈ {l, c, r}:

yi(x) ≈ ∆Yi + tan(∆ψi)x+
1

2
C0i

x2 +
1

6
C1i

x3 (1)

Whereas, in the simulations discussed in [14], the right
road marker is defined as a static reference, we proposed
to introduce a dynamic reference. Indeed, the accuracy of
the lane i trajectory reconstruction mainly depends on two

factors: the proximity with this lane and its attribute (dashed
or solid). Our strategy is to choose the reference among
the right or left solid lanes regarding the estimated P2WV
position on the road (given by ∆Y and ∆ψ). Note that,
choose the center marker is depreciated because it is often
discontinuous leading to less accurate approximation. Then,
if the P2WV is traveling in the right (respectively left)
lane, the right (respectively left) road marker is set as
the reference. Finally, since the road markers are assumed
parallel and separated from each other by a distance L,
the two others lanes trajectories are reconstructed from the
reference road marker equation (1). At this point, we know
an estimation of the three lanes trajectories in the vehicle
frame Fv whose the origin is the projection of the camera
center on the ground.

IV. LANE CROSSING POINT TRACKING

Now, considering that the road lane trajectories are avail-
able, the LCP tracking problem consists of finding the
intersection point coordinates between the predicted road
lane and vehicle trajectories. For the latter, we addressed two
cases. For both the vehicle speed is assumed constant and
positive. The first case considers a straight predicted vehicle
trajectory which corresponds to a zero steering angle (δ = 0).
Whereas for the second, δ is assumed constant and non zero.
Under these last assumptions, the predicted vehicle trajectory
is a circular path with a constant radius. For what follows,
we denoted DLC0 and DLCδ the predicted distances to the
LCP respectively for straight and circular vehicle trajectories.
Note that, the DLC is computed with respect to the vertical
projection of the camera center on the ground which is the
origin of the frame Fv .

Note that, for the case where δ 6= 0 (the rider is steering),
we systematically compute two DLC which are DLC0 and
DLCδ . The first considering a straight predicted trajectory
and the second based on a circular path prediction (see
figure 3). This allows to get a surface containing all the LCP
between the actual circular path and the straight one. In other
words, it provides indications about the LCP location in case
of the rider reduces the steering (increase of the trajectory
radius).

Moreover, for both scenarios (δ = 0 and δ 6= 0), we solved
the DLC algorithm for each detected road lane. Hence,
the final LCP is the nearest point among the solutions as
illustrated in figure 1 and 3.

A. Straight predicted vehicle trajectory (δ = 0)

For straight predicted path, the computation of the DLC
can be easily achieved by solving the equations for i ∈
{l, c, r}:

∆Yi + tan(∆ψi)x+
1

2
C0ix

2 +
1

6
C1ix

3 = 0 (2)

Let us remind (2) is expressed in the vehicle frame Fv
where Xv corresponds to the vehicle longitudinal axis (refer
to 3). Hence, if xDLC0i

is a solution of equation (2) then, the
DLC with regards to the lane i is trivial. It can be directly
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deduced such that: DLC0i = xDLC0i
. Let us remind, the

final DLC is computed such that DLC0 = min(DLC0k
)

with k corresponding to the set of all the lane intersection
points. In figure 3, the magenta line clearly illustrates the
situation with k = {center, right}.

B. Circular predicted vehicle trajectory (δ 6= 0)

In this case, we need to reconstruct the forward predicted
vehicle trajectory based on its current dynamic states. To do
so, it requires to compute the vehicle slip angle denoted ψs.
It can be expressed as a function of the the measured yaw
angle (ψ) and the angle of the trajectory tangential vector
(ψt) as illustrated in figure 2.
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Fig. 2: Scheme of the vehicle circular path prediction

Now, let us consider that the yaw angle, measured by
the IMU, is included in the interval [−π, π]. To avoid any
singularity, we introduced the following relation:

ψs = Ψt(ψ,ψt)−Ψ(ψ)

= ψt + πsign
(
Ψ(ψ)

)
Θ (ψt, ψ)−Ψ(ψ) (3)

with Θ and Ψ defined by the following functions:

Ψ(ψ) =

{
ψ − sign(ψ)π/2 if |ψ| ≥ π/2
ψ if |ψ| < π/2

(4)

and

Θ (ψt, ψ) =

{
0 if

∣∣ψt −Ψ(ψ)
∣∣ ≤ π/2

1 if
∣∣ψt −Ψ(ψ)

∣∣ > π/2
(5)

At this step, the aim is to express ψt as a function of the
IMU measurements such that the body-fixed accelerations
(axbf

, aybf , azbf ) and the orientation angles (φ, θ, ψ).
Let us define Aj = [axj , ayj , azj ]T and Vj =

[vxj , vyj , vzj ]T as the acceleration and the speed vectors
with j = g for the global frame and j = bf for the body-
fixed one. Let us remind the following relations between the
two frames: {

Vg = RVbf
Ag = RAbf

(6)

where R = RψRθRΦ is the rotation matrix. The terms
Rψ , Rθ and RΦ denote the rotation matrices associated
respectively to the yaw, pitch and roll Euler angles. Note
that Φ is the rotation angle about the axis which has been
previously pitched of θ. The real vehicle roll angle, denoted
φ, can be computed using the algebraic expression:

φ = asin
(
cos(θ) sin(Φ)

)
(7)

Furthermore, the acceleration vector in the global frame
can be obtain with the relation: Ag = V̇g . Combining the
latter and (6) leads to:

Ag = ṘVbf +RV̇bf (8)

Since we assumed the vehicle motion is uniform and circular
(Φ = cst, θ = cst, V̇bf = 0), equation (8) can be reduced
to:

Ag = ṘVbf (9)

where Ṙ = ṘψRθRΦ is the time derivative of the rotation
matrix.

Using equations (6) and (9), we obtain the following
expression:

RAbf = ṘVbf
= ṘR−1Vg (10)

Afterwards, we get one expression of the speed vector in
the global frame:

Vg =MAbf (11)

where M = RṘ−1R = [mij ] with i, j ∈ {1, 2, 3}
Let us remind that, by definition, the speed vector, ex-

pressed in the global frame, is tangent to the vehicle trajec-
tory. Since ψt is the angle of the tangential direction to the
P2WV trajectory, it comes:

ψt = atan

(
vyg
vxg

)

= atan

(
m21axbf

+m22aybf +m23azbf
m11axbf

+m12aybf +m13azbf

)
(12)

with:

m11 = sin(ψ) cos(θ)

m12 = cos(ψ) cos(Φ) + sin(ψ) sin(θ) sin(Φ)

m13 = − cos(ψ) sin(Φ) + sin(ψ) sin(θ) cos(Φ)

m21 = − cos(ψ) cos(θ)

m22 = sin(ψ) cos(Φ)− cos(ψ) sin(θ) sin(Φ)

m23 = − sin(ψ) sin(Φ)− cos(ψ) sin(θ) cos(Φ)

At this point, the vehicle slip angle denoted ψs can be
computed using equations (3), (4), (5), (7) and (12).

Now, let us consider the IMU measurements, Abf and ψ̇,
are given at a fixed sample rate denoted ∆t. Then, under the
previous assumptions, at an instant t, the vehicle trajectory,
defined by X̂vh and Ŷvh, can be predicted with the algorithm
1.



Algorithm 1 Motorcycle circular trajectory prediction

1: Inputs:
ψs, ψ̇, Abf , ∆t

2: Outputs:
X̂vh, Ŷvh

3: Initialization:
D∆t ←

∥∥Abf∥∥∣∣∣ψ̇∣∣∣ ∆t,

∆ψ1 ← −ψs,
X̂1
vh ← 0,

Ŷ 1
vh ← 0

4: for i = 2 to
π

2
∣∣∣ψ̇(t)

∣∣∣∆t + 1 do

5: ∆ψi ← ∆ψi−1 − ψ̇(t)∆t
6: X̂i

vh ← D∆t cos
(
∆ψi

)
+ X̂i−1

vh

7: Ŷ ivh ← D∆t sin
(
∆ψi

)
+ Ŷ i−1

vh

8: end for

Note that, algorithm 1 predicts the discrete vehicle tra-
jectory from its current position to the one with an angular
horizon of π/2. The term D∆t denotes the constant traveled
distance along the circular path during ∆t. Since the vehicle
motion is assumed circular, uniform and forward, it comes:

Vbf =

∥∥Abf∥∥∣∣∣ψ̇∣∣∣ (13)

Fig. 3: Road bird-eye-view with predicted vehicle trajectories
and tracked LCP

Finally, in this case of non zero steering, the DLC is the
numerical solution when solving the intersection between the
road lane equations (1) and the discrete predicted trajectory
given by algorithm 1 (see the red dot in figure 3). As for
straight path, when several LCP are detected then DLCδ =
min(DLCδk) with k a set of all LCP.

Notice that, since the longitudinal vehicle speed is avail-
able, the DLC can be trivially turned into a TLC using the
expression:

TLC =
DLC

vxbf

(14)

V. SIMULATION RESULTS

This section discusses a validation of the proposed al-
gorithm using the advanced motorcycle simulator BikeSim.
Two scenarios are presented, the first one considers straight
road and motorcycle trajectories with a constant relative
heading deviation (∆ψ 6= 0). Whereas, the second scenario
deals with circular road and vehicle trajectories (δ 6= 0).

The hardware (camera and IMU) specifications and
mountings are identical to the ones given in [14] except the
camera resolution which is 1080 × 720. Let us remind the
ROI of the bird-eye-view is limited about 30 meters ahead
of the vehicle. According to the fact that the road trajectory
is slowly varying, we extended the road lane reconstruction
to 40 meters that we defined as the maximum horizon for
LCP tracking.

In the following simulations, we considered a two-way
road separated with a dashed road marker whereas the
extreme lanes are continued.

A. Case 1 : Straight road with zero steering

In this scenario, we considered straight road markers and
we simulated a constant heading deviation angle between the
road lanes and the vehicle such that ∆ψ = 3◦. In addition,
the P2WV is traveling at 100 km/h without any steering
action.

Figure 4-a and 4-b illustrate the simulated trajectory of
the motorcycle as well as the lateral deviation with adjacent
lanes (central and left one). From 0 to 75 first meters, on X
axis, the P2WV reaches the first Lane Crossing Point with
the central line within 3 seconds. The vehicle travels under
the same conditions (DLC & TLC) the second portion, but
this time between the center lane and the left one.

Figure 4-c gives the estimated DLC for the case of a pure
longitudinal movement respectively with the central and left
lanes. A comparison with the theoretical DLC, expressed by
the equations 2, is given. It shows well the approximation
of the DLC by our approach, although the resolution is not
very high with a rather important speed, figure 4-d. Here,
the average error is about 50 centimeters and decreases
drastically when the LCP is approaching.
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Fig. 4: DLC for straight P2WV trajectory on straight road

B. Curved roads with constant steering

In the next scenario, we assume bend case with curve
radius 400 meters and we simulated a constant steering angle,
figure 5-a. The longitudinal speed is fixed at 80 km/h.

In the present scenario, three LCP are detected, figure 5-b.
The last one occurs with the right lane and the remains LCP
with the center lane.

Figure 5-c gives the reconstructed DLC for the case of a
pure lateral motion respectively with the central and right
lanes. Whereas, the estimated DLC is compared to the
theoretical one under a zero steering. Figure 5-d highlights
a very good estimation of the DLC. The estimation under
constant steering is depicted in figures 5-e and 5-d to show,
at the same time, the performance of the proposed algorithm.
Also, the average error is similar to the previous scenario and
remains around 50 centimeters and decreases when the LCP
is approaching, figure 5-g. These results are illustrated by
the video at the following link : https://youtu.be/
K095a2SckWU.
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Fig. 5: DLC for circular P2WV trajectory on curved road

VI. CONCLUSIONS AND FUTURE WORKS

This paper provided powerful video-based estimation al-
gorithm for Lane Crossing Point tracking for powered two-
wheeled vehicles. First we have recalled the Inverse Per-
spective Mapping technique, adapted to motorcycles, which
allows the generation a bird-eye-view of the road markers.
The advantage here is to extract pertinent information such
that the P2WV lateral displacement and heading angle to
the road marker. Second, the Lane Crossing Point tracking
problem is detailed. It consists of finding the intersection
point coordinates between the predicted road lane and vehicle
trajectories whether straight or circular. Then, the proposed
algorithm is simulated towards several scenarios to show its
great capabilities of tracking road lanes and compute the
distance before crossing the marker. Finally, the proposed
algorithm is an original contribution which allows to accu-

https://youtu.be/K095a2SckWU
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rately compute, in real time, the DLC when lane change is
occurring for motorcycles. This information is crucial for
safety purposes like trajectory analysis.

In our future works, we plan to deal with the robustness
(unfavorable camera light, undetected road markers, etc.) and
to extend the algorithm to clothoid trajectories with various
road curvature. We would like to take the proposed solution
to the next step by integrating a risk function to create an
alert system prototype. Finally, we would put all our effort
into the experimental validation on our two-wheeled vehicle
platform.
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