
AutoML for hyperparameter optimization

AutoML for hyperparameter optimization is a research project aimed at developing an automated 
system that efficiently explores the hyperparameter space of neural networks. Hyperparameters are 
crucial settings that govern the behavior and performance of neural networks, and finding optimal 
values for these hyperparameters is often a challenging and time-consuming task. This project aims 
to alleviate the burden of manual hyperparameter tuning by leveraging techniques such as Bayesian 
optimization, genetic algorithms, or meta-learning.

One approach to address this problem is through Bayesian optimization. Bayesian optimization 
treats the hyperparameter optimization as a sequential decision-making process. It builds a 
probabilistic model, typically a Gaussian process, to model the performance of the neural network 
as a function of the hyperparameters. Initially, a small set of hyperparameter configurations is 
evaluated, and the model is updated based on the observed performance. Using an acquisition 
function, such as Expected Improvement or Upper Confidence Bound, the algorithm selects the 
next set of hyperparameters to evaluate. This iterative process continues until an optimal set of 
hyperparameters is found or a predefined stopping criterion is met. Bayesian optimization is known 
for efficiently exploring the hyperparameter space with relatively few evaluations, making it 
suitable for resource-constrained scenarios.
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