
Deep Learning Approaches for Solving Jigsaw Puzzles

Deep Learning Approaches for Solving Visual Jigsaw Puzzles is a research project focused on 
exploring various deep learning architectures and techniques to tackle the challenge of solving 
jigsaw puzzles. Jigsaw puzzles involve rearranging puzzle pieces to reconstruct a complete image, 
and solving them computationally requires learning spatial relationships and predicting the correct 
arrangement of the pieces. This project aims to investigate the use of convolutional neural networks 
(CNNs), recurrent neural networks (RNNs), and transformer-based models for this purpose.

1. Convolutional Neural Networks (CNNs): CNNs are widely used in computer vision tasks 
and can be leveraged to solve visual jigsaw puzzles. This research project could explore 
different CNN architectures, such as VGG, ResNet, or EfficientNet, and study their 
effectiveness in learning spatial relationships between puzzle pieces. CNNs can capture local
patterns and global structures in the puzzle images, enabling the model to understand the 
spatial arrangement of the pieces.

2. Recurrent Neural Networks (RNNs): RNNs are known for their ability to model sequential 
data, making them a suitable choice for solving jigsaw puzzles. This project could 
investigate the use of RNNs, such as Long Short-Term Memory (LSTM) or Gated Recurrent
Units (GRU), to capture dependencies between puzzle piece arrangements. RNNs can learn 
the sequential order in which pieces should be rearranged, enabling the model to reconstruct 
the complete image.
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