Multi-scale modelling and simulation of avascular tumour growth
A study of the role of the micro-environment in the metastatic escape

Guillaume Hutzler
Vincent Le Moal-Joubel (IMBI 2007)
Julien Lepagnot (MOPS 2008)
Pierre-François Carpentier (ENSIIE 2009)

IBISC (Informatique Biologie Intégrative et Systèmes Complexes) - EA 4526
LIS (Langage Interaction et Simulation)
guillaume.hutzler@ibisc.univ-evry.fr
http://www.ibisc.univ-evry.fr/~hutzler

Dynamic Team (IBISC)

Georgia Barovatz
Michel Malo
Amandine Cartier-Michaud

Outline

- Presentation of the biological model
- Modelling issues
- A first naive approach
- A hybrid multi-scale approach
- Current modelling issues
Current knowledge – metastasis and cellular migration

Transitions of the cellular migration mode during the cancerous process

- Epithelo-Mesenchymous Transition (EMT)
- Mesenchymo-Amoeboid Transition (MAT)

Healthy tissue

Proliferation
Tumoral growth

Escape

Amoeboid migration

Cancer

Bad prognosis

METASTASES

Metastases and cellular microenvironment

The environment is capable of inducing a metastatic behaviour

- **Matrix-bound PAI-1 = inducer of cancerous migration**
 - Molecular interface between matrix and cells
 - Migration parameters modulator
 - Factor of bad prognosis

- **Matrix-bound PAI-1 = signal**
 - Activation of the RhoA/ROCK GTPase pathway
 - Reorganisation of the actin cytoskeleton (rings)
 - «Blebbing» process

- **Cellular microenvironment**

- **Collagen**
 - [Malo et al. 2005]

- **PAI-1**
 - [Malo et al. 2006]
Issues addressed

- Biological issues
 - Understand the role of PAI-1 in the metastatic escape
 - Understand the interactions between cells and their micro-environment

- Modelling issues
 - Model the proliferation process (tumoral growth)
 - Model the PAI-1 endocytosis and exocytosis processes
 - formation of a PAI-1 ring around the tumour

The different states of PAI-1

- Different types of PAI-1
 - **Soluble Form**
 Produced by the cells
 - Possible link to uPA/uPar receptors (simplification) on the membrane
 - Internalisation, no propulsion effect
 - Possible link to the vitronectin on the extra-cellular matrix
 - Switch to matrix-bound state
 - Loss of activity
 - Switch to inactive state
 - **Inactive Form**
 Possible link to the vitronectin on the extra-cellular matrix
 - Switch to matrix-bound state, reactivation
 - **Matrix-bound Form**
 Possible link to uPA/uPar receptors (simplification) on the membrane
 - Internalisation, propulsion effect
Matrix-bound Ring
Modelling

- Environment
 - matrix / vitronectin

- Agents
 - cells
 - proliferating
 - quiescent
 - necrosed
 - molecules
 - soluble PAI-1
 - matrix-bound PAI-1

Matrix-bound Ring
Behaviour of the agents

- Cell
 - Division
 - Local movement
 - Repulsive movements between cells
 - Links with PAI-1
 - Production of soluble PAI-1
 - Internalisation of surrounding PAI-1
 - Metabolism
 - Proliferating / quiescent / necrosed life cycle
 - Matrix degradation

- Soluble PAI-1
 - Pseudo-brownian movement
 - Possible inactivation

- Matrix-bound PAI-1
 - No behaviour
First results (1/4)

Tumour growth

- Proliferating cell
- Necrosed cell
- Soluble PAI-1
- Matrix-bound PAI-1

First results (2/4)

Available matrix-bound PAI-1 around the tumour
Available matrix-bound PAI-1 around the tumour

Characterization of the PAI-1 ring

Along time

Depending on cell division time
Conclusion

- Very simple model...
 - approximate tumoral growth
 - approximate diffusion of the molecules
 - no mechanical constraints on the growth of the tumour
 - no realistic diffusion of the nutrients
 - rigid cells
 - 2D
 - etc.

- ...but some qualitatively satisfying results
 - constitution of a matrix-bound PAI-1 ring
 - characterisation of the ring
 - compatible with the metastatic escape of some cells (but not all)

Towards a multi-scale hybrid model

- Problem
 - tumoral growth leads to
 - thousands of cells
 - hundreds of thousand of molecules
 - impossible to simulate big tumours
 - impossible to add much details

- But...
 - not necessary to model PAI-1 molecules or cells at the individual level inside the tumour
 - the zone of interest is at the interface between the tumour and the extra-cellular matrix

- Proposal = aggregated model inside the tumour that contains
 - a number of active / inactive PAI-1 molecules
 - a number of necrosed / quiescent cells
Definition of the aggregated model

- **Spatial extension**

- **Parameters**
 - \(n_c \), the number of quiescent cells
 - \(n_n \), the number of necrosed cells
 - \(n_a \), the number of active PAI-1 molecules
 - \(n_i \), the number of inactive PAI-1 molecules

Update of the aggregated model

- **Internal dynamics**
 - update the number of quiescent and necrosed cells
 - update the number of active and inactive molecules

- **Molecular exchanges**
 - internalize individual PAI-1 molecules that collide the aggregated model
 - externalize the appropriate quantity of active and inactive PAI-1 molecules as individual agents

- **Cell-cell interactions**
 - repulse the neighbouring cells when the density of cells inside the aggregated model implies a compression of the cells
 - update the frontiers of the aggregated model
Internal dynamics

- update the number of quiescent and necrosed cells
 - cells too far away from the surface of the tumour become necrosed
 - depends on the size and shape of the tumour

\[n_n = (n - D_0)^2 - \frac{A_0}{\pi} \]
\[n_c = n_o - n_n \]

Internal dynamics

- update the number of active and inactive molecules
 - quiescent cells produce and internalize molecules
 - molecules become inactive after age \(i_{\text{max}} \)
 - depends on \(n_q \), the number of quiescent cells, and the mean number of receptors on their membrane

- estimated number of internalized molecules
 \(\Delta_a = n_o (1 - P_{\text{int}}) \)

- estimated number of inactive molecules
 \(n'_i = n_i + n_o i_{\text{max}} \)

- estimated number of active molecules at age \(i \)
 \(n'_{a,i} = n_{a,i-1} - \frac{\Delta_a}{i_{\text{max}}} \quad \text{for} \quad i = i_{\text{max}} \text{ down to } 1 \)

- estimated number of produced molecules
 \(n_0 = P_g n_c \)
Molecular exchanges

- compute the exchanges between the aggregated and the agent models
 - individual molecules bumping into the frontier of the aggregated model are integrated
 - molecules are externalized
 - depends on the molecular "pressure" inside the aggregated model

\[
p = \frac{nRT}{V} = \alpha \frac{n}{V}
\]

\[
n_g = \alpha \frac{n_i + n_j}{r_c \sqrt{\frac{a_0}{\pi} + n_s}}
\]

Cell-cell interactions

- update of the spatial extension of the aggregated model

- repel quiescent cells at the border when the volume \(V_c \) of the virtual cell at the core of the tumour is negative
First results

- growth of the tumour
 - qualitatively and quantitatively equivalent
 - computationally much more efficient

[Lepagnot & Hutzler 2009, JBPC]

Mean number of matrix-bound PAI-1 molecules

![Graph showing the mean number of matrix-bound PAI-1 molecules over time. The graph compares different models: Agent and AgareM.]
Comparison of computing power needed

Perspectives: from a biological point of view

Aim = gain insight on the conditions / specific topological configurations that can lead to the metastatic escape

- Calibrate / validate the model
 - need to validate with respect to the literature on avascular tumour growth
 - go 3D

- Better take into account the external constraints on the tumour growth
 - mechanical constraints because of external tissues
 - chemical constraints because of nutrients diffusion

- Add cell deformation and adhesion mechanisms
 - very different geometries between mesenchymal and amoeboid cells
 - different adhesion forces between the two
Perspectives: from a computer modelling point of view

- A single modelling formalism is not enough
 - Need to couple Agent-based models, Ordinary and Partial-Differential Equations, Cellular Potts Models, other models...

- The most suited formalism may vary...
 - Along time
 - Individual-Based Modelling may be most suited when the tumour is small
 - Global models may be more suited when tumours become big enough
 - In space
 - The inner part of the tumour doesn’t need much details
 - The outer part has to be described with much more details
 - Depending on the entities that are modelled
 - Large homogeneous populations may be described with global models
 - Populations with specific spatial distribution have to be modelled individually

Perspectives: from a computer modelling point of view

- The global structures to take into account are not necessarily known beforehand: need to develop new tools to
 - Detect and characterize the structures that are created during the simulation
 - Automatically reify these structures as global models, coupled to the other parts of the simulation
 - Interactively zoom on some parts of the simulation
 - Calibrate and validate these hybrid simulations
Perspectives: from a computer modelling point of view

- Construction and analysis of the interaction network
 - interactions between the agents modelled as a dynamical graph
 - global statistical measures on the graph to detect structuring phenomena
 - clustering algorithms to detect groups of agents
 - characterization of the properties of the group

[Moncion et al. 2010, JBPC]

Perspectives: from a computer modelling point of view

- Need to develop new tools to
 - reify the group in the graph as a single node and study the interactions between the group and the individual agents
 - characterize a group’s behaviour and conditions of existence
 - reify the group in the simulation as a single agent
 - control the behaviour and interactions of that agent
 - control the conditions of existence of that agent
PAI-1 and metastatic escape

- The cell can go its way through the extra-cellular matrix thanks to the PAI-1m/uPA/uPAR matricial bridge
 - New model taking into account the dynamics implied by this behaviour

Migration through the PAI-1 ring

- Distance from the inner border of the ring