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ODEs and Biology
● Assumptions for ODEs:

– Deterministic system
– No uncertainity
– Populational level of description
– dynamics (or time evolution)of a system

● Why ODEs:
– Strong mathematical history and background
– Historical relationships between ODEs and biology

(bio)chemistry, enzymology, ecology, epidemiology
– Well accepted formalism in biological communities
– Software for in silico experiments for biologists



  

A first ODE tour for biologists
● Our aim in this tutorial is:

– To present fundamental notions in analysing ODEs
– Illustrate our to model a biological system (Switch)
– To to understand the biological switch with these 

notions.



  

Biological Switch : schematic

x y

● Two biological 
species: x and y

● x repress y
● y repress x 
● x,y : degradation
● x : auto-

activation



  

Modelling the Biological Switch 
using ODE formalism

● Fundamental idea:
– We want the time evolution of x and y, that is x(t)
– We don't know how to obtain a formula for x(t)=???
– We know how to describe a small variation of the 

concentration of x and y during a small time interval dt
● Procedure (for each biological entity):

– Identify each mechanism where x is involved
– For each mechanism, give an equation describing a 

small variation of the concentration (dx) for a small time 
interval (dt)

– Sum up to obtain dx/dt = f(x,...)



  

From dx/dt to x(t)
● dx/dt = f(x,...)
● One can compute x(t) using dx/dt:

– By definition : 
x(t+dt) = x(t) + small variation of x(t) during the small time 

interval dt.
x(t+dt) = x(t) + dt.( dx(t)/dt )



  

From dx/dt to x(t)
● dx/dt = f(x,...)
● One can compute x(t) using dx/dt:

– By definition : 
x(t+dt) = x(t) + small variation of x(t) during the small time 

interval dt.
x(t+dt) = x(t) + dt.( dx(t)/dt )

– We know how to compute dx/dt for a given x(t)
– Then:



  

dx/dt=f(x(t),...)

Small variation of x during a 
small time interval dt

Simple numerical integration scheme

x( t=0 )

dx/dt  =  f (x( t=0 ),...)

t=0

Initial conditions

x( t+dt )  = x( t ) + dt.f (x( t ),... )

t+dt

t=0

x(0)
x(dt)

x(2.dt)
x(3.dt)

...
x(t)

x(t+dt)
...

Time evolution
of x

Explicit Euler scheme



  

Building the biological switch 
ODE model

x y

x y

Degradation

retro-action

Biological
entity x



  

Biological switch : x proteins

● Mechanism involving x:
– Residual synthesis
– Retro-inhibition by y
– Degradation
– Auto-activation : not included here for simplicity

x y

Degradation

retro-action



  

Biological switch : x proteins

● Residual synthesis of x and inhibition by y:
– Classical Hill function:

dx/dt = a1 / ( 1 + yb1 )



  

Biological switch : x proteins

● Degradation:
dx/dt = - c1.x

● Summing all the terms:

dx/dt = a1 / ( 1 + yb1 ) - c1.x

● Same reasoning for y :
dy/dt = a2 / ( 1 + xb2 ) - c2.x

synthesisdegradation



  

Time evolution of the model: example

dx/dt = f(x,y)

dy/dt = g(x,y)

x(0), x(dt), x(2.dt), ... x(t), x(t+dt),..,x(tmax)

dt: integration step
Tmax: time of simulation

x(t=0), y(t=0): initial conditions



  

Time evolution of x: 
different initial conditions

Equilibrium
state

X do not change
in time



  

From biology to ODEs: equilibrium 
state

● Biological fact: 
– the concentration of the x (and y) proteins do not change 

in time
● ODEs « translation »:

– A small variation of the concentration, dx (and dy), over 
a small time interval, dt, is null.

Equilibrium state <=> dx/dt=0 and dy/dt=0

● Analytically: f(x,y)=0 / g(x,y)=0 (Fixe point)
● What about a small perturbation of this point?



  

Stability of the equilibrium state?
Perturbation of x, at t=15

Adding x proteins

Removing x proteins

The concentration of the
x protein return to its
equilibrium state

The equilibrium state is
stable.

Time evolution to
equilibrium state



  

Geometrical representation of ODEs
● All analytical calculus can be formulated into 

geometry
● Geometrical representation is « visual » and 

more intuitive
● We restrict this tutorial to the geometrical 

aspects in order to present notions of ODEs.



  

Geometrical representation of 
ODEs: Phase Plane

● We adopt a numerical point of view here
● Select a domain of values for x and y
● Select a space of n coordinates:

● one coordinates for each variables (n=2: x and y)
● Each couple (x(t),y(t)) represent the state of the 
system at time t
● A point this space = the state of the system

PHASE SPACE



  

Geometrical representation of 
ODEs: Phase Plane



  

Phase trajectory
● Starting for one initial condition, one can 

compute the sequence of x(t) and y(t)
● This is a sequence of states = a sequence of 

point in the phase plane
● Phase trajectory



  

Phase trajectory: 4 examples



  

Nullclines
● We show an equivalence:

– equilibrium state <=> dx/dt=0 and dy/dt=0
● We can draw each couples (x,y) where dx/dt=0

– x-nullcline
● Same for y: y-nullcline
● The intersection points of x- and y-nullclines 

definies a equilibrium point.
● Geometrical criteria = biological fact



  

Nullclines

Red: x-nullcline
Blue: y-nullcline
Black: phase traj.



  

Vector field
● Last informations: derivatives
● We can compute dx/dt and dy/dt for each couple 

(x,y)
– Used (for example) in the numerical integration 

scheme
● We can represent these two values using an 

« arrow », i.e. a vector (here in 2D)
●

● For each couples (x,y) of the phase space
VECTOR FIELD



  

Vector field: example of computation

dx/dt

dy/dt

(x,y)



  

Vector field: example



  

Phase plane and vector field



  

Geometry, ODEs and biology

● Phase plane: plane of each possible states of 
the system

● Phase trajectory: a time evolution starting from 
one initial contition

● Nullcline: location where derivatives are null
● Vector field: « direction/intensity » of small 

variations of the proteins concentration over a 
small time interval



  

The biological switch and ODEs:
cooperativity, a2=1

dy/dt=a2/(1+xb1)-c2.y



  

The biological switch and ODEs: 
cooperativity, a2=5

x- and y-nullclines
intersect at  3 points

Three equilibrium states

Two stables

One instable



  

The biological switch and ODEs: 
cooperativity, a2=5 -ZOOM

Unstable equilibrium state



  

Dynamical time evolution

Bistable system: depending on initial conditions = one different equilibrium state



  

Understanding the biological switch 
using ODEs notions

● For specific values of parameters, the system 
has three equilibrium states:
– Two stable equilibrium states : bi-stability
– One unstable equilibrium state

● The unstable equilibrium state is very important:
– it prevent one stable equilibrium state to switch to 

the other
– It divide the phase plane into two domains: one 

domain (i.e. Initial conditions) is attracted by one 
point and the other domain is attracted to the other 
equilibrium point.



  

Understanding the biological switch 
using ODEs notions

● Thus, the unstable point has a structural rôle in 
the dynamic of the system.

● When we change parameters (a2: 5 -> 1), the 
nullclines intersect only once: the unstable point 
disappear, and the system had only on 
equilibrium state.



  

Understanding the biological switch 
using ODEs notions

● The structural change in the geometrical properties 
reflect a structural change in the dynamical 
properties of the system.

● The biological switch is then sustained when we 
switch back and forth, from one geometry (3 
equilibrium states) to the other (1 equilibrium state).

● We can hypothesis that if we introduced a 
« correct » variation of the a2 parameter, the 
system will switch between these two situations, 
and oscillations will occur



  

Designing a biological switch

dy/dt = a2*sin(w.t)/( 1 + x2 ) - c2.y

a2=15 

Red: w=0.05, slow variations
of parameter a2

Black: w=0.5, fast variations
of parameter a2.

dx/dt = a1/( 1 + y2 ) - c1.x



  

Conclusions

● ODEs are a well developped mathematical formalism
● « Transcribing » a biological system into ODEs open 

the door to vast mathematical literature, and an 
active community

● Biologists can developp their model, and do some 
« in silico » experiments thanks to software

● ... provided that they understand fundamental notions
● A geometrical view of an ODEs system is a first step

In this tutorial, we use Scilab (http://www.scilab.fr)



  

Conclusions
● ODEs can be extended:

– Take into account stochastic variations in the derivatives: 
Stochastic Differential Equations

– Take into accound space: Partial Differential Equations

● For biological applications: 
– Constructing biological switch: Gardner et al. (2000)
– Understanding transition during Cell Cycle: Tyson and 

Novak.


