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ABSTRACT

In this paper, we propose a new approach for the ex-
ploration of the parameter space of agent-based mod-
els: Adaptative Dichotomic Optimization. Agent-based
models are generally characterized by a great number of
parameters, a lot of which cannot be evaluated with the
current knowledge about the real system. The aim of
the work is to provide tools for the calibration of these
models, which consists in �nding the optimal set of pa-
rameters for a given criterion. The criterion can be for
example that the model achieves a speci�c function op-
timally or that the results of the simulation are as close
to possible of experimental data. Our approach is based
on the partition of the parameter space (the interval of
variation of each variable is divided into a �nite number
of intervals) and on a parallel exploration of the various
parameters by the agents of the model. The navigation
in the parameter space is done by grouping or dividing
adaptively some of the intervals, according to an algo-
rithm which is adapted from Ant Colony Systems.

Introduction

Agent-based simulation (ABS) is interested in the mod-
elling and the simulation of complex systems. Its aim is
to reproduce the dynamics of real systems by modelling
the entities as agents, whose behavior and interactions
are de�ned, and which �live� in a simulated environment.
A �rst validation of such models is obtained by compar-
ing the resulting dynamics, when the model is simulated,
with that of the real system (measured thanks to exper-
imental data).

One of the crucial aspects of the design process lies in
the tuning of the model. Indeed, this kind of model
is generally characterized by lots of parameters which
together determine the global dynamics of the system.
The search space is thus gigantic. Moreover, the be-
havior of these complex systems is often chaotic: on
the one hand small changes made to a single parameter

sometimes lead to a radical modi�cation of the dynamics
of the whole system; on the other hand some emergent
phenomena are only produced in very speci�c conditions
and won't occur if these conditions are not met. The so-
lution space can thus be very small. As a consequence,
the development and the parameter setting of an agent-
based model may become long and tedious if we have no
accurate, automatic and systematic strategy to explore
the parameter space.

The development of such a strategy is precisely the ob-
ject of this paper, which follows several works on the
subject (see next section). All of these, however, ap-
peared to be too limited, either because they achieved
only a limited exploration of the parameter space, or be-
cause they required a great number of simulation runs in
order to converge. The main di�erence between classical
optimization and the calibration of agent-based models
is but that the evaluation of a single set of parame-
ters generally requires at least a complete simulation
run, which may take quite a long time. If the model is
stochastic, it may even require several runs for the same
parameter set, in order to have a good con�dence in the
evaluation. It is thus most important that the number
of evaluations be reduced to its minimum if the method
is to be usable.

The key idea of our approach is to take advantage of
the natural concurrency in agent-based models, so as to
achieve a parallel exploration of the parameter space.
In this approach, which we call Adaptive Dichotomic
Optimization (ADO), every individual agent is instanti-
ated with its own speci�c parameter values, chosen in a
�nite number of intervals, for each variable. The di�er-
ent agents of the model thus have completely di�erent
settings. The basic intuition is that the �performance�
of the resulting model will be statistically better if it
includes a larger proportion of agents with �good� pa-
rameters. The intervals in which the parameters have
been chosen for the agents of a given model will thus be
rewarded depending on the performance of the model.
The exploration of the parameter space will then be re-
�ned adaptively by merging together adjacent intervals
with low rewards and by dividing in two intervals with
high rewards.

The next section describes previous works on the sub-



ject and discusses their respective strengths and weak-
nesses. We then present our approach in more details
in section 3. Section 4 presents an improved version of
the approach by adapting Ant Colony Optimization to
our method. We discuss our results in section 5 before
concluding in section 6.
The next section describes previous works on the subject
and discusses their respective strengths and weaknesses.
We then present our approach in more details. After we
discuss our results before concluding.

Previous works

Di�erent methods have already been proposed to ex-
plore automatically the parameter space of discrete
models. In the NetLogo platform for instance, the �Be-
haviorSpace� (Wilensky 1999) tool allows to explore
automatically and systematically the parameter space.
This space is a Cartesian product of values that each pa-
rameter can take, some of them being chosen as �xed,
others being limited to a subset of all possible values.
However when the model has lots of parameters, some
of which can take a good many values (real-valued pa-
rameters for example), the parameter space becomes
huge and the systematic exploration becomes impossi-
ble. The number of values tested for each parameter will
thus be very low and the corresponding exploration lim-
ited to a very small part of the whole parameter space.
Other methods have been proposed, which di�erentially
explore the whole parameter space, focusing on the
most interesting areas. That's the case of the method
developed by Brueckner and Parunak (Brueckner and
Parunak 2003). They use a �parameter sweep infras-
tructure�, which is similar to the �BehaviorSpace� tool of
NetLogo . However, to avoid a systematic exploration,
they use searcher agents and introduce the notion of �t-
ness. The aim of a searcher agent is to travel in the
parameter space to look for the highest �tness. Starting
from a given location in the parameter space, searcher
agents have two choices: move or simulate. Each agent
chooses according to the con�dence of the �tness esti-
mate (proportional to the number of simulations at this
point) and the value of the �tness. If it chooses to move,
it heads for the neighboring region with highest �tness.
A disadvantage of this method is that searcher agents
may head for local �tness maxima.
Another method is to add knowledge to the agent-based
model, as is the case with white box calibration (Fehler
et al. 2004; 2006). The principle is to use the knowledge
of the agent-based model to improve the tuning process.
The aim is to reduce the parameter space by breaking
down the model into smaller submodels, which can be
done using di�erent methods (General Model Decom-
position, Functional Decomposition, . . . ). Each of the
submodels is then calibrated, before merging them back
to form the model. The division and fusion operations
are the di�cult steps of the method. The division oper-

ation, on the one hand, requires the addition of knowl-
edge about the model, which may not be available. The
fusion operation, on the other hand, has to merge cali-
brated submodels into a calibrated higher model, which
is not automatic.
Sallans et al. (Sallans et al. 2003) present a work for
a model with lots of parameters. Some of these pa-
rameters are chosen based on initial trial simulations.
The other parameters are chosen using the Metropolis
algorithm, which is an adaptation of the Markov chain
Monte Carlo sampling to do a directed random walk
through parameter space. This method performs well
on a continuous parameter space, but will hardly be
usable when the parameter space is chaotic and if the
model is stochastic.
A last approach is to consider the problem of the devel-
opment and the validation of agent-based models as an
optimization problem. The validation can thus be refor-
mulated as the identi�cation of a parameter set that op-
timizes some function. The optimization function would
be for example the distance between the arti�cial model
that we simulate and the real system. To solve this
optimization problem, several authors (Calvez and Hut-
zler 2005a;b, Rogers and von Tessin 2004, Narzisi et al.
2006) propose to use genetic algorithms with di�erent
variants.
The use of these method needs the computation of the
�tness function. The trouble, as we underlined in the
introduction, is that the computation of the �tness func-
tion for a single model potentially requires several sim-
ulation runs, each of which may last for several hours.
Without a powerful computational cluster, the method
is therefore di�cult to apply.

ADO Global vision

The basic idea is to take advantage of the fact that
agent-based simulations rely on multiple agents. Instead
of considering that all of them should be parameterized
in the same way, we propose to enable the parameteri-
zation of the di�erent agents with di�erent settings. In-
stead of evaluating parameter settings one at a time,
we can thus evaluate several settings in parallel in a
single model. The hypothesis that we made is that if
such a model behaves �correctly�, then the agents that
compose the model are considered to have adequate pa-
rameters. In a way, the idea is similar to the principle
of Ant Colony Systems (Dorigo et al. 1999b).
The other idea is explore the parameter space di�eren-
tially, depending on the potential interest of the di�erent
regions of the space. Taking inspiration from dichotomic
search and from octrees, we consider that a parameter
space of dimension n (n independent parameters) is ini-
tially divided into hypercubes of dimension n. Prac-
tically, the de�nition set of each of the parameters is
initially divided into a �xed number of identical inter-
vals. Then, for each individual parameter, depending



on rewards received by the di�erent intervals, we may
di�erentially merge or divide the intervals. If an inter-
val did receive high rewards, this signals an interesting
area of the parameter space. The corresponding inter-
val may thus be divided into two sub-intervals so as to
have a more precise evaluation of the interesting param-
eters. On the contrary, if two adjacent intervals received
few rewards, this signals an area of the parameter space
of low interest. The corresponding intervals may thus
be merged so as to stop waisting time at exploring this
area.

When an agent is instantiated, the value of each param-
eter is chosen randomly among the intervals that divide
the de�nition set of the parameter. After a model has
been evaluated (by running a simulation and computing
the �tness of the model), the intervals in which the pa-
rameters of the agents have been chosen are rewarded.
For each parameter, and for each interval, the reward
is proportional to the global �tness of the model and to
the number of agents that have taken their parameter's
value in the interval.

Figure 1: ADO Method outline

The global process of the Adaptive Dichotomic Opti-
mization method proceeds as follows (see �gure 1): a
model is created, its �tness is computed, and the corre-
sponding intervals are rewarded. This is iterated several
times (it can also automatically be distributed on several
computers), until the di�erent intervals have received
enough rewards so that it becomes signi�cant. For each
parameter independently of the others, the best interval
(the one having the largest reward) is selected and di-
vided in two. The whole process is itself iterated until
it stabilizes.

Parameters

In this method, we have made the working hypothesis
that each parameter is independent of the other ones,
that is to say the application of the ADO algorithm on
one parameter can be performed independently of the
other ones. In this case, our parameter space is broken
down into n parameters divided into mi intervals (the
size of the search space is thus about n×R). In reality,
the parameter space is a space of n dimensions (the size

of the search space is about Rn.). Without this hypothe-
sis, in the selection phase, the number of intervals would
raise by 2n − 1, which would cause serious di�culties.
With this hypothesis, the number of intervals only raise
by n.

This hypothesis can be justi�ed by the fact that we run
lots of simulations with lots of agents, which implies that
the parameter space is globally covered. If we consider
a single parameter, it has been evaluated with the other
parameters taking a great number of di�erent con�gura-
tions. Thus, if an interval has received high rewards, we
can be con�dent that this interval is interesting, disre-
garding the speci�c values of the other parameters. This
hypothesis has also been con�rmed experimentally: we
ran several tests with di�erent models, and it appeared
to remain correct for all the con�gurations tested. Fig-
ure 2 shows the distribution of the parameter values
for the 100 �rst simulations in the agent-based model
(see the subsubsection �Model�). Despite few agents (25
agents) in this model we have the distribution that cov-
ers globally all the space. If it happens not to work for
a speci�c model, we will still have the possibility to take
a weaker hypothesis: for instance, it would be possible
to consider groups of independent parameters instead of
independent individual parameters.

Figure 2: Distribution of the parameter values for the
100 �rst simulations

Method

We have developed several variants of the ADO method.
In this paper we present one best variant. We took
inspiration from the Ant Colony Optimization approach
in order to improve our method for creating this variant.
We will �rst present Ant Colony Optimization before
exposing our method in detail, and the corresponding
results.



Ants Colony
Ant colony algorithms(Blum 2005, Dorigo and Di Caro
1999, Dorigo et al. 1999a) can be seen as a part of swarm
intelligence(Bonabeau et al. 1999), that is the design
of intelligent multi-agent systems by taking inspiration
form natural collectively intelligent behaviours in social
animals, especially insects.
The principle is inspired by the creation of trails of
pheromones, like in the foraging model that we used
as an example (see the subsubsection �Model� page 5).
We drew our inspiration from a speci�c Ant colony al-
gorithm: Ant systems (Dorigo et al. 1996). In the ex-
ample of the traveling salesman problem (TSP), there
is a completely connected undirected graph where the
nodes represent the cities and the edges represent the
distances between the cities. A node is chosen as start-
ing node for the ants. Then the ants explore the graph.
The probability for ant k to go from the city i to a city
j is given by:

pk
ij =


(τij)

α×(ηij)
βP

l∈Jk
i
(τij)

α×(ηij)
β if j ∈ Jk

i

0 if j 6∈ Jk
i

where τij is the quantity of pheromone, ηij is the visi-
bility (= 1

dij
where dij is the distance between the cities

i and j) (it represents a heuristic information), and Jk
i

is a memory of already visited cities.
After the completion of a tour, each ants k lays a quan-
tity ∆τk

ij of pheromones on edge (i,j):

∆τk
ij =

{
Q
Lk if (i, j) ∈ T k

0 if (i, j) 6∈ T k

where T k is the tour done by ant k at iteration t, Lk is
its length, Q is a parameter.
The quantity of the pheromone is then updated so as to
simulate its evaporation, using the formula :

τij ← (1− ρ)τij + ∆τij

where ∆τij =
∑m

k=1 ∆τk
ij (m is the number of ants)

We can generalize the method with the ant colony opti-
mization metaheuristic (Dorigo and Di Caro 1999). The
general schema of the ant colony optimization meta-
heuristic is:

while termination conditions not met do
ScheduleActivities

AntBasedSolutionConstruction()
PheromoneUpdate()
DaemonActions()

end ScheduleActivities
end while

Moreover our parameter space is a continuous space.
An interesting approach in continuous spaces is the al-
gorithm proposed by Socha (Socha and Dorigo 2006).

The method in detail

Taking inspiration from ACS, we made a parallel be-
tween pheromones in the ACS model and the rewards
given to the intervals in the ADO approach. More
precisely, it is the mean reward which is chosen as
pheromones.
Moreover we add a heuristic information and a con�-
dence in this heuristic information. For each interval,
we compute the heuristic information in three steps. In
the �rst step, we create a model where all the agents are
initialized with the same parameter set, which is chosen
in the following way:

• for the speci�c interval, whose heuristic value we
wish to estimate, we choose the median value of
the interval

• for all the other parameters, we choose the median
value of the parameter

Figure 3 show this.

Figure 3: Computation of heuristic information

In the second step, we simulate this model several times
(because of the stochasticity). In the last step, we calcu-
late the heuristic information: the value of the heuristic
information is the average value of the �tnesses for the
various simulation runs. The con�dence in the heuris-
tic information of an interval is 1 after its calculation.
During a fusion stage, the con�dence is the average of
the two con�dences of the two intervals. During a divi-
sion step, the con�dence is divided in two. We compute
again the heuristic information when the con�dence is
lower than a given value.
The phase which the values of the parameter are chosen
is modi�ed to distinguish two steps. First, we choose an
interval j of the parameter i with a probability propor-
tional to

[τij ]
α × [ηij ]

β



where τ is the pheromone quantity of this interval (that
is to say the average reward), η is the heuristic informa-
tion, and α and β are parameters that control the rel-
ative importance of the pheromone versus the heuristic
information. Second, we choose a value in this interval
with a uniform probability.
The division and fusion stage is also modi�ed. An in-
terval j of the parameter i is divided if τij > τi +2×σi,
where σi is the standard deviation. An interval j of the
parameter i is merged if τij < τi − σi.
To summarize, we can adopt the ACS schema :

• AntBasedSolutionConstruction(): this step cor-
responds to the creation phase of the simulation
with the choice of the parameters values;

• PheromoneUpdate(): this step corresponds to the
computation of the simulation and the reward of
the intervals;

• DaemonActions(): this step corresponds to the up-
date of the heuristic information.

We can summarize our method by the �gure 4.

Figure 4: Summarized schema of ADO approach in-
spired by ACS

Each ant �represents� one agent. Each ant travels across
the parameters for choosing one interval per parameter.
The choice of these intervals depends on the pheromone
quantity and the heuristic information. At the end of
the travel of the ant, we obtain the di�erent intervals of
parameters to create the agent.

Solutions

After the algorithm has converged, it is necessary to
compute a candidate solution and to evaluate the �tness
of this solution. Indeed, what the algorithm computes
is an adaptive discretization of the parameter space.
But since the discretization is achieved independently
on each axe, this does not lead to a single global so-
lution. We therefore have to recompose such a global
solution and to evaluate its �tness. There are several
possible ways to compute this �nal solution.

A �rst possibility is, at each selection phase of the algo-
rithm, to identify for each parameter, the interval that
received the most rewards. The global solution will be
composed by all of these intervals. The corresponding
�tness will be obtained by running a new simulation (in
fact several runs because of the stochasticity) with all
the agents initialized with these parameters.

Another possibility to compute the global solution is to
consider that the solution interval for each parameter is
the one that is smallest. Indeed, it is the one that did
receive the most rewards in the previous iterations of
the algorithm, and thus that got the most divided. This
interval is therefore probably interesting for the global
solution. In fact, there are at least two such intervals
because during the selection phase, the interval that re-
ceived the most rewards is divided into two intervals
of the same width. In the case of adjacent intervals of
minimal width, we therefore take the union of the two
intervals. Then, if several intervals of the same width re-
main, one of them is chosen randomly. The �nal global
�tness is computed as before.

After various tests, the latter possibility has been
adopted to compute the solution because it is less vari-
able than the former. Indeed, it is not only dependent
of the rewards at the last iteration of the algorithm but
also of the rewards of the preceding iterations. In the
remaining of this paper, all results are computed with
the last version.

Results

Model

We have tested our method on di�erent models. In this
paper, we will focus on a single model to illustrate and to
test the method. To this end, we decided to use the well-
known ant foraging model, provided by the modeling
environment platform NetLogo (Wilensky 1999; 1998).
Figure 5 shows an illustration of this model. In this
very simple model, the agents are ants, and their aim
is to bring the food back to their nest: the nest is lo-
cated in the centre of the environment, and the items of
food are dispatched into three areas on the periphery.
Initially the ant agents leave from the nest and make a
random search for food. When an ant agent �nds food,
it brings it back to the nest secreting a chemical on
its way. When other ant agents feel the chemical, they
follow the chemical way up to the food source, which
reinforces the presence of the chemical and �nally pro-
duces trails between the nest and the food sources. We
can observe ant lines emerging, which are similar to the
ones that can be observed in natural conditions.

There are several parameters in this model. Among
these, two global parameters control the way the chem-
icals are di�used in the environment:

• diffusion-rate: this parameter characterizes the
di�usion of the chemical in the environment.
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Figure 5: Example of an ABS: Ant foraging

• evaporation-rate: this parameter characterizes
the evaporation of the chemical.

We also designed several variants to test our di�erent
methods to explore the space parameter like, for in-
stance, the addition of a new parameter that charac-
terize the speed of an ant agent. In this paper, the main
modi�cations are the addition of local parameters for
the agents (these parameters were present in the original
model, but are not considered to be parameters : they
were �xed and not modi�able in the original model ):

• speed: this parameter characterizes the speed of
an agent. It varies between 0 and 20 patches per
simulation step.

• patch_ahead: this parameter characterizes the
number of patches looked ahead to �sni�� the chem-
ical. It varies between 0 and 10 patches.

• angle_vision: this parameter characterizes the
angle of vision. It varies between 0◦ and 360◦.

• drop_size: this parameter characterizes the initial
quantity of chemical that the agents drop in the
environment when they come back to the nest with
items of food. It varies between between 0 and 200.

Results
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Figure 6: Evolution of the �tness according to the num-
ber of simulation runs

In our example, the model have 25 ants, we simulate 500
steps. The global parameters remain constant. We try

Figure 7: Evolution of divisions of parameter �speed�

Figure 8: Evolution of divisions of an arti�cial parame-
ter

Genetic ant
algorithm colony
method method

speed 7.35 7.69
patch_ahead 9.76 9.84
angle_vision 193.76 195.18
drop_size 109.89 144.99

Table 1: Optimized parameters values



to optimize the four local parameters. The �tness is the
quantity of food brought back to the nest. To compare
our method with previous works, we also ran a genetic
algorithm method (described in the paper (Calvez and
Hutzler 2005a)). We stop the method after 10000 sim-
ulations. Figure 6 shows the evolution of the �tness
according to the number of simulation runs.
The interesting result is that with few simulation runs,
the Ant colony version of the ADO method have better
results than the GA method. In this example, with only
300 simulation runs, we have already a good approxima-
tion of the solution.
Moreover we have more information with the ADO
method than with the genetic algorithm method. Fig-
ure 7 presents the evolution of the division of the �rst
parameter in our ADO method. At the beginning of the
algorithm, the parameter is divided into ten equal parts,
then as the method runs, the divisions of the parameter
evolve: we have a convergence of the divisions to ac-
curate zones of parameters. This illustrates one of the
interests of this method: we start with the entire param-
eter space before focusing on more interesting part but
without forgetting though the other parts. Instead of
providing only an optimal value, the method thus pro-
vides a kind of a cartography of the parameter space.
Figure 8 shows the evolution of the division of an test
parameter (which is not used in the model and whose
value doesn't modify the �tness) in our ADO method.
In this case we don't have a convergence of the divisions
but we have divisions spread out over parameter range
regularly.
We can then study the solution parameters obtained
by the two methods. Table 1 shows the optimized pa-
rameters. Whatever the method, the solutions have the
same characteristics: the agents move with the big speed
about 7.5, with a vision angle about 190◦, with a far-
thest vision. The initial quantity of chemical is very
high but without maximizing the quantity. To summa-
rize, the best agent is the one that moves quick, and
that looks ahead farthest, in front of it, which appears
to be pretty logical.

Discussion

We presented a basic algorithm and several variants, and
we applied them on a simple benchmark, namely the ant
foraging problem. The �rst results appear to be rather
promising as they show a quick convergence of the ADO
method towards a solution that is almost as good as the
one that was found with genetic algorithms. Both meth-
ods are easily distributable on several computers so as to
speed up the process. A little drawback of the ADO ap-
proach is that is works best for agents' parameters, not
so well for global parameters. However, this should not
be too problematic since agents' parameters are gener-
ally the ones that are to be estimated, global parameters
being estimated from experimental data.

As compared to genetic algorithms, we can but see two
major advantages of the ADO approach. The �rst one is
that convergence is very fast with few simulation runs,
whereas a great number of runs is necessary to boot-
strap the genetic algorithm. We can thus achieve a �rst
exploration of the parameter space with only 100 or 200
simulation runs, which is potentially interesting for the
modeller during the prototyping phase. The second ad-
vantage is that with the ADO method, the parameter
space can, at any moment of the algorithm, be inter-
preted as a kind of a cartography of the parameter space,
sparse intervals corresponding to low interest regions,
dense intervals corresponding to high interest regions.
Speci�c visualisation techniques remain to be developed
so as to take advantage of these characteristics.

Conclusion and Perspective

In this paper, we presented a new algorithm for the auto-
matic calibration of agent-based models, with di�erent
versions and improvements. We also presented prelimi-
nary results on a simple benchmark with four continuous
independent parameters to tune. These results suggest
that the method is interesting especially when the ex-
ecution of simulation runs is very costly, because of its
very fast convergence. The argument is that agent-based
models present characteristics that make their calibra-
tion di�cult, mainly because of the long time required
to execute simulation runs, as compared to the �tness
functions usually used in genetic algorithms. Another
characteristics of agent-based models is that they are
concurrent models, property that we exploited so as to
propose an e�cient algorithm, inspired by the princi-
ples of dichotomic search and of ant colony systems. In
addition, we underlined that the method enables an ex-
haustive cartography of the parameter space, which is a
real advantage against genetic algorithms.
Further investigations still need to be undertaken to bet-
ter understand the role of the number of agents in the
optimization process. We will also study the signi�ca-
tion of the patterns of division for the parameters and
develop visualization tools in order to analyze these pat-
terns. If a parameter shows a very densely divided area
with very small intervals, this parameter is probably an
important parameter in the dynamics of the simulation.
On the contrary if the division of a parameter is rela-
tively homogeneous, this parameter may not be essential
for the model. Finally, we investigate the possibility
to mix the di�erent approaches, namely Adaptive Di-
chotomic Optimization and Genetic Algorithms, so as
to combine the strengths and advantages of both meth-
ods.
In addition, we need to enlarge the set of models on
which the method is evaluated, with larger parameter
spaces. We are now on the process of applying the
method to �real� models, that is models with true mod-
elling questions, experimental data and hypothesis and



theories. This will be the real test, that is, can our
method give automatic answers to some of the mod-
elling questions that are raised by the modeller. This is
the real challenge.
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