
Automatic Tuning of Agent-Based Models Using
Genetic Algorithms

Benôıt Calvez and Guillaume Hutzler

Universite d’Evry-Val d’Essonne/CNRS
LaMI, UMR 8042

523, Place des Terrasses 91000 Evry, France
{bcalvez,hutzler}@lami.univ-evry.fr

Abstract. When developping multi-agent systems (MAS) or models in
the context of agent-based simulation (ABS), the tuning of the model
constitutes a crucial step of the design process. Indeed, agent-based mod-
els are generally characterized by lots of parameters, which together
determine the global dynamics of the system. Moreover, small changes
made to a single parameter sometimes lead to a radical modification of
the dynamics of the whole system. The development and the parameter
setting of an agent-based model can thus become long and tedious if
we have no accurate, automatic and systematic strategy to explore this
parameter space.
That’s the development of such a strategy that we work on suggesting
the use of genetic algorithms. The idea is to capture in the fitness func-
tion the goal of the design process (efficiency for MAS that realize a
given function, realism for agent-based models, etc.) and to make the
model automatically evolve in that direction. However the use of genetic
algorithms (GA) in the context of ABS brings specific difficulties that
we develop in this article, explaining possible solutions and illustrating
them on a simple and well-known model: the food-foraging by a colony
of ants.

1 Introduction

Agent-based simulation (ABS) is interested in the modelling and the simulation
of complex systems. Its aim is to reproduce the dynamics of real systems by
modelling the entities as agents, whose behavior and interactions are defined. A
first validation of such models is obtained by comparing the resulting dynamics,
when the model is simulated, with that of the real system (measured thanks to
experimental data). Similarly, Multi-Agent Systems (MAS) are designed so as to
accomplish a given function in a collective and decentralized way. The validation
of the system is thus given by the fact that the function is realized and that it
is efficient.

In both cases, one of the crucial aspects of the design process lies in the
tuning of the model. Indeed, this kind of model is generally characterized by lots
of parameters which together determine the global dynamics of the system. The



2 Benôıt Calvez and Guillaume Hutzler

search space is thus gigantic. Moreover, the behavior of these complex systems
is often chaotic: on the one hand small changes made to a single parameter
sometimes lead to a radical modification of the dynamics of the whole system;
on the other hand some emergent phenomena are only produced in very specific
conditions and won’t occur if these conditions are not met. The solution space
can thus be very small. As a consequence, the development and the parameter
setting of an agent-based model may become long and tedious if we have no
accurate, automatic and systematic strategy to explore the parameter space.

The approach that we suggest is to consider the problem of the development
and the validation of ABS or MAS models as an optimization problem. The
validation can thus be reformulated as the identification of a parameter set
that optimizes some function. The optimization function for ABS would be the
distance between the artificial model that we simulate and the real system. The
optimization function for MAS would be the efficiency in the realization of the
function. Given the large dimensionality of the problem, optimization techniques
such as Genetic Algorithms (GA) can then be used to explore the parameter
space and find the best parameter set with respect to the optimization function.

However the use of genetic algorithms in this context is not so simple. The
first reason lies in the choice of the fitness function: agent-based systems or
simulations are dynamic and often characterized by emergent and transitory
phenomena, which complicates the measure of the fitness function. What has to
be measured and when are questions that strongly influence the characteristics
of the models obtained by the algorithm, thus the quality of the results. If the
fitness function is not carefully chosen, the resulting models will be optimized
for that specific fitness function, which may not correspond to the initial goal
of the designer of the model. The second reason is that no mathematical model
allows to anticipate the dynamics of an agent-based model without executing it.
The computation of the fitness function then requires the execution of the multi-
agent system or simulation (and even several executions to take the stochasticity
of the system into account), which implies a high computational cost. It is thus
necessary to develop strategies to accelerate the convergence of the algorithm.

In section two we present the problematics related to the parameter tun-
ing of an agent-based simulation. Then in section three we present the general
framework of genetic algorithms and show the difficulties that arise from the
application of these techniques to agent-based simulation. In section four, we
propose guidelines for the use of genetic algorithms with agent-based simulation
and show how it applies to the example of ant-foraging, before concluding in
section five.

2 Parameter tuning

2.1 Parameters of agent-based models

In the context of agent-based simulation, a model and the simulator with which
it is executed include lots of parameters. These parameters can be of different



Automatic Tuning of Agent-Based Models Using Genetic Algorithms 3

natures. Some parameters are peculiar to the simulator: the discretization step
for the modeling of time and space for instance can be a fixed feature of the sim-
ulator. As a consequence, these parameters can generally not be modified by the
user. For this reason, we do not include this type of parameters in our parameter
space. We only include the parameters that are specific to the model. Some of
them can be extracted from the knowledge of the field (either experimental or
theoretical) and can thus be associated to fixed values. Other parameters have
to be kept variable, which can be for different reasons: on the one hand, the
knowledge of the field is generally not exhaustive (which is the reason why we
build a model and simulate it); on the other hand, this knowledge may not be
directly compatible with the model. In this case, a common approach can be to
try some values and simulate the model to see how it behaves globally. What we
propose is to have a general approach to automate this long and tedious process.

2.2 Objective

Depending on the motivation of the modeling work, the criteria used to explore
the parameter space will also be different. This motivation may be to model
and simulate a real system, but it can be to study the discrete models that
may produce a given emergent phenomenon. Finally, the motivation may be to
propose models that perform best in the realization of a specific function.

In the first case, we want to check if the simulated model correctly grasps
the behavior of the real system. The validation of the model will thus be to have
a behavior identical to (as close to as possible) experimental knowledge. The
search problem can be seen as the search of the parameter set that minimizes
the distance between real and simulated data.

Having a similar behavior can also mean that specific emergent phenomena
known to occur in a real system can be observed in the simulation. Emerging
ant lines for example, will only occur if the chemical trails have specific prop-
erties, as we will see in next section. The emergence of this phenomenon will
thus be associated to specific parameter values, and the search problem will
consist in searching the different ranges of parameters where an emergent phe-
nomenon is observable. In some cases, choosing slightly different values may lead
to completely different results during the simulation, which complicates a manual
exploration of the parameter space and justifies the development of automatic
techniques.

2.3 Example

We will present the parameter setting of an agent-based model with the example
of ant foraging (we use the multi-agent programmable modeling environment
NetLogo [1] and its ”Ants” model). Figure 1 shows this example. The principle
is that each ant searches for food and brings it to the nest secreting a chemical
on the way back. When other ants feel the chemical, they follow the chemical
way up to the food source, which reinforces the presence of the chemical and
finally produces trails between the nest and the food sources. We can see ant



4 Benôıt Calvez and Guillaume Hutzler

lines emerging, which are similar to the ones that we can observe in natural
conditions. In the model that we used, there is a nest in the center of the area
of the simulation, and three food sources around the nest.

Chemical

Ants

Nest

Food sources

Fig. 1. Example of an ABS: Ant foraging

In this model, two parameters condition the formation of chemical trails. The
first one is the diffusion rate of the chemical, which corresponds to the fact that
a given proportion of the chemical will be diffused to the neighboring patches
(regions of the environment) at the next time step. This is used to simulate
the diffusion of the chemical in the atmosphere. The second parameter is the
evaporation rate of the chemical, which corresponds to the fact that a given
proportion of the chemical will disappear from the patch at the next time step.
This is used to simulate the evaporation of the chemical in the atmosphere.

For example, we can be interested more precisely in the dynamics of ant lines.
Table 1 shows three models with small modifications for the two parameters. We
can see in figure 2 that these small variations may lead to different dynamics:
the difference lies in the way that food sources are exploited. In model 1, food
sources are exploited in turn while in model 3, they are all exploited at the same
time. As a result, we observe one, two or three ants lines.

Model 1 Model 2 Model 3

Diffusion rate 40 50 60

Evaporation rate 15 15 20

Table 1. Models with slightly different parameters.

2.4 Previous work

Different methods have already been proposed to explore automatically the pa-
rameter space of discrete models. In the NetLogo platform for instance, the



Automatic Tuning of Agent-Based Models Using Genetic Algorithms 5

Model 1 Model 2 Model 3

Fig. 2. Simulation results for the three models of table 1

“BehaviorSpace” [1] tool allows to explore automatically and systematically the
parameter space. This space is a Cartesian product of values that each parameter
can take, some of them being chosen as fixed, others being limited to a subset of
all possible values. However when we have lots of parameters, some of which can
take a good many values (real-valued parameters for example), the parameter
space becomes huge and the systematic exploration becomes impossible.

Other methods have been proposed, which differentially explore the whole
parameter space, focusing on the most interesting areas. That’s the case of the
method developed by Brueckner and Parunak [2]. They use a “parameter sweep
infrastructure”, which is similar to the “BehaviorSpace” tool of NetLogo . How-
ever, to avoid a systematic exploration, they use searcher agents and introduce
the fitness notion. The aim of a searcher agent is to travel in the parameter space
to look for the highest fitness. Starting from a given location in the parameter
space, searcher agents have two choices: move or simulate. Each agent chooses
according to the confidence of the fitness estimate (proportional to the number
of simulations at this point) and the value of the fitness. If it chooses to move,
it heads for the neighboring region with highest fitness. A disadvantage of this
method is that searcher agents may head for local fitness maxima.

3 Use of genetic algorithms

As the tuning of the parameters of a model is a strongly combinatorial problem,
we propose to use genetic algorithms, which generally provide good results on
problems of this kind.

3.1 Principe of genetic algorithms

Genetic algorithms are a family of computational models inspired by evolution.
They allow to solve various classes of problems, more specially optimization
problems. In this framework, the potential solution of a problem is encoded on
a linear data structure, which is called a chromosome. The algorithm works on
a set of several chromosomes that is called a population. Operators are applied
to this population.

The population of chromosomes is initialized randomly. Each chromosome is
then evaluated using a fitness function, which measures how good this potential



6 Benôıt Calvez and Guillaume Hutzler

solution is with respect to the initial problem: it comes to give a score to each
chromosome.

A selection is made among the population of chromosomes: we obtain a new
population named parent population. Recombination and mutation operators
are then applied to this population: we obtain a new population named inter-
mediate population. The recombination consists in swapping parts between two
chromosomes. With this operation, we obtain two new chromosomes. That’s the
most frequent operator in genetic algorithms. Intuitively the role of this operator
is to pick up the best part of chromosomes to obtain a better chromosome. The
mutation consists in changing a part of a chromosome. This operation avoids
converging prematurely to a local solution.

The new chromosomes of the intermediate population are evaluated. A new
population is finally created from the initial population and the intermediate
population, before starting again the whole process.

3.2 Choice of the fitness function

If we consider the exploration of the parameter space as an optimization prob-
lem, we need to define very carefully the function that will have to be maximized
by the algorithm. This fitness function is of fundamental importance since the
models that will be selected are the one that perform best with respect to this
function. In the context of agent-based simulation, the choice of the fitness func-
tion is problematic for several reasons: as a first thing, it is not the result of a
computation but the dynamics of a process that has to be assessed; secondly,
emergent phenomena may be difficult to characterize quantitatively since they
are often related to a subjective interpretation by a human observer.

Quantitative vs. qualitative. Validating an agent-based model by assessing
the distance between the simulation and the real system can be done either
quantitatively or qualitatively.

In the quantitative case, data are measured in the simulation and compared
to data measured in similar conditions in the real system. The distance between
the simulation and the real system is then the Euclidean distance between the
two data vectors. If we try to select models that are optimized for the realization
of some function, the fitness function can also be directly measured by the per-
formance of the system for that function. In the case of ant foraging, this would
correspond to the quantity of food retrieved to the nest after a given period or
the time necessary to bring all the food back to the nest.

In the qualitative case, what is important is that a given emergent phe-
nomenon be present in the simulation. The difficulty is then to translate this
observation into a quantitative measure (the fitness function). In the example of
ant foraging, we know from the observation of real ants that they organize dy-
namically along lines between the nest and food sources because of the creation
of corresponding chemical trails. The fitness function could then be designed so
as to reward models in which complete chemical trails are formed between the



Automatic Tuning of Agent-Based Models Using Genetic Algorithms 7

nest and the food sources. In some cases, the characterization of such emergent
phenomena may not be so simple since it may be the result of a subjective in-
terpretation by an observer, which cannot be captured easily by a quantitative
measure.

A dynamic process. In classical optimization problem, the fitness function
corresponds to the result of a computation. Therefore, the question of the time
at which the measure should be made doesn’t make sense: the measure is done
when the computation has ended. On the contrary, agent-based simulations are
dynamic processes that evolve along time and generally never end.

We can clearly see in the examples given in the previous section that the
evaluation of the fitness function generally has to be done at a given time-step
of the simulation. The choice of this time-step is not neutral and may greatly
influence the performance of the genetic algorithm and the resulting model. If we
try for example to select models that exhibit a given behavior that is transitory,
it may not be sensible at the time-step chosen for the evaluation of the fitness
function and the measure should thus be repeated at different time-steps.

Figure 3 shows the foraging simulation at five different time-steps. We can
see that the ant lines are not present during all the simulation. This example
shows the difficulties to choose the time-steps for the evaluation.

0

t

DisintegrationEmergence of ants lines
-

t = 30 t = 60 t = 210 t = 420 t = 600

Fig. 3. Ant foraging at different time-steps

3.3 Computation of the fitness function

Time. Since no mathematical model can anticipate the dynamics of an agent-
based model without executing it, the computation of the fitness function re-
quires one or even several simulations. This means that the time required to
compute the fitness function will be significant (which is generally not the case
for classical optimization problems). The global computation time to run the
genetic algorithm is (n×N)× Tf where n is the number of chromosomes, N is
the number of generations, and Tf is the time to compute the fitness function.
If Tf is 10 minutes, n is 20 chromosomes and N is 100 generations, then the



8 Benôıt Calvez and Guillaume Hutzler

global time to run the genetic algorithm is nearly two weeks. We must there-
fore find methods to reduce either the number of chromosomes, the time to
converge towards an optimum or the time to compute the fitness function. We
mainly studied the last possibility through distributed computation and fitness
approximation[3].

Distributed computation. Since the different models are independent from each
other, the evaluation of their fitness is also independent. Therefore each eval-
uation of the fitness (that is to say each agent-based simulation) can be done
on a different computer. We can thus have several computers to simulate the
models and use the master-slave parallel genetic algorithms [4], which improves
the performance as compared to standard GA.

Fitness approximation. Fitness approximation comes to approximate the result
of the simulation by a mathematical model, such as a neural network or a poly-
nomial for instance. We tried this approach by training a neural network with
test data. After the learning phase, we used it to compute the fitness, with the
generation-based control approach, in which the whole population during η gen-
erations is evaluated with the real fitness function in every λ generations [5]. The
results however were not so good and this approach has been temporarily aban-
doned. We suspect in that case that the approximation was not good enough to
obtain satisfying results but this has to be explored in more details.

Stochasticity. Two agent-based simulations can generally bring slightly differ-
ent results even if the underlying model is exactly the same due to the stochastic-
ity of the model and of the simulator. One simulation is not enough to evaluate
the fitness function: it can only be considered as an estimate for the fitness.

We studied the stochasticity of the “Ants” model and the NetLogo simulator.
We chose three different fitness functions :

– the first fitness function is the quantity of food brought back between 100
and 200 simulation time-steps;

– the second fitness function is the time to bring back all the food to the nest;
– the third fitness function is the number of ant lines.

We assessed, depending on the number of simulations, the error rate in the
estimation of the fitness as compared to the “real” fitness (estimated with 100
simulations). The results are shown in table 2.

We see, for instance, that a 5% error on the estimation of the fitness 2 can
only be obtained by simulating the model more than five or ten times. But the
stochasticity is more or less important depending on the fitness. Fitness 1 for
example is much more sensitive than fitness 2.

In such noisy environments, a first solution is to increase the size of the
population [6,7]. To multiply the number of the simulated models reduces the
effect of the stochasticity. A second solution is to simulate each model several
times to improve the evaluation of the fitness function. Both solutions greatly
increase the number of simulations, thus the time, of the genetic algorithm.



Automatic Tuning of Agent-Based Models Using Genetic Algorithms 9

Fitness 1 Fitness 2 Fitness 3

Number of Simulations Error rate Error rate Error rate

1 '34.57% '10.92% '13.28%

5 '14.74% '4.85% '6.34%

10 '10.3% '3.38% '4.39%

15 '8.3% '2.85% '3.58%

20 '7.26% '2.39% '3.15%

σ∗ 0.41 0.14 0.17

Table 2. Example of the stochasticity

Another solution is to use the same technique as with fitness approxima-
tion. A solution to the stochasticity problem is then to estimate the fitness of
each model with one simulation, and each n generations of the GA (n to choose
according to the stochasticity of the model and the desired quality of the esti-
mation), to estimate the fitness of each model with x simulations.

We use the elitism genetic algorithm [8] that is to say we keep the best
chromosomes during the algorithm, which allows to continuously improve the
solution. Our implemented genetic algorithm replace only 25 % of the population
at each generation. Every 3 generations, we estimate the fitness of the models
with more simulations.

4 General framework and application

Up to now, we identified several difficulties peculiar to agent-based systems for
the application of genetic algorithms. We now propose a general framework or
guidelines for the application of GA in this very specific context and show with
several examples how it may be used.

1. determine the goal of the study;
2. elaborate the agent-based model;
3. choose the parameters of the model to evolve by genetic algorithms;
4. choose the fitness function : what do we want to optimize; when and how

should we evaluate the function;
5. study the stochasticity of the model; simulate the model several times and

study the results (calculate the standard deviation); determine the procedure
for the exploration accordingly;

6. study the computation time of the simulation; If the simulation requires
much time, use distributed computation; If the simulation requires too much
time, use fitness approximation;

7. choose the number of chromosomes in the population;
8. run the genetic algorithm.

We will now detail how this may apply to the ant foraging example. In one
example, we use the model that has already been presented in the previous
sections, with 10 ants.



10 Benôıt Calvez and Guillaume Hutzler

4.1 Example

Experience.

1. our goal is to optimize the foraging behavior;
2. the model is NetLogo ”Ants” model;
3. the parameters that we evolve are the diffusion rate and the evaporation

rate;
4. the fitness function is the quantity of food brought back between 100 and

200 simulation time-steps
5. The result of the study of the stochasticity is shown in table 2 for fitness 1;

to evaluate the fitness function we use one simulation; every 3 generations
we use 10 simulations to evaluate the fitness function;

6. the evaluation of the fitness function (that is to say a simulation) requires
about 15 seconds; we use only one computer; one night of calculation is
enough to compute 100 generations;

7. we take 20 chromosomes;
8. we run the genetic algorithms for 100 generations.

26
28
30
32
34
36
38
40
42

0 21 42 63 84 99

Fitness

Generation

s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s
26
28
30
32
34
36
38
40
42

0 21 42 63 84 99

Fitness

Generation

Fig. 4. Result of the genetic algorithm

Results. We execute one run of the genetic algorithm. Figure 4 shows the results.
The curve depicts the fitness of the best chromosome according to generations.
And the crosses show the fitness of the best chromosome, computed by 10 simu-
lations every 3 generations. The instability of this curve shows the stochasticity
of the simulator and its model.

At the end of the 100 simulation steps, the ant lines are built. During the
next 100 simulation steps, the ants exploit the food sources using the chemical
trails. The best models are the ones where the three food sources are exploited
at the same time. However the evaporation rate is rather weak. (the evaporation



Automatic Tuning of Agent-Based Models Using Genetic Algorithms 11

rate is 8.1% and the diffusion rate is 88.6%) As a result, when there is no more
food in a source, the chemical trail remains in the environment and the ants take
time to exploit another source.

4.2 Discussion

As we could already see with the study of the stochasticity, we obtain very
different results depending on the choice of the fitness function. The models
are strongly optimized for a specific fitness function and may not perform so
well with another one. The optimization creates a loss of the flexibility of the
dynamics of the agent-based model. A possible solution would be to use several
different initial conditions to evaluate the fitness function. We could imagine in
our example to vary the position and distance of the food sources, or to add new
sources dynamically to select models that show high adaptation capabilities.
This would however increase again the time necessary to run the algorithm.

The optimization by the genetic algorithm also depends on the constraints
imposed to the agents in the model. If a model has lots of constraints (fewer
resources for example), it is necessary that it optimizes its global functioning.
On the contrary, if the resources are abundant, the pressure on the model to
adapt and optimize its functioning will be weaker. As a result, the use of our
approach will be mostly beneficial when constraints on the model are high. In
the case of ant foraging, if the fitness is the time to bring all the food back, an
important resource corresponds to the number of ants. The fewer the ants, the
better the organization they will need to create so as to forage efficiently. On the
contrary, if the ants are very numerous, the model will perform well whatever
the chemical signalling. In some cases, it may thus be useful to strengthen the
constraints on the model to obtain bigger improvements.

5 Conclusion

This paper presents a method, based on genetic algorithms, to explore auto-
matically the parameter space of agent-based models. We explained the specific
difficulties related to the use of this approach with agent-based models: the
choice of the fitness function, the stochasticity, the computational cost. We then
show some possible solutions. We finally suggest guidelines to help using genetic
algorithms in this context.

Then we apply the method to some simple examples: the ant foraging with
different fitness functions (both quantitative and qualitative). We obtain models
that are optimized with respect to a given fitness function, which is chosen in
relation with specific modeling goals.

The next step is to apply the method to a more complex example. We began
a work for the simulation of the glycolysis and the phosphotranferase systems
in Escherichia coli. In this work, we are interested in testing the hypothesis
of hyperstructures [9]. The hyperstructures are dynamic molecular complexes,
enzyme complexes in the case of this work. These complexes allow to improve



12 Benôıt Calvez and Guillaume Hutzler

the behavior of a cell : more flexibility, quicker adaptation. In our study, we have
25 kinds of molecules (or agents). There are altogether about 2200 agents in
the simulation. We want to study the potential interest of hyperstructures for
the cell. To do this we make the rates of enzymes association and dissociation
variable. In this context, the simulation of a model lasts about 10 minutes,
which imposes to use the methods described in this article like the distributed
computation.

To explore this complex example, we will need to develop additional strate-
gies to reduce the parameter space (e.g. by introducing coupling between pa-
rameters), to accelerate the evaluation of the fitness function (e.g. by developing
approximation methods), and to accelerate the convergence of the algorithm
(e.g. by using interactive evolutionary computation[10]). Finally, another impor-
tant perspective is to explore the effect of varying dynamically the simulation
conditions so as to produce more versatile models.

References

1. Tisue, S., Wilensky, U.: Netlogo: Design and Implementation of a Multi-Agent
Modeling Environment. Proceedings of Agent 2004 (2004)

2. Brueckner, S., Parunak, H.V.D.: Resource-Aware Exploration of the Emergent
Dynamics of Simulated Systems. AAMAS 2003 (2003) 781–788

3. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary compu-
tation. Soft Computing Journal (2003)

4. Cant-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and
practice. Computer Methods in Applied Mechanics and Engineering 186 (2000)

5. Jin, Y., Olhofer, M., Sendhoff, B.: A Framework for Evolutionary Optimization
with Approximate Fitness Functions. IEEE Transactions on Evolutionary Com-
putation 6 (2002) 481–494

6. Beyer, H.G.: Evolutionary Algorithms in Noisy Environments: Theoretical Issues
and Guidelines for Practice. Computer methods in applied mechanics and engi-
neering 186 (2000)

7. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of
populations. Complex System 6 (1992)

8. Beker, T., Hadany, L.: Noise and elitism in evolutionary computation. In: Soft
Computing Systems - Design, Management and Applications. (2002) 193–203

9. Amar, P., Bernot, G., Norris, V.: Modelling and Simulation of Large Assemblies
of Proteins. Proceedings of the Dieppe spring school on Modelling and simulation
of biological processes in the context of genomics (2002) 36–42

10. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC
optimization and human evaluation. In: Proceedings of the IEEE. Volume 89.,
IEEE Press (2001) 1275–1296


	Automatic Tuning of Agent-Based Models Using Genetic Algorithms
	Benoît Calvez cl@@auth, Guillaume Hutzler

