
Designing Real-Time Multi-Agent Systems Using Timed Automata

G. Hutzler, H. Klaudel and D.Y. Wang
LaMI, UMR 8042, University of Evry-Val d’Essonne/CNRS

523, Place des Terrasses 91000 Evry, France
{name}@lami.univ-evry.fr

Abstract

The design of reactive systems must comply with logi-
cal correctness (the system does what it is supposed to do)
and timeliness (the system has to satisfy a set of temporal
constraints) criteria. In this paper, we propose a global ap-
proach for the design of adaptive reactive systems, i.e., sys-
tems that dynamically adapt their architecture depending
on the context. We use the timed automata formalism for
the design of the agents’ behavior. This allows evaluating
beforehand the properties of the system (regarding logical
correctness and timeliness), thanks to model-checking and
simulation techniques. This model is enhanced with tools
that we developed for the automatic generation of code, al-
lowing to produce very quickly a running multi-agent pro-
totype satisfying the properties of the model.

1. Introduction

Real-time reactive systems are defined through their ca-
pability to continuously react to the environment while re-
specting some time constraints. In a limited amount of time,
the system has to acquire and process data and events that
characterize its temporal evolution, make appropriate de-
cisions and produce actions. Thus, the robustness of the
system relies on its capability to present appropriate out-
puts (logical correctness) at an appropriate date (timeli-
ness). Such applications are often critical. Their hardware
and software architectures have to be specified, developed
and validated with care. Then, they are set in order for
the system to have a determinist and predictable behavior.
The interest of multi-agent systems in this context may be
considered as limited, especially because of autonomy and
proactivity properties generally attributed to agents. In fact,
the decision step in real-time systems is very often hidden

This article has already been published in the proceedings of the
FAABS’04 workshop under the title “Towards Timed Automata and
Multi-Agent Systems"

and examples of usages of multi-agent paradigm in the real-
time context [4, 22] exploit the distributed aspects of multi-
agent systems much more than the autonomy aspects.

In the field of adaptive multi-agent systems, some stud-
ies address the problem of how to integrate the real-time
aspects. These works focus however mainly on the coexis-
tence, at the level of a unique agent, of modules responsible
for reasoning and for the real-time control ([17] or [3] con-
cerning CIRCA architecture). The issue concerning the co-
operation between agents is for the moment much less de-
veloped, even if it is proposed as a perspective ([18] about
MASA-CIRCA). Some works are trying to integrate both
aspects by developing specific execution environments [20]
or by developing dynamic multi-agent planning methodolo-
gies [16].

In this paper, we aim at addressing systems in which time
constraints are neither critical (obtaining a response a lit-
tle bit later than specified is acceptable) nor strict (when
a normal delay of response is exceeded, the result is not
immediately worthless but its value decreases more or less
quickly with time). Another characteristic of such systems
is the variability and unpredictability of treatments to pro-
cess and their priority, but also of the availability of active
entities (processors) in charge of processing. In such a con-
text of dynamic scheduling in distributed systems, there is
no solution yet capable to guarantee the respect of timing
constraints. Our purpose is then to design this scheduling so
as to optimize the compromise between the respect of logi-
cal correctness and timeliness, possibly by loosening some
constraints when all of them cannot be satisfied simultane-
ously.

More precisely, rather than scheduling in its classical un-
derstanding, our concern here is the problem of adaptive re-
configuration of the processing chain during the execution.
This reconfiguration can occur according to the available re-
sources (sensors, processors, effectors), to the wished logi-
cal correctness, to the measured timeliness and to the events
occurring in the environment. But, instead of doing this in
a centralized manner, the agents will need to control the re-
configuration themselves, in addition to their normal activ-

ity of data processing.
Our objective here is to propose a complete approach,

from a software engineering point of view, for the design
of adaptive multi-agent systems. It covers all stages of soft-
ware life cycle, from an abstract specification of the applica-
tion architecture to a testable implementation, including for-
mal verification of properties and simulation. The method
is based on the formalism of timed automata [1], which al-
lows to express systems as a set of concurrent processes sat-
isfying some time constraints (section 3). We show that this
formalism may be used in order to model a multi-agent sys-
tem from the angle of data processing as well as that of dy-
namic treatment chain reconfiguration (section 4). Then, we
show how model-checking and simulation may be used to
verify selected properties of the system and analyze a pri-
ori its behavior (section 5). Finally, we address the problem
of semi-automated translation from a timed automata spec-
ification to executable agents (section 6). But before giving
more details about this work, it is necessary to give some
words of explanation about our target application and its
specificities.

2. Target application and objectives

The context in which we develop our approach is the
project that we callDance with Machine[13]. This project
aims at staging a real-time dialogue between a human
dancer-actor and a multimodal multimedia distributed cog-
nitive system. The role of the latter is to achieve in real-
time the captation and analysis of the performance of the
dancer, and to build a multimedia answer to it. This an-
swer may consist in visual animations projected on screens
around the dancer, musical sequences, or actions by robots
or other physical objects. We consider this application as a
metaphorical transposition of the kind of interactions that
we may forecast between human users and communicat-
ing objects. This is calledAmbient Cognitive Environments
(ACE), i.e., physical environments in which perception,
processing and action devices have to organize dynamically
and in a cooperative way in order to provide users with nat-
ural interaction and extended services.

The computerized setup is composed of a set of proces-
sors equipped with communication capabilities. They may
also be connected to sensors (video cameras, biometric sen-
sors, localization sensors, etc.) or effectors (screens, loud-
speakers, engines, etc.). Each processor may run one or sev-
eral agents, each of them being specialized for a specific
kind of treatment. Data retrieved from the sensors must be
handled by several agents before being converted into ac-
tions. Agents’ work is to analyze, synthesize and transform
the data that they get. Data produced by an agent are then
transmitted to other agents in order to continue the process-
ing. The data are finally used to generate pictures, sounds or

actions, either when the analysis is precise enough, or when
the available time is too limited. Figure 1 shows a very sim-
plified view of this process. Only one perception modality
is represented, which corresponds to a video camera.

Picture

Posture

Qualified posture

(open/closed)

Rough FineMedium
Picture

Analysis

Agent
OR

OR

Level 2

Qualities

Posture Analysis Agent

Level 1

Primitives

Multimedia Production Agent

Level 0

Raw data

Video Extraction Agent

Video stream

Video

Camera

Human

Dancer

Figure 1. Global architecture of the process-
ing chain in the project “Dance with Ma-
chine".

The use of agents in this context is justified by the dis-
tributed nature of the application (captation, processing and
action are distributed among several objects and proces-
sors). But the main reason why we use agents is to make
the whole system adaptive in various contexts: when com-
ponents are added or removed, when the global behavior
of the system must change, or when time constraints are
not met by the system. The main time constraint that the
system should respect is the latency, i.e., the time between
the acquisition of data by sensors, and the production of
corresponding actions by the system, under one form or
another. This latency should of course be kept as low as
possible so that the reaction of the system seems instanta-
neous (at least very quick). On the other hand, the analy-
sis of the dancer’s performance should be kept as precise
and thorough as possible. These two constraints are poten-
tially contradictory since a precise and thorough analysis
can take significantly more time than a rough and superfi-
cial one. The quality of an analysis can be measured along
two complementary dimensions: the precision (for the mea-
sure of a parameter of the performance) and the thorough-
ness (when optional treatments are possible, a superficial
processing will be limited to what is compulsory).

Our main purpose is to allow a very quick evaluation of
various strategies in the control of the processing chain, in

order to produce an efficient agent-based implementation of
the system. We achieve it using a formal model of the sys-
tem along with tools that we developed to automate the im-
plementation of a functional prototype. Model-checking al-
lows to verify that the systems complies to the specified
constraints (latency, non-blocking, sequentiality of treat-
ments, etc.). Simulation, for its part, allows to evaluate the
quality of the compromise between logical correctness (is
the quality of processing satisfactory?) and timeliness (does
the system comply to time constraints?).

3. Introduction to timed automata

Real-time systems may be specified using numerous
dedicated methods and formalisms. Most of them are graph-
ical semi-formal notations allowing a state machine repre-
sentation of the behavior of the system. Among the most
popular formalisms, we may quote Grafcet [8], SA/RT [21],
Statecharts [9], UML/RT [6]. Such visual representations
do not enable to verify the properties of systems and it is
necessary to associate a formal semantics to them, based in
general on process algebras [10], Petri nets [7] or temporal
logics [19]. Proposing a new formalism is not our intention
here. On the contrary, we prefer to examine the potential
benefit of real-time specification and verification techniques
in the design and the programming of agent-based reactive
systems. We chose for this purpose to use timed automata
[1]. This formalism has the advantage to be relatively sim-
ple to manipulate and to possess adequate expressivity in
order to model time constrained concurrent systems. More-
over, there exists for this model powerful implemented tools
(e.g., UPPAAL [14]) allowing model-checking and simula-
tion.

3.1. Standard model

A timed automaton is a finite state automaton pro-
vided with a continuous time representation through
real-valuated variables, calledclocks, allowing to ex-
press time constraints. Generally, a timed automaton is
represented by an oriented graph, where the nodes corre-
spond to states of the system while the arcs correspond
to the transitions between these states. The time con-
straints are expressed throughclock constraintsand may
be attached to states as well as to transitions. A clock con-
straint is a conjunction of atomic constraints which com-
pare the value of a clockx, belonging to a finite set
of clocks, to a rational constantc. Each timed automa-
ton has a finite number ofstates(locations), one of them
being distinguished asinitial . In each state, the time pro-
gression is expressed by a uniform growth of the clock val-
ues. In that way, in a state at each instant, the value of
the clockx corresponds to time passed since the last re-

set of x. A clock constraint, called aninvariant, is as-
sociated to each state. It has to be satisfied in order for
the system to be allowed to stay in this state. Transi-
tions between states are instantaneous. They are condi-
tioned by clock constraints, calledguards, and may also
reset some clocks. They may also carry labels allow-
ing synchronization. An example of timed automaton
and a corresponding possible execution is shown in fig-
ure 2.

x <= 3

x >= 2
x := 0

Figure 2. Example of a timed automaton,
where x is a clock. The guard x ≥ 2 and the in-
variant x ≤ 3 imply that the transition will fire
after 2 and before 3 time units passed in the
state.

The behavior of a complex system may be represented
by a single timed automaton being a product of a number of
other timed automata. The set of states of this resulting au-
tomaton is the Cartesian product of states of the component
automata, the set of clocks is the union of clocks, and sim-
ilarly for the labels. Each invariant in the resulting automa-
ton is the conjunction of the invariants of the states of the
component automata, and the arcs correspond to the syn-
chronization guided by the labels of the corresponding arcs.

3.2. Extensions in UPPAAL

We use UPPAAL for our modelling; a detailed presen-
tation of this tool may be found in [14]. We remind here
only the main characteristics and extensions with respect
to the standard model [1]. In UPPAAL, a timed automa-
ton is a finite structure handling, in addition to a finite set
of clocks evolving synchronously with time, a finite set of
integer-valuated and Boolean variables. A model is com-
posed of a set of timed automata, which communicate us-
ing binary synchronization through transition labels and a
syntax of emission/reception. By convention, a labelk! in-
dicates the emission of a signal on a channelk. It is sup-
posed to be synchronized with the signal of reception, rep-
resented by a complementary labelk?. Absence of synchro-

nization labels indicates an internal action of the automa-
ton. The execution of the model starts in the initial config-
uration (corresponding to the initial state of each automa-
ton with all variable values set to zero), and is a succession
of reachable configurations. The configuration change may
occur for three reasons:

• by time progression corresponding tod time units in
the states of the components, provided that all the state
invariants are satisfied. In the new configuration, the
clock values are increased byd and the integer vari-
ables do not change;

• by a synchronization if two complementary actions in
two distinct components are possible, and if the cor-
responding guards are satisfied. In the new configura-
tion, the corresponding states are changed and the val-
ues of clocks and of integer variables are modified ac-
cording to the reset and update indications;

• by an internal action if such an action of a component
is possible, it may be executed independently of the
other components: the state and the variables of the
component are modified as above.

Another peculiarity of UPPAAL, useful in expressing a
kind of synchronicity of moves, is the notion of “commit-
ted" states, labelled in the figures by a special labelC; see,
for instance, the stateChoicein the first automaton of fig-
ure 5. In such a state, no delay is permitted. This implies an
immediate move of the concerned component. Thus, two
consecutive transitions sharing a committed state are exe-
cuted without any intermediate delay.

UPPAAL allows simulating systems specified in this
way, detecting deadlocks and to verify, through model-
checking, various reachability properties. Typically, it can
answer the questions like “starting from its initial state, does
the system reach a state where a given property is satis-
fied?”, “starting from its initial state, is a given property al-
ways true?”, or “starting from its initial state, can the sys-
tem reach a given state in a given delay?”.

4. Modelling a decentralized reactive system

As stated earlier, timed automata allow to model systems
as a set of concurrent processes. We will detail gradually in
the sequel the way they may be applied to our case study.
The behavior of our agents consists in receiving and pro-
cessing input data in order to generate and send new out-
puts. The processing has a duration, considered as fixed, and
has to be performed repeatedly. The corresponding model is
shown in figure 3.

Initially, the agent is waiting for new data in the state
Idle. It starts processing on reception of the signalWork-
ForAgentNpassing to the stateProcessing. It comes back
to the stateIdle at the end of its treatment, which takes a

Idle Processing

agent_clk <= max_time

agent_clk >= min_time
WorkForAgentN1!

WorkForAgentN?
agent_clk := 0

WorkForAgentN?
lost_data++

Figure 3. A model of a simple agent.

time comprised betweenmin_timeandmax_time. The fol-
lowing agent is informed then (through the synchronisation
on the channelWorkForAgentN1), that it can start process-
ing.

This simple model presents however the following draw-
back: if a new treatment request comes to an agent when it
is already processing, the corresponding data is lost. The
number of such events is counted by incrementing the vari-
able lost_data. Nevertheless, the loop at the stateProcess-
ing is necessary to avoid deadlocks which may occur if the
situation described above happens. A solution can be to in-
troduce an additional state playing the role of a buffer (see
figure 4).

Now, if a new request arrives to the agent while it is in
the stateProcessing, it passes to the stateBuffer. Then, it
comes back to the stateProcessingat the end of the treat-
ment, in order to start a next one. If a new request comes
when the agent is already in the stateBuffer, then the cor-
responding data is lost. At this stage, we shall still take into
account the fact that a few modules (corresponding to var-
ious precisions of the processing) are available and may be
used to analyze the dancer’s posture. A first approach con-
sists in duplicating the agent in charge of the corresponding
treatment by associating to each copy a different duration
constant. However, when a new data is available, it is trans-
mitted to one of the agents chosen in a non-deterministic
way. Thus, it is necessary to incorporate in the agent a con-
troller responsible for choosing between different treatment
modules. This solution is represented in figure 5.

When some data is ready to be processed, the controller
module passes in the stateChoice. The agent chooses to
execute a treatment module depending on the value of the

Idle Processing

agent_clk <= max_time

Buffer
agent_clk <= max_time

WorkForAgentN?
agent_clk := 0 WorkForAgentN?

agent_clk >= min_time
WorkForAgentN1!
agent_clk := 0

agent_clk >= min_time
WorkForAgentN1!

WorkForAgentN?
lost_data++

Figure 4. A model of an agent with a buffer.

Idle
Choice Processing

Buffer

ControllerWorkForAgentN?
agent_clk := 0

Free?

WorkForAgentN?
agent_clk := 0,
lost_data++

Free?

WorkForAgentN?
agent_clk := 0

Control! EndControl?

Idle Choice EndChoice

Control?

condition_on_agent_clk
WorkForModule1!

!condition_on_agent_clk
WorkForModule2!

EndControl!

Module1Idle Module1Processing

module_clk <= max_time
Module1Free

WorkForModule1?
module_clk := 0

WorkForAgentN1!
module_clk >= min_timeFree!

Module2Idle Module2Processing

module_clk <= max_time
Module2Free

WorkForModule2?
module_clk := 0

WorkForAgentN1!
module_clk >= min_timeFree!

Figure 5. A model composed of a generic
agent, a controller module and two treatment
modules.

boolean expressioncondition_on_agent_clk. When the cho-
sen module achieves processing, it informs about it the next
agent in the processing chain, then it informs the controller
by sending the signalFree.

5. Verification and simulation

The controller presented in the previous section needs
of course to be instantiated by fixing explicitly the crite-
ria determining the choice between treatment modules. We
present three different strategies that may be considered and
address verification and simulation experiences which may
be accomplished for some interesting properties. The par-
ticular context considered for this study is explained in fig-
ure 6.

The extraction agent produces an image every 50 ms,
which has to be treated by the agent in charge of the anal-
ysis. This treatment should be performed either by a mod-
ule capable to accomplish a complete analysis or by a mod-
ule which can do only a partial one but taking less time
(ttreatment2 < ttreatment1). The controller has to be de-

Image

extraction

Multimedia

production

Module 1

Full analysisAnalysis

module

controller
Module 2

Limited analysis

50 ms

10 ms

Figure 6. A simplified scheme of the process-
ing chain.

signed in such a way that it could be possible to concili-
ate two potentially contradictory criteria: analyzing all im-
ages or, in other words, avoiding loosing too many of them
(timeliness) and performing a maximum of complete ana-
lyzes (logical correctness).

5.1. Different strategies of choice

The first proposal is not really a strategy but we give it
as a reference. It consists only in systematically alternating
the two treatment modules.

In order to minimize the loss of images, the idea is to an-
ticipate, when the agent performs the choice (tchoice), the
date when the agent will receive a new image to analyze
while it has already an image in its buffer and has not termi-
nated its current analysis (tloss). This is possible since the
frequency of arrivals of new images is constant. Thus, in the
second strategy, the module1 will be chosen if and only if
ttreatment1 < tloss − tchoice.

In order to maximize the number of complete analyzes,
one can loosen the previous constraint by allowing to use
the module1 even if its execution will necessarily entail a
loss of an image. In the third strategy, the module1 will be
chosen if and only ifttreatment1 < (tloss− tchoice) ∗ coef ,
wherecoef fixes the limits of allowance.

5.2. Results

For each strategy, it is possible to check with UPPAAL
that the system satisfies certain properties. In particular, we
checked that:

• there is no deadlock:A[] not deadlock;

• there is no image lost:A[] lost_data == 0;

• the ratio of the choice of module1 is grater than a given
threshold:
A[] (nb1 * 100 / (nb1 + nb2 + lost_data)) > 50).

Moreover, it is possible to simulate the system during a
given number of cycles and to check experimentally the ra-
tio of lost images and images which could be analyzed com-
pletely versus treatment timesttreatment1 andttreatment2 ,
as shown in figure 7.

1
0

3
0

5
0

7
0

9
0

1
0

3
0

5
0

7
0

9
0

0

10

20

30

40

50

60

70

80

90

100

m
o

d
u

le
 1

 u
s

e
 (

in
 %

)

ttreatment1

ttreatment2

90-100

80-90

70-80

60-70

50-60

40-50

30-40

20-30

10-20

0-10

10

40

70

100

1
02
03
04
05
06
07
08
09
0

1
0
0

0

5

10

15

20

25

30

35

40

45

50

lo
s

t
d

a
ta

 (
in

 %
)

ttreatment2

ttreatment1

45-50

40-45

35-40

30-35

25-30

20-25

15-20

10-15

5-10

0-5

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

ttreatment2

p
e
rc
e
n
ta
g
e

% module 1 - strategy 1

% lost data - strategy 1

% module 1 - strategy 2

% lost data - strategy 2

% module 1 - strategy 3

% lost data - strategy 3

Figure 7. The ratio of images analyzed with
the module 1 (on the left) and the ratio of lost
images (on the right), obtained for the sec-
ond strategy and various values of time of
treatment for modules 1 and 2. On the bot-
tom, a comparison of the three strategies for
ttreatment1 = 80ms and coef= 1.25, for various
values of ttreatment2 .

Model-checking techniques allow to verify formally and
automatically if some properties of the system, considered
as important, are satisfied in all possible system evolutions.
On the other hand, simulation permits to obtain some em-
pirical evaluation of performances of the system in terms of
logical correctness and timeliness, depending on the char-
acteristics of treatment modules and on the applied strategy.
This allows also envisaging a supplementary control level
for the agent in charge of the image analysis. This corre-
sponds to a kind of “meta-strategy” which could adapt dy-
namically the strategy of choice depending on various con-
straints and fixed objectives.

6. Automated code generation

After having validated the model of the multi-agent sys-
tem, both formally and experimentally, the next stage of de-
velopment corresponds to translating it into an executable
prototype. In order to do so, a naive idea could consist
in implementing each timed automaton by a thread, since
they are models of concurrent processes. Nevertheless, for
a same agent modelled by several automata, it could involve
several synchronization and lead to decline sensibly its per-
formances, which could be awkward for a reactive system.
Thus, a first step consists in performing first a synchronized
product of all automata describing the same agent in or-
der to transform it next into a skeleton of an application.
The compiler that we developed produces this synchronized
product by performing also a number of optimizations in or-
der to minimize the size of the resulting automaton. Each
agent is modelled consequently by a unique timed automa-
ton, which can be translated into an executable form in sev-
eral steps. First, only the finite state automaton aspects of
the given timed automaton are considered. The states where
it is necessary to let the time progress are assumed to cor-
respond to some treatments. Our compiler translates it in
terms of a state in which the agent does a break (which
is supposed to be replaced by the corresponding treatment
module when it is available). Finally, the synchronization
signals between automata are associated to communications
between the corresponding agents.

7. Conclusion

We presented in this paper a complete approach, from
the software engineering point of view, for the modelling
of adaptive real-time systems based on the multi-agent
paradigm. The usage of timed automata specification and
verification techniques played here a central and unifying
role. We showed how this formalism, thanks to its capa-
bilities to model concurrent processes having time con-
straints, can be adapted in order to represent multi-agent
systems. Moreover, we demonstrated that it could be possi-
ble to model in a modular way an agent controller, capable
to make decisions depending on some fixed objectives.

The advantage one can take from this formal specifi-
cation is twofold: First, it is possible to check the model
against various kinds of deadlock (or timelock) and more
generally, against any property coming from a non-respect
of time constraints, and avoid this way some problems at a
very early stage of development. Second, it is worthwhile
to take advantage of timed automata representation of the
system in order to generate automatically application skele-
tons. To do so, we developed a specific compiler which,
taking an XML representation of the timed automata spec-
ification, produces a skeleton based on the JADE multi-

agent platform [5]. This prototype is finally used to vali-
date choices made previously, during modelling and imple-
mentation, and to review and modify some of them if nec-
essary.

Finally, the general purpose of this work consists in ex-
ploiting the approach described in this paper, the design pat-
terns and the composition tools, in order to facilitate the de-
sign of an entire system. These design patterns could be
coupled with machine learning techniques for the explo-
ration of parameter spaces, in order to optimize agent be-
haviors when the model becomes more complex. Also, it
would be interesting to develop an experimental protocol in
order to validate, on the real prototype, the properties ob-
served on the model. In this context, the presented work,
even if it is at a preliminary stage, demonstrates however
the feasibility of this approach and allows to foresee favor-
ably the development of powerful and complete tools dedi-
cated to the implementation of reactive multi-agent systems.

References

[1] Alur R., Dill D. L., A Theory of Timed Automata, in The-
oretical Computer Science, Vol. 126, No. 2, pp. 183-236,
1994.

[2] Arai T., Stolzenburg F., Multiagent systems specification by
UML statecharts aiming at intelligent manufacturing, in AA-
MAS’2002, pp. 11-18, 2002.

[3] Atkins E. M., Abdelzaher T. F., Shin K. G., Durfee E.
H., Planning and Ressource Allocation for Hard Real-Time,
Fault Tolerant Plan Execution, in Journal of Autonomous
Agents and Multi-Agent Systems, Vol. 4, No. 1/2, pp. 57-
78, March 2001.

[4] Attoui A., Les systèmes multi-agents et le temps-réel, Ey-
rolles, 1997.

[5] Belleifemine F., Caire G., Poggi A., Ri-
massa G., JADE - A White Paper,
http://sharon.cselt.it/projects/jade/papers/WhitePaperJADEEXP.pdf,
2003.

[6] Douglass B. P., Real-Time UML: Developing Efficient Ob-
jects for Embedded Systems, Addison-Wesley-Longman,
Reading, MA, 1998.

[7] Elmstrøm R., Lintulampi R., Pezze M., Giving Semantics to
SA/RT by Means of High-Level Timed Petri Nets, in RTSJ,
Vol. 5, No. 2/3, pp. 249-271, 1993.

[8] Groupe AFCET Systèmes Logiques. Pour une représentation
normalisée du cahier des charges d’un automatisme logique,
in RAII, Vol. 61 & 62, 1977.

[9] Harel D., Statecharts : A Visual Formalism for Complex Sys-
tems, in Science of Computer Programming, Vol. 8, 1987.

[10] Harel D., Pnueli A., Schmidt J. P., Sherman R., On the For-
mal Semantics of Statecharts, LICS 1987, pp. 54-64, 1987.

[11] Hatley D. J. , Pirbhai I., Strategies for Real Time System
Specification, Dover Press, 1987.

[12] S. Horstmann and G. Cornell. Core Java 2, Vol. 1 & 2, Pren-
tice Hall, 1999.

[13] Hutzler G., Gortais B., Joly P., Orlarey Y., Zucker J.-D.,
J’ai dansé avec machine ou comment repenser les rapports
entre l’homme et son environnement, in JFIADSMA’2002,
pp.147-150, Hermès Science, 2002.

[14] Larsen K. G., Pettersson P., Yi W., UPPAAL in a Nutshell,
in Springer International Journal of Software Tools for Tech-
nology Transfer, 1(1-2), pp. 134-152, 1998.

[15] Occello M., Demazeau Y., Baeijs C., Designing Organized
Agents for Cooperation with Real-Time Constraints, in
CRW’98, pp. 25-37, Springer-Verlag, 1998.

[16] Marc F., Degirmanciyan-Cartault I., El Fallah-Seghrouchni
A., Modélisation et synchronisation de plans multi-agents
contraints, application aux missions aériennes, in JFSMA
2003, pp. 143-157, Hermès-Lavoisier, Paris, 2003.

[17] Musliner D. J., Durfee E. H., Shin K. G., CIRCA: A Coop-
erative Intelligent Real-Time Control Architecture, in IEEE
TSMC, 23(6), pp. 1561-1574, 1993.

[18] Musliner D. J., Goldman R. P., Krebsbach K. D., Delib-
eration Scheduling Strategies for Adaptive Mission Plan-
ning in Real-Time Environments, in Proc. Third In-
ternational Workshop on Self Adaptive Software, 2003,
http://www.cs.umd.edu/users/musliner/papers/safer03.ps.gz.

[19] Manna Z., Pnueli A., The Temporal Logic of Reactive and
Concurrent Systems: Specification, Springer-Verlag, 1991.

[20] Soler J., Julian V., Rebollo M., Carrascosa C., Botti V.,
Towards a Real-Time Multi-Agent System Architecture, in
COAS, AAMAS’2002, 2002.

[21] Ward P., Mellor S., Structured Development for Real-Time
Systems, Prentice-Hall, 1985.

[22] Wolfe V. F., DiPippo L. C., Cooper G., Johnston R., Kortman
P., Thuraisingham B., Real-Time CORBA, in IEEE TPDS,
Vol. 11, no. 10, 2000.

