
Validation of an Agent Based System Using Petri Nets

Thomas Moncion, Guillaume Hutzler

Lab. de Méthodes Informatiques

Université d’Evry Val d’Essonne

Evry France

{tmoncion,hutzler}@lami.univ-evry.fr

Patrick Amar

Lab. de Recherche en Informatique

Université Paris Sud

Orsay France

pa@lri.fr

Abstract

Hsim is an agent-based simulator that al-
low the modelling of any kind of macro-
molecules interactions in a 3D virtual cell
using a description language. Theses models
which describe reactions between the various
molecules are written by the user of the sim-
ulator. Our aim is to verify the validity of
the user’s model and to exhibit properties of
the model without needing to run a simula-
tion. To this end, we construct a Petri Net
to determine all the possible macromolecular
assemblies.

1 Introduction

Agent-Based Simulation (ABS) enables the modelling
and simulation of complex systems, in which lots of
entities evolve in a common environment and interact
with each other. In this framework, each individual
entity of the real system is modelled as an agent whose
behaviour captures the evolution of the real entity.
When placed in a simulated environment, the agents
reproduce together the behaviour of the whole sys-
tem. Lots of complex systems, either natural (physi-
cal, chemical, biological, ethological, etc.) or human
(economical, sociological, linguistic, etc.) can be mod-
elled and simulated using this technique. As an exam-
ple, the Hsim simulator [Amar et al., 2004] has been
designed for the simulation of a virtual cell in which
molecules diffuse and interact with each other accord-
ing to specified chemical reactions.

The validation of the simulator is difficult because
choices made with respect to the representation of
space (continuous or discrete, rectangular or hexag-
onal geometry, etc.) or time (continuous or discrete,
time step, scheduling of agents, etc.) can greatly in-
fluence the corresponding results when applied to a
given model. In addition, one has to make sure that
the semantics of the modelling language is correctly
implemented by the simulator. The validation of the
model is also difficult because it generally grasps lots
of different entities (chemical species in the case of
Hsim) and lots of rules describing the behaviour and
the interactions of these entities (chemical reactions
in the case of Hsim). To validate such models in the

Hsim simulator, it is first important to make sure that
the reaction rules included in the model exactly corre-
spond to the prior knowledge about the real system.
No two reactions should be incompatible (two given
species can react with each other in only one way),
and no reaction should have been forgotten or incor-
rectly added.

The aim of the work that we describe in this article
is to provide a precise methodology and the corre-
sponding tools to validate beforehand (without run-
ning the simulation) some aspects of an agent-based
model and simulator. Our approach consists in trans-
posing the model in an abstract framework where spa-
tial and temporal constraints no longer apply and
to fire the reactions virtually to see which complex
molecules may be generated by the simulation. As
soon as reactions apply, we build a bipartite graph
in which places represent the complex molecules that
are created and transitions represent the correspond-
ing reactions. The Petri Net semantics and algebra
can thus be used to analyse such graphs, which allows
to check given properties about the system and its dy-
namics. Producing or consuming places can be iden-
tified and invariants can be checked on sets of places.

We applied our approach to the biological example
of an enzymatic cascade, in which a substrate suc-
cessively participates in several reactions catalysed by
different enzymes. In addition, the enzymes can form
complexes by reacting together in predefined condi-
tions. Such cascades can be found for example in
the glycolysis, which leads to the production of ATP
from glucose. By generating the graph of all possible
molecules, we identified some of them that should not
have been created. After having checked the rules that
allowed the production of such “chimera”, it appeared
that it was due to an incoherence in the simulator,
in the application of the rules. Once the simulator
patched to eliminate these incoherence, we were able
to generate the correct bipartite graph, and analyse
which of the molecules were consumed, produced, or
preserved by the cascade, thus verifying the biological
and chemical knowledge about the global reaction.

In section 2, we present the functioning of the Hsim
simulator and the corresponding multi-agent model.
We detail in section 3 the construction of the bipartite
graph of molecules and reactions. In section 4, we

explain how the Petri nets semantics allows to analyse
such a graph. We finally discuss the potential of the
method and conclude in section 5.

2 Multi-agent model

To describe the movement and the association and dis-
sociation phenomena within a cell, a simulation pro-
gram has been developed. This simulator, written in
C++ and OpenGL, uses a modelling language allow-
ing to describe the molecules involved, the biochem-
icals reactions and the initial conditions. The pro-
gram simulates a virtual cell as a three dimensional
space surrounded by a membrane. When the simula-
tion begins, the molecules diffuse and interact accord-
ing to the reaction rules defined with the dedicated
modelling language.

2.1 Simulator description

A step of simulation (called a generation) is done by
applying the following process:

• Choose the source molecule S (randomly, in order
to avoid artefacts).

• Check if close enough to S, in a location randomly
chosen L, there is another molecule T, the target.

• If so, and if a reaction rule is given between a
molecule of the type of S and a molecule of the
type of T, this rule is applied, according to a prob-
ability representing the reaction kinetics.

• Else, molecule S may move to the empty location
L, according to a probability representing the dif-
fusion speed.

When all the molecules involved in the simulation are
processed, the current generation is finished and a new
one can begin. The generation simulated time slice
is set to 100 microseconds, which corresponds to the
average time for a protein to move a distance of 10
nanometres (approximately its diameter).

2.2 Rules and configuration

The simulator is designed to be independent of a par-
ticular model. A language has been developed to de-
scribe the interactions rules which can exist between
the various agents involved in the simulation.

This language describes four possible types of inter-
action between two molecules S and T.

• Reaction: the molecule S reacts with the molecule
T to produce two new molecules S’ and T’.

• Association: the molecule S binds to the molecule
T to form the complex S-T.

• Dissociation: a complex S-T can dissociate and
release the molecules S and T

• Catalysis: a complex S-T can be transformed into
another complex S’-T’

The association and dissociation rules can also
change the molecule type of the products. Each rule is
assigned an execution probability which corresponds,
in the long-range, to the kinetic of the reaction. The

maximum number of bonds between each type of
molecules can also be set.

The first section of the configuration file describes
the molecules involved in the simulation:

molecule A, B, C, D;

The second section specifies the diffusion speed for
each molecule.

speed(A) = 0.0;

speed(B) = 1.0;

speed(C) = 0.0;

speed(D) = 0.2;

In this example, only molecules B and D can diffuse.
Molecules A and C do not diffuse.

The third section specifies the reaction rules be-
tween molecules. We can have:

• Association rules

A + B -> A(1)* B(1) [0.6];

This rule means that when a molecule of type
A is close enough to a molecule of type B, they
form the complex A-B with probability 0.6. The
numbers between brackets in the right part of the
rule mean that molecule A (respectively B) can-
not bind to more than one molecule B (respec-
tively A).

It is also possible to restrict the scope of a reaction
to already bound (or unbound) molecules. We
can take again the reaction of the previous exam-
ple and trigger the reaction only if the molecule
of type A is already bound to a molecule of type
C, and if the molecule of type B is not bound to
a molecule of type D.

{C}A + {~D}B -> A(1)* B(1) [0.6]

• Dissociation rules

{~C}A * B -> A + B [0.01]

This rule means that the binding of molecule B to
molecule A can be cleaved with probability 0.01
(only if the molecule of type A is not also bound
to a molecule of type C).

• Reaction rules

A + B -> C + D [0.5]

This rule shows that two molecules of type A and
type B can react, the molecule of type A being
transformed to a molecule of type C (resp. the B
being transformed to a D).

• Catalysis rules

A * B -> C * B [0.9]

This rule shows that a complex of type A-B can
be transformed to a complex of type C-B with
proba-bility 0.9.

With this set of rules, it is thus possible to simulate
the formation of molecular assemblies in a cell.

The last part of the configuration file specifies the
initial population for each species (the number of

copies of each type of molecules and their localisation
in the cell).

surface (A, 6);

cube (1,4,3,4,B);

cube (6,5,0,2,C);

cube (2,11,4,5,D);

The first line means that 36 copies of molecules of type
A are located in the membrane. In the other lines, the
first three numbers specify the coordinates x, y, z of a
cube containing the molecules. The fourth number
gives the size of the edge of the cube. In the second
line, the number 4 indicates that we have 43 = 64
copies of molecules of type B.

3 Determination of the whole

structure

Since there is a language describing the biochemical
reactions between the molecules, we can compute the
complete set of all the assemblies that can possibly be
made. For this purpose, we have designed an algo-
rithm to build a Petri net in which the places repre-
sent the different molecular species (single molecules
and assemblies) and the transitions represent the bio-
chemical reactions.

3.1 Construction algorithm

Let G(P, T, A, M0) a Petri net where P is a set of
places, each one uniquely labelled by an assembly Si:
P = {pS1

1 , . . . , pSi

i , . . . , pSt

t }. The elements of the set
P will be ordered, it will be seen as an ordered vector
of places. T is the set of the transitions of the net, T =
{tr1, . . . t

r
j , . . . t

r
u} where each transition is labelled by

a reaction r ∈ R, R being the set of all the reactions.
Finally, A, the set of arcs, is splitted in two subsets,
the arcs from the places to the transitions: A− and
the arcs from the transitions to the places: A+. So we
have A = A− ∪ A+ with A− = {(pi, tj)} and A+ =
{(tj , pi)}. In this section we do not consider the initial
marking M0; its use will be seen in section 4.1.

The assemblies Si are represented as a graph (X, L)
with X = {x1, . . . , xj , . . . , xn} where the xj repre-
sent the single molecules and L = {(xl, xm)} rep-
resent the bindings between the molecules. The set
R = {r1, . . . , rk, . . . , rp} is the set of all the reactions,
each reaction being represented by r=[e1]mol1 <op>
[e2]mol2 → res1 <op> res2.

To understand how this algorithm works we will ex-
plain it using a simple example: a cascade of two en-
zymes, e1 which catalyses the transformation of the
initial substract s1 to s2, and e2 which catalyses the
substract s2 giving the final product p3. We will sup-
pose that the whole reaction is channelised by the self
assemblied complex e1 − e2. Here are the rules used
to model this example:
r1: s1 + e1 -> s1(1) * e1(1) [0.6];

r2: {s1}e1 + e2 -> e1(1) * e2(1) [0.9];

r3: {~s1}e1 * e2 -> e1 + e2 [0.0001];

r4: {e1}s1 + {e1}e2 -> s1(1) * e2(1) [1.0];

r5: {e2}e1 * {e2}s1 -> e1 + s2 [1.0];

r6: s2 * e2 -> p3 + e2 [0.9];

The places p1, p2 and p3 which represent the ini-
tially provided single molecules e1, s1 and e2 are in-
serted into the vector P . The initial Petri net is shown
in figure 1 while the final vector P showing the map-
ping between the places and the chemical species is in
figure 5 (at this point of the explanation we consider
only the three first entries). The algorithm will build
step by step both the vector P (the places) and the
set A (the transitions), giving the Petri net.

Figure 1: Initial Petri net.

P={initial places} (provided molecules);
forall i from 1 to |P | do

forall j from 1 to |P | do
forall k from 1 to |R| do

let rk such as
((rk={e1}xim<op>{e2}xjn → . . .∈
R) and (trk 6∈ T) and ((pi, t

rk) 6∈ A)
and ((pj , t

rk) 6∈ A))

Add new places in P :

if 1 product :
p|P |+1 if p|P |+1 6∈ P
if 2 products :
{

p|P |+1 if p|P |+1 6∈ P
p|P |+2 if p|P |+2 6∈ P

Add transition trk

|T |+1

Add new edges in A−:

if pi = pj :
(pi, t

rk

|T |+1
)

if pi 6= pj :
{

(pi, t
rk

|T |+1
)

(pj , t
rk

|T |+1
)

Add new edges in A+:

if 1 product :
(trk

|T |+1
, p|P |+1)

if 2 products :
{

(trk

|T |+1
, p|P |+1)

(trk

|T |+1
, p|P |+2)

end
end

end

The main process is done by sweeping the vector P
from the first to the last entry. Starting from the
initial set of places, the vector is built by appending
new entries at the end. So let’s consider the first entry
p1 labelled by e1; The reaction r1 can be applied using
the molecule s1 labelling the place p2. This reaction
builds a new complex e1s1, as this is a new molecular
species a new entry p4, labelled by e1s1, is appended
at the end of the vector. The new node tr1

1 is put into
the set of transitions and the corresponding arcs are

added to update the Petri net (cf. figure 2).

Figure 2: First transition of the Petri net

As no other reaction can be applied to the molecular
species labelling the place p1, the algorithm goes to the
next entry of the vector P i.e. p2 labelled by s1. The
only possible reaction with s1 has already been used,
r1 giving the complex e1s1; As both this molecular
species labels an entry in the vector, and this entry
has been created using this same reaction, nothing
more is done.

The process continues with the third entry of the
vector, p3 labelled by e2. The reaction r2 can be ap-
plied to e2 and e1e2 building a new complex e1s1e2,
this complex labelling a new entry p5 in the vector.
As previously, a new node is put into the set of transi-
tions and the corresponding arcs are added to update
the Petri net (cf. figure 3).

Figure 3: Second transition of the Petri net

The process continues with the next entry, the place
p4 labelled by e1s1, which will lead to nothing more as
the only possible reaction, r2 has already been used
with this assembly. Then we go to the next entry,
the place p5 labelled by e1s1e2. At this point, the
only possible reaction is r4 which applies inside the
complex e1s1e2 leading to a third binding, between
s1 and e2, and thus to a new place p6 and a new
transition tr4

3 .

Figure 4: Final Petri net. The chemical species are
shown in figure 5.

This algorithm continues until the last entry in the

vector P has been processed, the Petri net being in-
crementally built (cf. figure 4).

One can notice that at each step of the process,
all the possible reactions between every molecule of
the current assembly and every molecule belonging to
all the assemblies already exhibited are considered, so
we are certain to avoid missing any product at all.
Of course this version of the algorithm finishes only
if the chemical species made are in a finite number.
This assumption is clearly true when no recursive rule
is present in the model.

By simply observing the final Petri net, we can no-
tice that the place p2, labelled by the molecule s1, has
only outgoing arcs while the place p9, labelled by the
molecule p3, has only incoming arcs. This shows that
the molecules of type s1 are consumed (and can only
be consumed) while molecules of type p3 are produced
(and only produced) by the whole system.

P1 P2 P3 P4 P5

P6 P7 P8 P9 P10

P11

Figure 5: Vector of the places Pi of the Petri net and
the corresponding chemical species.

3.2 Detection of errors in the simulator

The construction of such Petri nets from the reactions
provided by the modeller has shown the possible pro-
duction of “chimeras” generated by the first version
of Hsim program.

This was due to a bug in the simulation program:
the maximum number of bonds between each type of
molecules was not correctly checked. Obviously the
current version of the simulator has no longer this bug!

4 Properties of the network of

biochemical reactions

4.1 Petri Nets

Definition

A Petri Net (PN) is a bipartite directed graph repre-
sented by G(P, T, A, M0) where:

• P = {p1, p2, p3, . . . , pl} is a finite set of places,
which are represented by circles. In our case,
these places correspond to the resources of the
system. A place can thus contain several tokens.

• T = {t1, t2, t3, . . . , tm} is a finite set of transi-
tions, which are represented by rectangles. A
transition corresponds to an event of the system.

Figure 6: Petri Net with 2 places p1, p2 and 3 transi-
tions t1, t2, t3. Initial marking M0 is [2, 3]

• A = {a1, a2, a3, . . . , an} is a finite set of directed
edges where A = {A− = P × T 7→ N} ∪ {A+ =
T × P 7→ N} corresponding to the set of directed
edges from places to transitions or from transi-
tions to places.

• M0 = {m(p1), m(p2), . . . , m(pl)} is an initial
marking. This marking specifies the number of
tokens in each place for the initial state of the
system.

In a Petri net, if an edge is directed from place p
to transition t, we say that p is an input place for
transition t. An output place is defined similarly. If
every input place for a transition t has at least one
token, we say that t is enabled. A firing of an enabled
transition removes one token from each input place
and adds one token to each output place.

Matrix representation

It is possible to build a matrix representation of a Petri
net. We consider two applications Pre and Post such
as:

- Pre = P × T 7→ N is the pre-incidence appli-
cation, where Pre(pi, tj) is the weight of edge
(pi, tj). Pre(pi, tj) > 0 if the edge exists,
Pre(pi, tj) = 0 otherwise.

- Post = T × P 7→ N is the post-incidence
application, where Post(pi, tj) is the weight of
edge (tj , pi). Post(pi, tj) > 0 if the edge exists ,
Post(pi, tj) = 0 otherwise.

If we take the example of the network of figure 6,
we have the two following matrixes Pre et Post:

Pre =
t1 t2 t3

p1 2 1 0
p2 0 6 4

Post =
t1 t2 t3

p1 5 0 1
p2 7 3 0

We then have a matrix C which we call the incidence
matrix, which is defined as follows:

C = Post − Pre

If s is a firing sequence associated with a firing vec-
tor s̄, where each element of s̄ is the number of times
the corresponding transition fires in the sequence s,
the marking M ′ reached from the initial marking M
after the firing of s is given by:

M ′ = M + C.s̄

where C is the incidence matrix

4.2 Properties of the Petri Net

In this section we focus on the properties of the Petri
net obtained in section 3.1. As we have already no-
ticed in section 3.1 the observation of this network im-
mediately shows that some structures can only be pro-
duced (no outgoing edges) or consumed (no incoming
edges). This simple observation however is not suffi-
cient, which justifies the formal study of the properties
of the PN so as to:

- confirm the validity of a model;

- show the principal properties of the reaction net-
work;

- study the dynamics of the system.

Several works [Voss et al., 2003] [Zevedel-Oancea and
Shuster, 2003] show the interest of this type of study
within the framework of metabolic networks.

P-invariants

P-invariants are vectors of places, which we note y.
The multiplication of the transpose of y with any
marking is identical to the multiplication with the ini-
tial marking:

yT .M = yT .M0

Vector y thus describes a conservation relation of
markings. By taking into account this conservation
relation, it comes:

yT .C = 0

where C is the incidence matrix. These relations
imply that, for any two place invariants that we note
I1 and I2, we have:

I1 + I2 = const =⇒ c1I1 + c2I2 = const

where c1 and c2 are natural integer.

The essential property of P-invariants is that the
weighted sum of the tokens associated to the vector is
constant whatever the evolution of the PN.

If we come back to the example of the PN shown
in section 3.1, it is then possible to show that all the
places containing either e1 or e2 are invariants. Trans-
lated into biological vocabulary, this means that what-
ever the evolution of the system, the enzymes will
never be consumed. If we hadn’t detected these P-
invariants for the enzymes e1 and e2, this would have
been the sign of a problem in the model.

Dynamics of the Petri net

The study of the dynamics of the PN corresponds to
the observation of the evolution of the tokens in this
PN. This allows to:

- determine the molecules that are produced and
consumed;

- observe the consequences in the evolution of the
system when some resources are suddenly miss-
ing.

Let’s take the example of the PN of section 3.1 with
the initial marking M0 = {m(p1) = 1, m(p2) =
4, m(p3) = 1}. The study of the evolution of the PN

shows us that at the end (i.e. when no more transi-
tions are enabled), all the tokens initially present in
p2 can be found in p9, with one token left in each of
places p1 and p3.

By considering the simple case where M0 =
{m(p1) = 1, m(p2) = 4, m(p3) = 0}, the evolution
of the system will stop at the level of p4. Indeed, the
lack of the enzyme e2 prevents the production of p3.

5 Discussion

The Hsim simulator is not dedicated to specific types
of macromolecular assemblies. On the contrary, it’s a
multi-purpose simulation kernel that enables the mod-
elling and simulation of any type of macromolecular
assemblies, provided that they can be described as
the result of elementary biochemical reactions between
molecules.

We demonstrated in this work that, even if the main
interest of agent-based modelling lies in the simulation
of emerging spatio-temporal structures, it still may be
useful to develop validation tools that allow to explore
some properties of models without even running the
corresponding simulations. On the one hand, it is nec-
essary to verify that the semantics of the modelling
language is correctly implemented by the simulator.
On the other hand, it is necessary to check the valid-
ity of a model defined by the modeller. We proposed a
method based on the construction of bipartite graphs
of macromolecular assemblies and reactions, and on
the use of Petri nets algebra to make a number of ver-
ifications. This allowed to exhibit a problem in the fir-
ing of the reactions by the simulator, which has since
been corrected. This also enabled to verify that well
known properties of a given system may be verified
(conservation of enzymes for example).

In the example shown in the article, the biological
properties that we exhibited were simple and could
have been noticed by the simple observation of the re-
action network. As the number of reactions increases
however, the number of possible structures can be-
come very important. It then rapidly becomes im-
possible to study visually the properties of the model,
which justifies the automated techniques that we pro-
posed.

However, a restriction of our method is that the
construction algorithm only terminates if assemblies
produced by the model are of limited size. When we
take potentially infinite structures like polymers, this
method is not valid any more. Further investigations
are then necessary to identify potential recursivities in
the reaction networks, either by a preliminary study
of the reactions or by the identification of similar sub-
parts in the graph.

In addition, our method has proven to be useful for
the validation of models but it may also be useful to
characterise the dynamics of agent-based models and
automatically identify emergent phenomena such as
spatial and temporal structures. The first step would
be to automatically identify, in the Petri net, such in-
teresting properties as P-invariants, loops, consumed
or produced assemblies etc. In our example, we de-

fined the P-invariant that we wanted to verify (cor-
responding to the knowledge that enzymes are not
transformed by a reaction). It would be best if such
P-invariants could be found automatically by the val-
idation tool, which would enable the modeller to see
directly all the invariants in his or her model. The
second step would then be to identify, in the reac-
tion network, subnetworks that may be considered as
higher-level structures in the simulation. To be able
to take into account such higher-level structures, it is
necessary to extend the modelling language so as to
allow the definition of reactions between structures at
different levels. It will also be necessary to study the
behaviour of these higher-level structures in the dy-
namic context of the simulation, so as to reintegrate
space and time factors in the characterization of their
behaviour. By integrating our validation tool in the
simulator, the long-term objective is thus to enable
the dynamic characterization of emergent structures,
which may lead to the dynamic design of multi-level
agent-based models and simulations.

References

[Amar et al., 2004] Patrick Amar, Gilles Bernot, and
Victor Norris. Hsim: a simulation programme to
study large assemblies of proteins. Journal of Bio-
logical Physics and Chemistry, 4:79–84, 2004.

[Voss et al., 2003] K. Voss, M. Heiner, and I. Koch.
Steady state analysis of metabolic pathways using
petri nets. In silico Biology, 2003.

[Zevedel-Oancea and Shuster, 2003] I. Zevedel-
Oancea and S. Shuster. Topological analysis of
metabolic networks based on petri net theory. In
silico Biology, 2003.

