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The issue
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- Is 1t the same object? (1somorphism)
- Is 1t a part of the same object? (subisomorphism)
- Can we forget about all the background? (open graph)

The correct (sub)isomorphism

Normalising a graph G:

- eliminate all invisible nodes and edges
(bridges)

- duplicate all vertices invisible from two sides
(hinges)

The resulting graph 1s called 1irreducible and

denoted by N(G).

Two 1rreducible graphs G=(X E,F,V,e) and

G'=(X"E"F'V'e') are 1somorphic 1f there 1s

a byjection: X — X' which respects the

vertices, faces, visible faces and the external

face. Two graphs G and G'are equivalent 1f

N(G) = N(G").

before normalisation
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These two graphs are 1somorphic.
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These two plane graphs
are not (plane graph-)isomorphic.
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These two plane graphs are (plane graph-)isomorphic.

The objects

the external face
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a visible face

the 1irreducible form

G=(X,E,F,V,e) 1s a subgraph of G'=(X"E" F' V' e’) if there exists a graph

G"=(X"E'F'V"e") with V"' C V'and G = N(G").

There exists a subisomorphism between G and G'1f G 1s a subgraph of G'.

Theorems

- Plane 1somorphism € P for irreducible connected open plane graphs.

- Equivalence € P for face-connected open plane graphs.

- Subisomorphism € P for irreducible connected open plane graphs.

Proof
In the above cases, the graphs can be transformed 1nto

combinatorial maps and we can use techniques from [GbR09].
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An open plane graph 1s composed of:
- a set of vertices X

-asetof edges £ C X

- a set of faces FF C X*

- a set of visible faces V' C F

- an external face e € F

An open plane graph 1s face-connected

if between any two faces, there 1s a path
of faces (in such a path, two consecutive
faces are separated by one or more edges).

Experiments

Finding patterns
in thumbnail 1mages.

Delaunay triangulation
of the interest points

Combinatorial map
obtained by segmentation

S17¢ sub- 1 10% nodes || 33% nodes || 50% nodes
graph

graph vi2 |map || vi2 |map || vi2 |[map

5000 0.04]0.10(] 0.7 {0.02]| 10.4 [0.10

10000 2.5410.07(| 7.31(0.06| 12.7 |0.06

50000 156.5| 0.31(]>3600| 0.31([>3600] 0.31

Comparison of scale-up properties of subgraph and
submap 1somorphism algorithms. Time 1n seconds.

A full description of the experiments can
be found in the paper from [ GbRO9].
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