

A Polynomial Algorithm for Subisomorphism of Open Plane Graphs

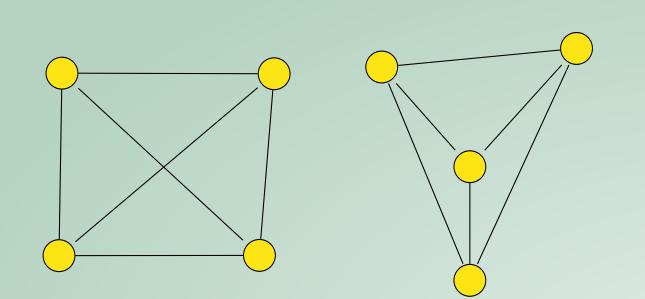
Guillaume Damiand¹, Colin de la Higuera², Jean-Christophe Janodet², Émilie Samuel² and Christine Solnon¹

1{guillaume.damiand,christine.solnon}@liris.cnrs.fr ²{cdlh, janodet, emilie.samuel}@univ-st-etienne.fr

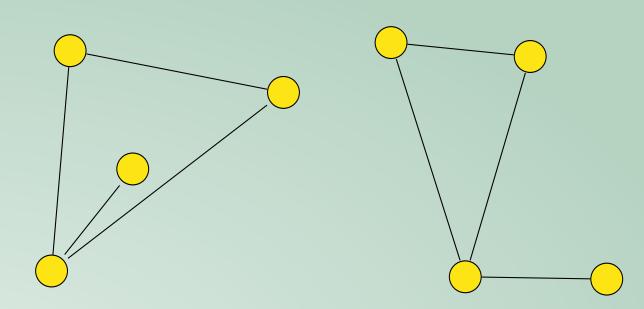
University of Lyon, LaHC & LIRIS, 18 r du Pr Benoît Lauras, F-42000 St-Étienne, France

The issue

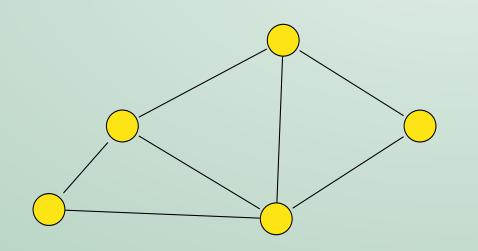
- Is it the same object? (isomorphism)
- Is it a part of the same object? (subisomorphism)
- Can we forget about all the background? (open graph)

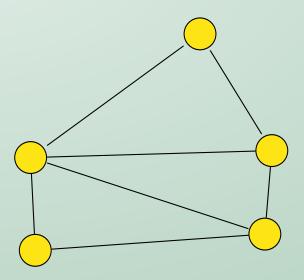


These two graphs are isomorphic.



These two plane graphs are not (plane graph-)isomorphic.





These two plane graphs are (plane graph-)isomorphic.

The correct (sub)isomorphism

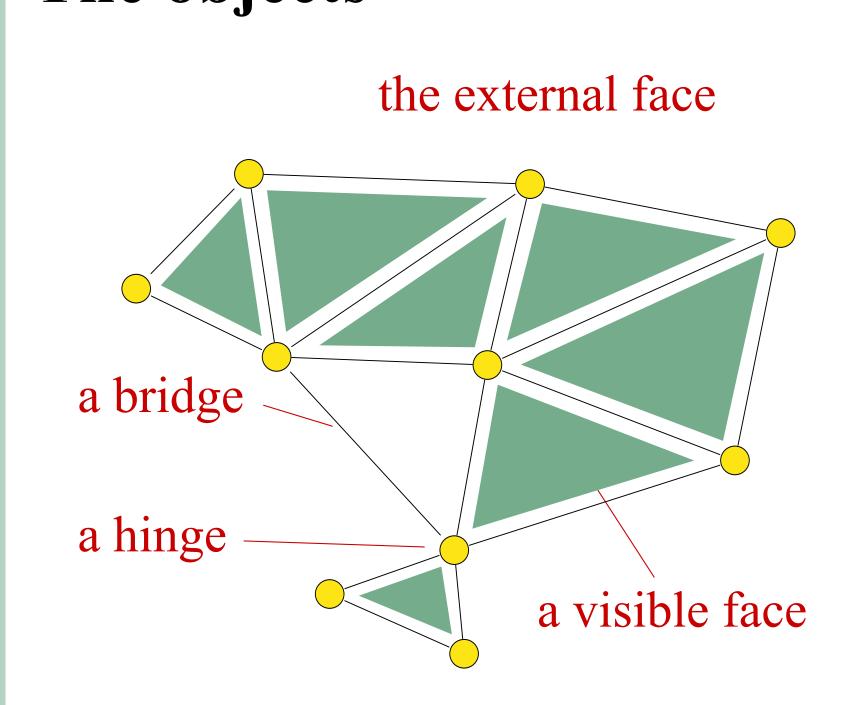
Normalising a graph *G*:

- eliminate all invisible nodes and edges (bridges)
- duplicate all vertices invisible from two sides (hinges)

The resulting graph is called irreducible and denoted by N(G).

Two irreducible graphs G=(X,E,F,V,e) and G'=(X',E',F',V',e') are isomorphic if there is a bijection: $X \rightarrow X'$ which respects the vertices, faces, visible faces and the external face. Two graphs G and G' are equivalent if $N(G) \equiv N(G')$.

The objects

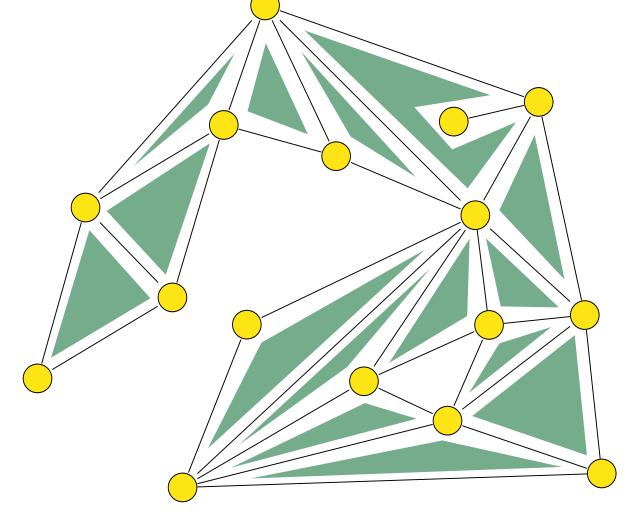


An open plane graph is composed of:

- a set of vertices X
- a set of edges $E \subset X^2$
- a set of faces $F \subset X^*$
- a set of visible faces $V \subset F$
- an external face $e \in F$

An open plane graph is face-connected if between any two faces, there is a path of faces (in such a path, two consecutive faces are separated by one or more edges).

before normalisation



the irreducible form

G=(X,E,F,V,e) is a subgraph of G'=(X',E',F',V',e') if there exists a graph G''=(X',E',F',V'',e') with $V''\subseteq V'$ and $G\equiv N(G'')$.

There exists a subisomorphism between G and G' if G is a subgraph of G'.

Theorems

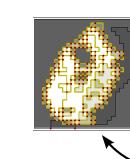
- Plane isomorphism \in P for irreducible connected open plane graphs.
- Equivalence ∈ P for face-connected open plane graphs.
- Subisomorphism \in P for irreducible connected open plane graphs.

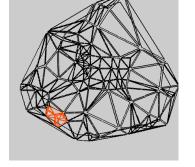
Proof

In the above cases, the graphs can be transformed into combinatorial maps and we can use techniques from [GbR09].

Experiments

Finding patterns in thumbnail images.





Combinatorial map obtained by segmentation

Delaunay triangulation of the interest points

size sub-	10% nodes		33% nodes		50% nodes	
graph	vf2	map	vf2	map	vf2	map
5000	0.04	0.10	0.7	0.02	10.4	0.10
10000	2.54	0.07	7.31	0.06	12.7	0.06
50000	156.5	0.31	>3600	0.31	>3600	0.31

Comparison of scale-up properties of subgraph and submap isomorphism algorithms. Time in seconds.

A full description of the experiments can be found in the paper from [GbR09].

References

[GbR09] G. Damiand, C. de la Higuera, J.-C. Janodet, É. Samuel and C. Solnon. A Polynomial Algorithm for Submap Isomorphism: Application to Searching Patterns in Images. GbRPR 09, *LNCS* 5534, pp.102-112 (2009)

[Cor04] L. P. Cordella, P. Foggia, C. Sansone, M. Vento. A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10): 1367-1372 (2004)