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Abstract In this chapter, we deal with the problem of mesh conversion for coupling
lagrangian and eulerian simulation codes. More specifically, we focus on hexahedral
meshes, which are known as pretty difficult to generate and handle. Starting from an
eulerian hexahedral mesh, i.e. a hexahedral mesh where each cell contains several
materials, we provide a full-automatic process that generates a lagrangian hexahedral
mesh, i.e. a hexahedral mesh where each cell contains a single material. This process
is simulation-driven in the meaning that the we guarantee that the generated mesh
can be used by a simulation code (minimal quality for individual cells), and we try
and preserve the volume and location of each material as best as possible. In other
words, the obtained lagrangian mesh fits the input eulerian mesh with high-fidelity.
To do it, we interleave several advanced meshing treatments — mesh smoothing, mesh
refinement, sheet insertion, discrete material reconstruction, discrepancy computa-
tion, in a fully integrated pipeline. Our solution is evaluated on 2D and 3D examples
representative of CFD simulation (Computational Fluid Dynamics).
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1 Introduction

Many numerical simulation codes require to discretize a study domain Q by a
mesh that partitions Q into a set of basic connected elements, called cells, that will
carry physical data (pressure, temperature, material description, etc.). Cells define a
support to apply traditional numerical methods, like Finite Element Methods (FEM)
or Finite Volumes Methods (FVM), which rely on basic functions that are defined
onto finite elements or finite volumes. Depending on the numerical methods, many
types of meshes can be used and they can differ in the way they match simulation
materials. Let us consider a study domain made of two materials A and B that
are in movement, and depicted in various ways on Figure 1. The first line shows
the “physical” evolution where A and B are respectively colored in blue and red.
Materials are moving accordingly to the effect of a simulated physical phenomenon,
leading to an expansion of A that tries to fill the whole domain, while B is contracted.
Meshes are shown on the three remaining lines. At the initial time, the meshes are
identical: a pure quadrilateral mesh, that is a mesh where each 2D cell is a quad and
contains a single material (A or B). Three approaches are then possible:

¢ Euler. On the second line, the mesh remains fixed while the materials move
through cell boundaries; when several materials are present inside one cell, the
cell is called mixed and we denote such a mesh as being eulerian. In this case the
interface between A and B is lost.

¢ Lagrange. On the third line, the mesh moves at the same speed as materials do.
Cells remain pure during the whole simulation but their geometry can drastically
change. We note such a mesh as lagrangian, and the interface between A and B
is totally defined by a set of mesh nodes and edges.

e ALE. Eventually, on the fourth line, the mesh moves but not at the same speed
as materials do. Cells can become mixed but their geometry remains controlled
by the simulation code. We qualify such a mesh as being ALE, for Arbitrary
Lagrangian-Eulerian.

Euler
Lagrange

ALE

1rIIII

time

Fig.1 A 2D domain made of two materials (top) discretized in eulerian, lagrangian and ALE ways.
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Conversion of data between simulation codes are usual in real-case studies where
different codes are used to solve complex multi-physics problems. It can be done in
many manners going from loosely-coupled codes, where codes are assembled in a
pipeline and communicate by reading and writing files, to tightly-coupled codes, that
are interleaved in a simulation loop and share in-memory data. We focus in this work
on loosely-coupled codes. As each code has its own input and output requirements,
an intercode tool is required to convert the output of one code into the input of the
next one. In the case of converting the output of an eulerian code into the input of a
lagrangian code, this task is not trivial at all, especially when we aim to generate full
hexahedral lagrangian meshes (see Figure 2). Eulerian meshes are in most cases easy
to generate. They are typically a grid, where mixed cells are specified by the volume
fractions of the materials they contain. Some of those eulerian codes have Adaptive
Mesh Refinement (AMR) capabilities, meaning that, usually by use of an octree-
like data structure, the mesh is locally refined or coarsened to respectively track a
phenomenon of interest or to reduce the execution time and the memory footprint of
the simulation'. On the opposite, in the case of lagrangian codes, quadrilateral and
hexahedral meshes are quite more challenging to generate especially in 3D.

concrete;

Fig.2 A 3D Example of what we want to achieve after having run the simulation code Gridfluid [14]
with water being poured against a concrete pillar. On the left, our input, a grid mesh carrying the
volume fractions of respectively the water, the concrete pillar and the air. On the right the output
lagrangian mesh where we only display the the water and the concrete. The air is also discretized by
a pure hexahedral mesh but not shown here for a sake of clarity. Obtained mesh quality is controlled
for the three materials (water, concrete, air).

This issue is not directly handled by many research works that try either to create
volume-preserving material interfaces without satisfying some meshing constraints,
or to generate a full hexahedral mesh without preserving material volumes. First are
the interface reconstruction methods [22]. These methods take an eulerian mesh as
an input and reconstruct the interfaces between materials inside each cell; they are

' We do not consider AMR meshes in this work.
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classically used in ALE simulation codes and in associated scientific visualization
software [9, 2]. While the volume fractions preservation is actually enforced by
design, a limitation of those methods is that the obtained interfaces do not fit our
purpose, as they are jagged, not continuous and potentially with small slivers of
materials. It seems impossible to use such interfaces for projecting mesh nodes
associated to those surfaces without any significant modification, which would in turn
render the volume preservation property null and void. Secondly figure among the
variety of hexahedral meshing techniques the overlay-grid methods [30], or octree-
based isocontouring methods [34], where a shape — an explicit geometrical CAD
model for instance — that needs to be meshed is embedded into a mesh that discretizes
its bounding box. Said mesh will usually be a grid, easy to generate and possibly
locally refined [31]; its cells are assigned to the components of the geometrical
model and those outside discarded, and the mesh is then deformed or a padding
layer of hexahedral cells is inserted in order to capture the geometrical features of
the model. Based on this pioneer idea of embedding a shape into an existing mesh,
several works were proposed during the two past decades to improve the process.
For instance, [34, 37] consider single-material domains and use local refinement
patterns to adapt the mesh around the material interface; sharp features are tried
to be preserved in [18]; multi-material are considered with hybrid meshes mixing
tetrahedral and hexahedral elements in [36]; mesh quality is improved in [29]. We
can also cite geometric flow-based methods that preserve volume for each material
region and that have been approved mathematically and employed in mesh quality
improvement [35, 17]. Contrary to the interfaces reconstruction methods, extracting
a geometrical model from that mesh will give a relatively smooth model with a
clean topology, but as a drawback one does not guarantee to preserve the volume
of materials. There are additional incompatibilities with our aim: first the expected
inputs of those methods are expliclity-defined models, likd CAD ones, not meshes
carrying volume fractions; secondly, most of those methods are designed to mesh
only one component and cannot be used to mesh a CAD model that is the assembly of
several pieces, while we have several materials. Thirdly, those methods heavily rely
on the ability to generate an adequate initial mesh, possibly with local refinements to
offer more robustness, to better capture the CAD or to provide a modicum of volume
preservation [11]. This is again in direct conflict with what we need, as in our case
the input mesh is fixed as part of our input.

In order to get a valid mesh for numerical simulation while preserving materials,
we propose to adopt an overlay-grid approach, that meets our concerns, and more
specifically, we extend the Scurpt algorithm [27, 26], which implements an overlay-
grid approach considering volume fractions data as an input. Starting from a 3D
eulerian mesh Mg with a set of materials M, we aim to generate both an interface
geometrical model G, and a full hexahedral mesh My, such that :

1. G is usable for mesh generation, that is its surfaces are smooth and “cleanly”?
connected along curves and vertices;

2 When three material meet, we need to get a clear curve that is adjacent to the three of them and
not a series of small curves and surfaces that would be adjacent to only a pair of them.
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2. Cells of My fit minimum quality requirements to be used by a FEM or FVM
simulation codes;

3. Every material m € M is preserved as best as possible, in the meaning that the
overall volume of m is similar in Mg and My, and it is located at the same spatial
location.

To do it, we designed a fully-integrated pipeline that interleaves several advanced
meshing treatments — mesh smoothing, mesh refinement, sheet insertion, discrete
material reconstruction, discrepancy computation. In this chapter, we focus on the
generation of the geometrical model G, which is a key component of our pipeline.
It is described in Section 3. Our solution is evaluated on 2D and 3D examples
representative of CFD simulations (Computational Fluid Dynamics) in Section 4.
But beforehand, we give an overview of the full pipeline in Section 2.

2 Eulerian to lagrangian hexahedral remeshing pipeline

In order to generate a lagrangian hexahedral mesh M}, that fits the materials carried
by the input eulerian mesh Mg, we follow the process depicted on Figure 3, where
three main stages are identified:

1. Geometry Extraction. The first stage consists in extracting a valid geometrical
model G while assigning each mixed cell of Mg to a single material. A refinement
stage is interleaved into it when we encounter topologic inconsistency between G
and the pure mesh M}, deduced from M. Figures 4.a to d show such a refinement.

2. Quality-driven mesh projection. Then, the mesh My is modified and its nodes
moved in order to obtain both a minimum cell quality (which is required by
simulation codes) and a mesh that fits the topology of G. Even if what defines a
"good" mesh varies between simulation codes and the cases run, some geometrical
cell quality criteria are common among the simulation codes, which cannot
operate when even one single cell becomes too distorted [20].

3. Discrepancy-driven mesh deformation. Eventually, we apply a smoothing stage
to measure and improve the volume preservation compared to the eulerian mesh
ME they originated from.

In this chapter, we focus on the first stage of this process. But let us give a
few words abouts the second and third stages. The quality-driven mesh projection
strongly relies on three key ingredients: first the existence of the geometrical model
built at stage 1; second, the idea to deform the mesh to fit the geometry but only if the
cell quality meets lagrangian code quality requirements, i.e. material interface nodes
are moved towards the geometrical model but they reach it only if the quality of
adjacent cells is good enough; third, some topological local padding operations are
performed to give more degree of freedoom to nodes that do not reach the expected
location. A full description of this stage can be found in [23].

The discrepancy-driven mesh deformation process is a smoothing stage that aims
to measure and improve the volume preservation compared to the eulerian mesh
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GEOMETRY-DRIVEN MESH REFINEMENT
I I
I I

3.Pixel-driven
refinement

LR ]
GEOMETRIC MODEL DEFINITION

1.2. Compute -
Seometry QUALITY-DRIVEN MESH PROJECTION

2.Check 4. Controlled
topology nodes
consistency movement

1.1. Assign
cells
5. Local

pillowing

DISCREPANCY-DRIVEN MESH DEFORMATION

6. 4. Controlled
Discrepancy nodes
movement

Fig. 3 Main stages of ELG, an Euler to Lagrangian hexahedral remeshing pipeline.

(a) Initial assignment (b) Voxelated geometry (¢) Refined mesh

(d) New assignment (e) node movement (f) Pillowing & smoothing

Fig. 4 Example of input mesh refinement in order to fit the built geometrical model.
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MFE they originated from. This stage is done as a post-process to ensure the overall
constraint, which is to avoid to deviate too much from the input data, namely the
material volume fractions. This constraint is both strong and weak: strong because
as this process is used in a physical simulation pipeline, it is mandatory to preserve
physical quantities as best as possible to get “high-fidelity” results; weak since this
problem is overconstrained and so approximations are unavoidable. Getting both
high-fidelity material preservation and a smooth clean geometrical definition of the
material interfaces is quite difficult in many cases. In order to control the material
preservation, we use the notion of discrepancy as introduced in [24]. Let A and B be
two meshes of a domain Q and M be the set of materials that disjointly fills Q, the
global difference of material volumes between A and B is

AV = AVl = D vin - vE (1)

meM meM

where V4 and V2 are respectively the volume of a material m in meshes A and B.
Minimizing AV only ensures a global volume preservation, which proves not to be
sufficient as it can lead to unexpected results (see Fig. 5). To get a local volume
control, it is mandatory to consider the notion of local discrepancy. Let us consider
the meshes A and B again with A the input mesh and B the output mesh. Let CJA be a

cell of M4 and m be a material of M, we note d /i m the discrepancy of c;.“ relatively
to material m and mesh B and we define it as

djm = d(c',m) = V(e 0 Byw) = fr.mV(c)) )

where V(X) is the volume of any geometric space X, B|,, is the output mesh restricted
to the pure cells of material m and c]‘.“ N B, is the geometrical intersection of c with
the cells of B),,. Let us note that in practice, we compute geometrical intersections
using3 [16]. In order to compare the whole meshes A and B, we finally use the global
discrepancy of a cell c? € A defined as d; = d(c;.‘) = Ymem |d;.ml, and the global
discrepancy of A is defined as d = ), chea d;. The global discrepancy gives us a way
to compare material locations between two meshes both globally and locally to each
cell and so each subpart of Q. In [24], this quantity is used to move node interfaces
in the lagrangian mesh B in order to improve the material preservation. We will use
it in Section 4 to evaluate our solution.

3 Geometry Extraction

Geometry extraction and cell material assignment are performed pairwise in order
to obtain a consistent correspondance between the geometrical model and the mesh.
Cell assigment is performed as the ScurLpt algorithm [32, 27] does. The mesh My,
is first created as a copy of Mg, then cells of Mg are assigned to materials on a

3 The interested reader can directly use the open-source library portage [16] based on R3D [28].
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(b) (c)

Fig. 5 Given a grid mesh with the material volume fractions represented in (a) ranging from 0
in blue to 1 in red, we can see that despite being of the same total volume for each material, the
material mesh (b) fits better the volume fraction grid than (c) does.

majority basis: a cell is assigned to the material of highest volume fraction in the
corresponding input cell in Mg (see Fig. 6). A correction step can be optionnaly
activated to avoid some topological issues for the incoming lagrangian simulation
code (as the inability to handle non-manifold interfaces for instance). When changing
materials, cells are reassigned around each problematic node to the second best (in
the sense that it is closest in termes of volume fractions) correct assignment and
as it could lead to non-manifold configurations appearing in the neighborhood of
changed nodes this phase is executed again.

weors | weom | veoss
we0z1 | w059 | wm0s7
A B B A B B
Va=0.00 Va=0.55 va=0.38
Ve=1.00 vg=0.45 vg=0.62
B A B B B B
w000 | w078 | wm100
w100 | veo21 | w=000
B A A B A A
(a) volume fractions (b) majority assignment (c) assignment correction

Fig. 6 Starting from the volume fractions given in (a), grid cells are assigned to each material in
two stages (b and ¢).

Extracting the geometrical model G raises two main issues: the desired interfaces
have to be smooth, typically when the goal is to visualize them or to use them to
generate a mesh, but at the same time they must also fit the input data as best as
possible, namely the volume fractions; those two objectives can conflict with one
another. To address these issues we consider that several methods are relevant. A
scientific field where material interface reconstruction is extensively studied and
applied is Arbitrary Lagrangian-Eulerian (ALE) CFD simulations. Obtained recon-
structed interfaces have a built-in volume fractions preservation but are not smooth
and discontinuous across cells [22]. Most of these methods also have the additional
drawback of being material order-dependent. In order to visualize material inter-
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faces for eulerian meshes, several approaches relies on a voxel decomposition of the
mixed cells. Each mixed cells is split into sub-elements — typically an hexahedron
will be refined into a grid of voxels — on which a partitioning strategy is applied with
respect to the volume fractions inside each cell. The interfaces at the sub-elements
level are aliased, and since these methods originated from visualization purposes
the interfaces are usually simplified into smooth triangular surfaces. Finally, in the
Sculpt algorithm [27], interface nodes’ locations are computed using the volume
fractions (and their gradient) and the material assignment but it fails to capture at all
the materials that have no majority volume fractions in any of the mesh cells;

Considering that the Sculpt strategy — that we have extensively evaluated — can
become limited in some cases, and that getting smooth surface is of first interest for
our purpose, we propose to rely on a voxel-based approach#.

3.1 Interface reconstruction via voxel assignment

The discrete voxel-based interface reconstruction technique stems from the need to
visualize the location of materials in the case where some of the cells are mixed and
where the number of materials is greater than two. In the case where the number
of materials equals two, classic iso-contouring methods provide a "clean" solution
but with more materials small gaps or artifacts can appear that are non-desirable.
In [15], the authors introduced the decomposition of mixed cells into subcells (or
voxels) which are in turn assigned to the materials present in the mixed cells they
were spawned from; the work in [3, 4] extends it to cases with more than three
materials per cell.

B 50% A
M 35% 8B
1 15% C

(a) (b) (c) (d)

Fig. 7 Example of the voxel-assignment problem and some unexpected valid results.

The voxel-assignment problem can be stated as follows. Considering a coarse mixed
cell ¢ containing materials m € M, with volume fractions denoted f; ,, such that

>, fe.m = 1,and c discretized as a set V,. of n,, voxels, assign one single material m
meM
to each voxel of V. while ensuring material volume preservation. Figure 7 illustrates

4 We can note that as we handle both 2D and 3D cases in structured and unstructured cases,
throughout this chapter we will use the term "voxel" as a misnomer in place of pixel (in 2D),
sub-cell or sub-element.
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such a situation where in (a), a coarse mixed cell, made of 50% of material A, 35%
of material B and 15% of material C, is split into 100 voxels. Results given in
(), (c) and (d) are valid solutions for the voxel-assigment problem, as they all
respect the volume fractions, but they are wildly different from one to the another; it
probably means that our problem could receive some additional description in order
to be appropriately formalized. The voxel-assignment should aim towards several
objectives:

 First, to enforce the volume preservation of each material, we favor solutions
having a low discrepancy, defined as the sum over each coarse cell ¢ of the
absolute difference between the volume of each material present in ¢ (for material
mitis f. ,V(c)) and the sum of the volumes of the voxels of ¢ assigned to m. It
expresses whether the voxels material assignment fits the volume fractions;

¢ Secondly, as usual in partitioning algorithms, we favor connected components for
each material. It translates into minimizing the edgecut function, defined as the
sum of the number of pairs of adjacent voxels assigned to different materials;

 Thirdly, surrounding pure cells of ¢ provides the initialization to our problem. If a
mixed cell is bounded by pure cells, then we extend the voxelization process to the
vicinity of ¢, i.e all the mixed cells and their adjacent pure cells are subdivided into
voxels, and voxels spawned from pure cells are already assigned to the material of
their corresponding pure coarse cell, leaving those spawned from mixed coarse
cells as being “free” (see Fig. 8).

Such a problem can be formally described by the following mixed-integer linear
program (MILP):

min 2 |mav,m_m 2 May |
veV,meM weN(v)

constrained to
may ., € {0,1} Yv,m
> may g, =1 Yv
meM
> may m = nbsub x fo Vm,Vc
veVe

where V is the total set of voxels of the whole domain, ma, , = 1 if voxel v is
assigned to material m and ma, ,, = 0 otherwise; N(v) is the set of voxels adjacent
to v. The first two constraints indicate that every voxel has one assignment and only
one. The third constraint expresses that we want to have a discrepancy equal to
zero (nbsub being the number of voxels in a coarse cell ¢). The objective function
that we want to minimize reflects the aim for voxels assigned to the same material
to be clustered together, i.e. having a low edgecut. Since our variables are integers,
we in fact have a mixed-integer linear problem. This type of problem can be solved
using various solving libraries [12, 6, 1, 13]. But it is in practice too computationaly
expensive to be used in our pipeline. That is why we propose a greedy heuristic that
is designed to fit our specific requirements.
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Fig. 8 Two mixed cells surrounded by pure cells where voxels must be partitioned into materials
(left). Considering adjacent pure cells and the objective of minimizing the number of connex
components for each material could lead to the result shown on the right.

3.1.1 A greedy heuristic to assign voxels

We follow the Algorithm 1 to assign voxels. It iteratively assigns a material value to
free voxels that are surrounded by enough already material-assigned voxels (see the
evolution at several iterations in Figure 9). Some 3D results are shown on Figure 12.
The underlying idea of this algorithm is to assign a material to each voxel following
an advancing-front strategy. We consider a set S of connected mixed cells as a starting
point (orange cells on Figure 9-a). Each cell ¢ € § is split into voxels that we have
to assign to a specific material. The material each voxel will be assigned to depends
on the volume fractions of materials that compose its parent cell in S. For example,
on Figure 9, volume fractions of the central cell are given; the central cell should be
filled by 40% of green and 60% of grey voxels at the end.

In order to assign a material to a voxel v, we consider the materials that are already
assigned in its vicinity (the 8 surrounding pixels in 2D when the case is structured)
and we diffuse those materials into the voxel v. Voxel v is assigned to a material
m if its newly computed volume fraction is higher than a minimum threshold. The
threshold value is iteratively decreased in order to avoid blocking situations where
the algorithm is unable to assign a material to any voxel during an iteration. At the
end of each iteration, the volume fractions to reach for each material in a cell are
updated (see Figure 9-a to e). With this strategy voxels on the boundary of S tend to
be assigned first and we get the expected advancing front assignment.

To evaluate our solution, it was compared on several cases with three other
approaches: the mixed-integer linear program previously given, that provides us an
optimal solution to the problem; simulated annealing as used in [3, 9]; as partitioning
a graph via techniques like graphcut [8, 7, 21]. Comparisons between those four
approaches were fully described in in [23]. Examples of results are given in 2D on
Figure 10. The MILP implementation is impractical, as it does not return a solution
in an acceptable time. For this small example, we stopped the optimization process
after 5 minutes>. Let us note that the result is valid, in the meaning meaning that it
fits the constraints, but not optimal, which is the case in Figure 10-a. The graphcut

5 We use the open-source GLPK software [12].
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Algorithm 1: Voxels assignment greedy heuristic.

Data: volume fraction V F, voxelated mesh
Result: Voxels assignment

threshold « 1.
freeVoxels < allVoxels
fixedVoxels « 0
vf « (VF, freeVoxels)
for freeVoxels # 0 do
/* get the free voxels with a vf higher than the threshold for one material */
fixedVoxelsToAdd « extractVoxelsAbove(freeVoxels, threshold)
fix(fixed VoxelsToAdd)
if fixedVoxelsToAdd # 0 then
| reduce threshold
end
/* update the vf while substracting the voxels already assigned */
vf « update(V F, freeVoxels)
for iter < maxNblter||convergence do
/* kind of a vf smoothing */
vf « average(vf) for voxels where < threshold
normalize(vf’)
end

D= RN - N

e R Y
S R T Y

end

—
°

(d) vf=0.58 , vf=0.43 (€) vf=0.53 , vf=0.47

Fig. 9 A 5x5 example where the evolution of the volume fractions (see Algorithm 1:13) assigned
to the free voxels of the central coarse cell are given below each figure. The wireframe black grid
is the coarse mesh and the voxels colored in orange are those not yet assigned.
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approach tends to return straight interfaces, resulting in a good edgecut, but is quite
bad when considering the discrepancy. That leaves us with the simulated annealing,
which is a little better than our greedy heuristic regarding the edgecut in the case of
a grid, but fares badly concerning the discrepancy in unstructured cases, as shown in
Figure 11. All of those methods have the same memory limitation, as the submesh,
i.e. the set of voxels, can be quite large. In practice, we use our heuristic to build the
voxelated interfaces as it is a good compromise between structured and unstructured
cases and does not rely on tuning parameters depending on the case.

(a) MIP (b) simulated annealing (c¢) graphcut (d) greedy heuristic
d=0, edgecut=592 d=0, edgecut=536 d=2.18, edgecut=440 d=0, edgecut=568

Fig. 10 Comparison of the interfaces reconstruction methods.

(a) d=0.0768 (c) d=0.264 (e) d=0.1344
(b) d=0.024 (d) d=0.1444 (f) d=0.1254

Fig. 11 Greedy heuristic (first column) vs. simulated annealing (second and third columns) on
unstructured cases. Only the highlighted cell is mixed, and respective volume fractions are (0.5,0.5)
on the top case, (0.2,0.%) on the bottom. Two different results (¢ and e), (d and f) are shown for
the simulated annealing method since clusters of voxels can appear due to the randomness of the
initial voxel assignment and the swaps.
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CAD model d=13902.1, e=19317638 d=26057.4, e=18525868

voxels view dmax=8.57 dmax=49.1
greedy heuristic simulated annealing

Fig. 12 Example in a real-life unstructured case. The results show that while our greedy heuristic
(middle) is a little worse edgecut-wise than the simulated annealing (right), it fares better by a factor
of 2 and 5 in terms of discrepancy, the total sum and its cell maximum respectively.

3.1.2 Voxel assignment improvement

Our voxel assignment procedure can produce a few isolated voxels, which leads us
to believe that the edgecut could be improved. Indeed our greedy approach tends to
clump together voxels assigned to the same material but we do not make it mandatory
for a free voxel to be assigned a material one of its neighbors is already assigned to.
We have so devised a correction procedure that spawns from a simple consideration:
as the voxels assignment can be seen as a graph partitioning problem, adjusting
the obtained partitions can be considered a repartitioning problem. We have thus
experimented with two well-known repartitioning algorithms: the Kernighan-Lin and
the Fiduccia-Mattheyes algorithm. Interested readers can find some more up-to-date
references on the subject of graph partitioning in [25, 5].

The Kernighan-Lin [19] graph bi-repartitioning algorithm takes as an input a
graph with its vertices split into two sets and proceeds to improve upon the initial
partitioning by exchanging vertices between the sets, two by two. The algorithm
drives the swaps by determining the sequence of swaps that maximizes the gain®;
incidentally it allows for "bad" moves, or negative gain moves as long as they
are compensated. We modified the traditional implementation to fit some of our
concerns. First we handle more than two partitions and secondly we restrict the
possible exchanges to the swaps between voxels spawned from the same source cell.

Results in Figure 13 show that it is quite effective in reducing the edgecut when
there are isolated assignment artifacts. As the Kernighan-Lin method atomic oper-

6 "gain" in terms of improving the edgecut.
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ation is the swap, it has the exact same issue as the simulated annealing when the
coarse mesh is unstructured and the voxels do not all have the same volume; it will
preserve the number of voxels assigned to each material, and while it may improve
on the edgecut it may lead to an increase of the discrepancy (see Figure 14). In order
to address this issue we applied to our problem the Fiduccia-Mattheyes repartition-
ing algorithm. Unlike the Kernighan-Lin algorithm, the Fiduccia-Mattheyes [10]
method only changes the part to which a vertex is assigned instead of swapping two
vertices at a time. In particular, it means that in the case where the initial partitions
are perfectly balanced the algorithm will need to be allowed some wiggle room, i.e.
the possibility to increase the imbalance between partitions, to be able to operate.
In our problem it translates into our adaptation seen in Algorithm 2 line 6 where a
material change for a voxel will only be considered if it does not degrade too much
the discrepancy of the coarse cell this voxel is issued from. And again, negative gain
moves can be performed, as long as they are compensated afterwards.

(a) e=186 (¢) e=222 (¢) e=568

(b) e=144 (d) e=178 (f) e=532

Fig. 13 KL algorithm (bottom) applied after the greedy heuristic (top)

In Figure 14 is shown the benefits of being able to change the material assign-
ment of the voxels — as is done in the Fiduccia-Mattheyes algorithm — instead of
only proceeding by swapping in unstructured cases. The Kernighan-Lin implemen-
tation greatly reduces the edgecut at the cost of increasing the discrepancy, while
the Fiduccia-Mattheyes manages to reduce both, albeit a little less concerning the
edgecut.
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Algorithm 2: Fiduccia-Mattheyes.

= I R R SR

® 2

9
10
11
12
13
14
15

while gain_cumul > 0 do

matAssign_tmp «— matAssign
compute costs for all vertices /* one cost per material */
free all vertices
while 3 possible material change do
v, m « find best material change /* change has to be allowed under volume
fractions constraints */
store best material change in sequence
lock(v)
matAssign_tmp(v) « m
update costs for v and neighbors
end
gain_cumul « find sequence of material changes with maximal cumulative gain
if gain_cumul > 0 then
| mat Assign < execute material changes

16 end

end

(c) d=0.264, e=84 () d=0.0128, e=86

(a) d=0.048, e=444

(b) d=0.0038, e=276 (d) d=0.1444, e=76 (f) d=0.001, e=96

Fig. 14 Example of re-partitioning applied on two unstructured cases that shows the limits of
only swapping the assignments (Kernighan-Lin) instead of changing the assignment (Fiduccia-
Mattheyes). (a and b) an initial random assignment; (¢ and d) after applying the Kernighan-Lin
algorithm, where we can see that while the edgecut is reduced, the discrepancy increases; (e and
f) after applying the Fiduccia-Mattheyes, which reduces both.
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3.2 Geometrical model definition

Starting from our input mesh carrying volume fractions, we have built a finer submesh
of "voxels" and assigned those to materials; we now get the opportunity to extract
the interfaces between materials from which we can build an explicit geometrical
model. This model can be built at two different levels of discretization (see Figure 15):
either on the fine mesh made of voxels (top row) or on the coarse mesh (bottom row).
By construction, the first one provides high-fidelity to the reconstructed interfaces
and preserves material volumes, while the second one is coarser, making it easier
to handle (smaller memory footprint, easier to visualize and to use for mesh-to-
geometry projection and smoothing). Considering our goal of getting a pure full-
hexahedral mesh starting from an Eulerian mesh, we deciced to build the coarser
model. Moreover, it is a straighforward manner of ensuring to get a clean topology
for the geometrical model G.

(@) ®) (c) (d)

Fig. 15 Example of explicit geometrical models built from a 3 materials case in a 3 x 3 X 3 grid.
(a and b) the voxels assignment and its corresponding geometrical model; (¢ and d) the same after
the assignment of the coarse cells.

Both models (the finest and the coarsest) can be built by first extracting the faces —
the edges in 2D — between cells assigned to different materials (see Figure 15-b and
d), then building a geometrical model G = (S, C,V). Starting from an hexahedral
mesh M = (H,Q,E,N), where H are hexahedral cells, Q are quadrilateral faces, E
are edges and N are nodes, G can be extracted using the following rules:

e A multi-surface of S is a set of faces of O that are adjacent to the same 2 materials.
We get 3 such distinct multi-surfaces in the example on Figure 15;

* A multi-curve of C is defined as a set of edges bounding the quad of a surface
s € S. Considering all the faces forming s, we get the set of edges E; C E that
bounds those faces. This set of edges is then partitioned into multi-curves as
follows: two edges of E are assigned to the same multi-curve if they are adjacent
to the same set of materials assigned to the cells. For instance, let us consider
the green surface on Figure 15-b and d; this surface is bounded by 2 curves:
the first one corresponds to the intersection between the three surfaces — all the
edges are then adjacent to exactly the 3 same materials; the second one is made
of the remaining edges, which are adjacent to only 2 materials and located on the
boundary of the domain — here the bounding box of the input grid;
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* A multi-vertex of V corresponds to all the nodes of N that are adjacent to the
same multi-curves in C, or in other words, to the same set of materials assigned to
the cells of H. Considering the example of Figure 15, the two nodes highlighted
in (d) define a single multi-vertex.

Characterizing entities of the geometrical models using the material assignment of
adjacent cells leads to form multi-entities that are potentially non-connected — in
particular a vertex can have several spatial locations. For our purpose, this definition is
sufficient and we do not further differentiate by splitting those entities into connected
parts. In the example of Figure 15, the geometrical models extracted are both made
of 3 multi-surfaces, 4 multi-curves and 1 multi-vertex with two positions.

(e) 6] (g) (h)

Fig. 16 Illustration of how the finer geometrical model is used as a support to project and smooth
the coarser geometrical model. (¢ and d) the initial models; (e and f') the coarser model is projected
onto the finer one; (g and h) the coarser model is smoothed while being constrained.

Now that we have those two models, we draw the correspondence between them
and adapt the coarser representation by constraining it onto the finer model as seen
in Figure 16. Considering a fine model Gy and a coarse model G, extracted from
compatible data (see Figure 16-a and b), multi-entities of Gy and G. are defined
from the same set of materials and so can be identified and associated through this
material correspondence. In Figure 16, both models are superposed on (¢), (e) and
(g). To adapt G, to fit Gy as best as possible, we first project each node of the coarse
mesh that corresponds to a multi-entity of G, onto the corresponding multi-entity
of Gy (see Figure 16-e and f), then we smooth the node positions while keeping
them projected onto the corresponding multi-entity of Gy (see Figure 16-g and h).
The proposed solution has been widely used on several examples including realistic
data, such as the result of a CFD simulation case that is shown in Figure 17 where
our input is a grid mesh carrying the volume fractions at t = 1sec and ¢ = 2sec of
the simulation.



Intercode hexahedral meshing from Eulerian to Lagrangian simulations 19

Fig. 17 Coarse geometrical model (c) projected and smoothed (d) onto the voxelated one () in
the triple point problem at ¢ = lsec (top) and ¢ = 2sec (bottom).

4 Results

In the previous section, we built an explicit geometrical model G from a finer but
dirty voxel-based geometry representation. We make use of G in our pipeline so as
to avoid situations that can be encountered when working with implicit geometry
representation only. For instance, if one tries to move the nodes towards a location
computed using only the input volume fractions and the cells material assignment in
the eulerian mesh, and considering each node independently and not the interfaces
as a whole; in particular with no care taken for the expected interfaces quality (see
Figure 18-a). It becomes especially relevant in 3D where the mesh entities forming
the interfaces are no longer edges but faces. Moving the nodes to their computed
ideal location can by-design lead to bad quality faces, hence severely limiting nodes
movement during the quality-driven mesh projection. This causes our algorithm to
be stuck with a mesh still fairly stair-shaped (see Figure 18-b). Such a resulting mesh
could be considered satisfactory, quality-wise, still we want the interface nodes to be
located as close as possible to where the material interfaces were determined to be.
Such issues are avoided when working with the coarser model G (see Figures 18-c
and d).

In the remainder of this section, we give results obtained with the implementation
of our pipeline, named ELG, in comparison with our own implementation of the
Scuvrpr algorithm [27, 26], named base algorithm. Experiments were done on 2D
and 3D CFD cases and results are gathered in Table 1. Cell quality is measured by
the minimum scaled jacobian and a minimum threshold of 0.3 is chosen. Let us first
begin with the triplepoint and doublebar problems for which input grids of different
resolutions were available. Taking the triple point case at 1, we can see that for one
grid resolution the base algorithm (where the mesh projection step does not strictly
enforce a minimum quality) returns with a mesh containing no inverted cells (but
still lower than the 0.3 minimum scaled jacobian threshold). That is not the case for
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(@) ®) () (d)

Fig. 18 Motivation of the geometrical model extraction and projection smoothing. (a) close-up of
the expected interface mesh where the marked quad has a low quality of 0.068; (b) the mesh after
our quality-driven mesh projection step; (c) the voxelated interface Gy between the asteroid and
the exterior; (d) the coarse geometrical model G paired to Gy ; it replaces (a) as the expected
positions of the interface nodes and no longer has low quality quads.

the other resolution, making it unreliable. It is unrealistic to ask users to rerun their
simulations with different resolutions at random, assuming it is even feasible, hence
the need for our quality-driven mesh projection method that consistently works.
Our method was applied in 2D on two additional hydrodynamics simulations issued
from [33] (see Figure 19); in all those cases it improves the distance by at least an
order of magnitude.

finnas

(@) b)

Fig. 19 Other examples of hydrodynamics simulations in 2D [33]. (a) and (c) the two cases; (b)
and (d) close-ups on our resulting meshes shown respectively.

The cases from Figure 20 were extruded” and run in 3D. While our method does
indeed result in meshes meeting the quality requirements the ratio of distfy, over
disty; remains much higher than in the purely 2D cases. Fully 3D cases were also
studied, one of which input is a grid where the volume fractions data were computed
by imprinting an asteroid model onto the grid (see the example in Figure 18). Other
examples are eulerian meshes from hydrodynamic simulations run using [14], a ball
of liquid that drops in a box taken at several time steps, a dam that breaks in Figure 21
and a three material case where a liquid is poured onto a concrete pillar in Figure 22.

While the measured distance illustrates the efficiency of our quality-driven mesh
projection step, and the use it makes of the geometric model extraction, it remains a

7 The 3D mesh is created from a 2D quad mesh, lying in the XY plane, by creating successive layers
of hexahedral cells along the Z direction. Volume fractions are simply derived for each hexahedral
cell from their origin quadrilateral cell.
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(a)t = lsec (b)t =2sec
(c)t =0.5sec (d)t = lsec

Fig. 20 Examples of CFD simulations in 2D. (a and b) triple point problem where three fluids
of different densities lead to the formation of a vertex; (¢ and d) double bar problem where three
fluids of different densities are stirred by two rotating blades.

R s & oof

(a) time step 10 (b) time step 20 (c) time step 30 (d) time step 40

Fig. 21 Resulting meshes from our algorithm applied to the dambreak case.

metric that relies on data that we extrapolated from the input mesh Mg and its material
volume fractions. In Table 2, we measure the proximity of My, to Mg at several stages
of our pipeline, using the discrepancy criterion computed by imprinting M7, onto Mg.
In those examples minimal values for the scaled jacobian of 0.2 and 0.15 were chosen
for respectively the quality-driven mesh projection and the discrepancy-driven mesh
deformation steps. Figure 22 shows those results for the in_out_flow case.

5 Conclusion

With the pipeline described in this chapter, we have got the ability to transform
the output of an eulerian simulation code into an acceptable input for a lagrangian
simulation code. This input consists in a mesh, which is full-quad in 2D and full-hex
in 3D. Materials are preserved as best as possible in terms of locality and global
volume using the notion of global discrepancy. We also ensure the strong constraint



22 Nicolas Le Goft, Franck Ledoux and Jean-Christophe Janodet

Table 1 Quality and distance metrics for the examples. dist;,; and distf,q are the sums of the
distance between the interface nodes and their computed destination at respectively the beginning
and the end of the mesh projection phase.

case name minJS minJS distinis distfpal %Z:‘:
base algo ELG

2D

triplepoint 1s 420x180 0.215 0.322 0.0676 0.0071 0.105
triplepoint 1s 518x222 -0.071 0.310 0.0856 0.0061 0.071
triplepoint 2s 420x180 -0.031 0.311 0.165 0.0138 0.084
triplepoint 2s 518x222 0.097 0.308 0.186 0.0163 0.088
doublebar 0.5s 200x100 0.074 0.306 0.5915 0.0163 0.027
doublebar 0.5s 214x107 0.091 0.301 0.5950 0.0121 0.020
doublebar 1s 200x100 -0.177 0.300 0.5768 0.0319 0.055
doublebar 1s 214x107 -0.109 0.301 0.6146 0.0411 0.067
hydro_toro_a -0.104 0.300 116.70 6.0177 0.051
hydro_toro_b -0.994 0.300 1902.3 104.34 0.055
3D

triplepoint 1s 420x180x3 0.067 0.300 34.048 21.587 0.634
triplepoint 2s 420x180x3 -0.157 0.300 74.5847 44.388 0.595
doublebar 0.5s 200x100x3 0.043 0.300 134.47 26.025 0.193
doublebar 1s 200x100x3 -0.159 0.300 122.24 44.576 0.365
asteroid -0.13 0.200 319.874 31.148 0.097
balldrop_10 0.274 41.426 5.5029 0.133
balldrop_15 0.209 35.243 6.3432 0.18
balldrop_20 0.221 35.824 18.149 0.506
balldrop_25 0.200 75.346 39.089 0.519
dambreak_10 0.200 34.444 17.638 0.512
dambreak_20 0.200 51.669 27.745 0.537
dambreak_30 0.200 46.866 24.097 0.514
dambreak_40 0.200 112.73 67.012 0.594
in_out_flow 0.200 132.75 75.079 0.565

of providing lagrangian cells whose minimal quality reaches a user-parameter three-
shold. Ensuring it can be incompatible with the volume preservation. In this case,

(a) dussign (b) dproj (c) obtained mesh M,

Fig. 22 Discrepancy displayed after the assignment step and the mesh projection step in the
in_out_flow case (a and b). Red indicates a higher discrepancy per cell while blue is lower.
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Table 2 Discrepancy across the full pipeline. d g, is the discrepancy measured after the assign-
ment step (see Figure 6), d,,,; is measured after our quality-driven mesh projection method and
deform at the end after our discrepancy-driven final step.

case name dasxign dprnj ddefnrm
dambreak_10 4.65907 1.3016 0.713
dambreak_20 6.2756 2.35647 1.370
dambreak_30 7.63199 3.48279 1.653
dambreak_40 12.3486 7.14286 4.486
in_out_flow 12.7552 4.70129 3.415

the priority is given to the cell quality, which is mandatory to run the lagrangian
simulation code.

Let us note that the techniques depicted in this work are not limited to eulerian to
lagrangian intercode problems: they are relevant as long as one is able to provide a
mesh carrying volume fractions, which is typically the case for the examples issued
from CAD models that we have used. Similarly, while the majority of the inputs
that we have shown are grid meshes, we are not limited to those meshes and can
handle any unstructured conformal hexahedral meshes as an input of the proposed
pipeline. We do not handle non-conformal meshes, because as our method consists
in using the input mesh as a base for our overlay-grid algorithm this base mesh
should meet the requirements, first of all being conformal. Finally, most of the steps
are not restricted to hexahedra and can directly accommodate other types of cells,
such as tetrahedra and prisms, with the caveat of course that our output would not
be an hexahedral mesh, but it was not the focus of this process.
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