
Windows Vista Network Attack Surface Analysis
Dr. James Hoagland,Principal Security Researcher

Matt Conover,Principal Security Researcher, Tim Newsham,Independent Contractor, Ollie Whitehouse,Architect
Symantec Advanced Threat Research

Abstract

A broad analysis was performed on the network-facing components of the Microsoft Windows VistaTM release version. Our
analysis explores how it affects network security and how itdiffers from previous versions of Microsoft Windows. Windows Vista
features a rewritten network stack, which introduces a number of core behavior changes. Windows Vista also introduces anumber
of new protocols, most importantly IPv6, its supporting protocols, and several IPv4 to IPv6 transition protocols. As a client
operating system, Windows Vista will be widely deployed andas such is an important topic for security research. We studied the
following protocols and technologies: LLTD, IPv4, IPv6, Teredo, TCP, SMB2 named pipes, MS-RPC, and the Windows Firewall.
We also studied ARP, NDP, IGMP, MLD, ICMPv6, and UDP.

CONTENTS

I Introduction 5

II Link Layer Protocols 5
II-A Link Layer Topology Discovery protocol 5
II-B Address Resolution 6

III Network Layer 7
III-A IP Behavior 7

III-A.1 IPv4 ID Generation 7
III-A.2 IP Fragmentation Reassembly 7
III-A.3 Source Routing 8

III-B IPv4 and IPv6 Supported Protocols 8
III-C Teredo and Other Tunneling Protocols 8
III-D ICMP 9
III-E IGMP and MLD 10
III-F Defect Testing 10

IV Transport Layer 10
IV-A Ephemeral Ports 10
IV-B TCP 10
IV-C UDP 11

V Firewall 11
V-A Firewall Rules 11
V-B Initial State 11
V-C Configuration 11
V-D Discovery 12
V-E Tunneling 12

VI Network services 12
VI-A Active TCP Ports 12
VI-B Active UDP Ports 13
VI-C File Sharing 13
VI-D RPC Services Over TCP 14

VII Unsolicited Traffic 14

VIII Conclusion 15

IX Future Work 16

References 16

Appendix I: Test networks 19
I-A Main Test Network 19
I-B LLTD Test Network 19
I-C Teredo Test Network 20

Appendix II: LLTD Introduction 21
II-A Background 21
II-B LLTD Protocol Overview 21
II-C LLTD Security Model 21

Appendix III: LLTD Analysis and Findings 24
III-A Vista LLTD Implementation 24
III-B Disabling LLTD Within Vista 24
III-C Topology Map in Vista 25
III-D Hosts with Multiple Interfaces 25
III-E Interaction with Other Protocols 26
III-F Policy Controls 26
III-G Mapper and Responder Relationship 27
III-H Generation and Sequence Numbers 27
III-I Device Supplied Images 28
III-J Internal XML Representation 29
III-K Attack: Spoof and Management URL IP Redirect 29
III-L Attack: Spoof on Bridge 29
III-M Attack: Total Spoof 30
III-N Denial of Service 30
III-O Quality of Service Component 32
III-P Other Attempted Test Cases 33

Appendix IV: XML Format Used by Network Map 35

Appendix V: ARP Spoofing 36

Appendix VI: Neighbor Discovery Spoofing 37

Appendix VII: IPv4 ID Generation 38

Appendix VIII: IP Fragment Reassembly 40
VIII-A Fragmentation Background 40
VIII-B Fragmentation Testing Methodology 40

VIII-B.1 IPv4 Methodology 40
VIII-B.2 IPv6 Methodology 41

VIII-C Test Cases and Results 41
VIII-D Analysis 44

Appendix IX: Source Routing 46

Appendix X: IPv4 Protocol Enumeration 50

Appendix XI: IPv6 Next Header Enumeration 51

Appendix XII: Teredo Introduction 52
XII-A Protocol Overview 52
XII-B Teredo Security Implications 54

Appendix XIII: Teredo Analysis and Findings 55
XIII-A Teredo Use Under Vista 55
XIII-B Vista Teredo Components 56
XIII-C Default Teredo settings 56
XIII-D Requirements for Elevated Privileges 56
XIII-E Disabling Teredo within Vista 57
XIII-F Disabling the Microsoft Windows Firewall Disables Teredo . 57
XIII-G Settings Storage 58
XIII-H Tracing Code 58
XIII-I Client Service Port Selection 58
XIII-J Secure Qualification 58
XIII-K Same Nonce Used With Different UDP Ports 60
XIII-L Ping Tests 60
XIII-M Source Routing 61
XIII-N Use of Address Flag Bits 61
XIII-O Other Attempted Test Cases 62
XIII-P Vista Teredo Conclusions 62

Appendix XIV: Teredo IPHLPSVC Investigation 63
XIV-A IPHLPSVC.DLL Tracing Output 63
XIV-B Address Checks in IPHLPSVC.DLL 64
XIV-C Teredo Functions from IPHLPSVC.DLL 66

Appendix XV: Historic Attacks 68

Appendix XVI: IPv6 Options 69
XVI-A Random Option Sending 69
XVI-B Ordered Option Sending 69

Appendix XVII: Ephemeral Ports 70

Appendix XVIII: TCP Initial Sequence Number Generation 72

Appendix XIX: TCP Segment Reassembly 75
XIX-A Test Data 75
XIX-B Analysis 75

Appendix XX: Stack Fingerprint 76

Appendix XXI: Windows Firewall Configuration 79
XXI-A Firewall ruleset 79
XXI-B Initial State 79
XXI-C Firewall Changes with Configuration Changes 83

XXI-C.1 Sharing and Discovery Controls 84
XXI-C.2 People Near Me 85
XXI-C.3 Windows Meeting Space 85

XXI-D Active Socket Changes with Configuration Changes 86
XXI-D.1 File Sharing 86
XXI-D.2 Sharing and Discovery Controls 86
XXI-D.3 People Near Me 87
XXI-D.4 Windows Meeting Space 87

Appendix XXII: Exposed TCP Services 89

Appendix XXIII: Exposed UDP Services 91

Appendix XXIV: RPC Endpoint Mapper Enumeration 92

Appendix XXV: Anonymous and Authenticated Access to Named Pipes 96
XXV-A Null Session Access to Named Pipes 97
XXV-B Authenticated Session Access to Named Pipes 97

Appendix XXVI: RPC Procedure Access 99
XXVI-A Tools 99
XXVI-B Direct TCP Access 99
XXVI-C Null Session Named Pipe Access 106
XXVI-D Authenticated Session Named Pipe Access 107

Appendix XXVII: Transition Traffic 112
XXVII-A Vista Starting Up 112
XXVII-B Vista Shutting Down 112
XXVII-C Vista Changing Static IPv4 Addresses 113

Appendix XXVIII: Unsolicited Traffic 115

SYMANTEC ADVANCED THREAT RESEARCH 5

I. I NTRODUCTION

W INDOWS VistaTM is Microsoft’s long anticipated, new
client operating system. It is due to replace Windows

XP as Microsoft’s premier desktop operating system. Windows
Vista represents a significant departure from previous Win-
dows systems, both in terms of its emphasis on security and
its many new features. As security has grown in importance,
Microsoft has paid increasing attention to it, evidenced by
the significant investment of resources that has been made.
Windows Vista provides Microsoft with the opportunity to
introduce security into the design process of the core oper-
ating system. Microsoft has also chosen Windows Vista as
the platform on which to introduce many newly developed
technologies.

The Windows Vista network stack is particularly interesting
because many of its components are new. The TCP/IP network
stack has been rewritten and represents a significant departure
from previous versions of Windows. The new stack was writ-
ten to allow easier maintenance, important new performance
enhancements, and improved stability[55]. It integrates support
for IPv6 and IPv4 into a single network stack, and provides
IPv6 support in the default configuration for the first time
in the history of Windows. Many other new protocols are
implemented and supported in Vista, either as part of the
network stack or as separate components of the Windows
operating system. These new protocols support features such
as topology discovery, serverless name resolution and NAT
traversal. Even SMB, one of Microsoft’s oldest technologies,
received a revision with the introduction of the SMB2 variant.
The amount of new code present in Windows Vista provides
many opportunities for new defects. Each new protocol in-
troduces its own set of security implications, which must be
understood and considered.

Symantec evaluated the security-related aspects of the Win-
dows Vista network stack1. Our investigation was broad and,
in places, deep, aiming to provide key intelligence in a timely
manner. Obviously, it is impossible to do a complete analysis
of the entire Windows network-facing environment, so we
focused on the most common configuration (initial installed
state) and conducted only the most productive research, given
the time investment required. We hope you find this report
useful as a Windows Vista network reference: we hope you
find value in both the detailed security analysis and in the
broad overview. If you believe that some information presented
in this paper is inaccurate, we would appreciate hearing from
you.

We describe our testing environments in Appendix I. The
majority of the results presented in this report are obtained by
using the release build of Vista: the build that will be widely
installed. However, the LLTD-focused results are obtained
from build 5472, and the Teredo-focused results are from
RC2. No Microsoft source code was used during this analysis,
although public Microsoft documentation was used when it
was available.

1This is the second edition of this Symantec Response whitepaper. The
first edition[49], entitledWindows Vista Network Attack Surface Analysis: A
Broad Overview, covered Windows Vista Beta 2 builds 5270, 5231, and 5384
and was released July 2006.

This paper details our analysis of the Windows Vista
network stack. The following sections give an overview of
our research and findings. The details of our testing scope,
testing methodology, and results are in the appendices. The
information is organized by network layer. In section II we
discuss link layer protocols. Section III covers network layer
protocols, and section IV covers transport layer protocols.
Section V covers Windows Firewall, a component whose
design encompasses many protocol layers. Section VI covers
the servers and clients that operate at the application layer,
and section VII covers unsolicited traffic. Sections VIII and
IX present our conclusions and suggestions for future work.

II. L INK LAYER PROTOCOLS

Windows Vista supports protocols at the Link Layer for
transporting IP packets, for performing address resolution
and auto configuration tasks, and for providing topology
information for network diagnostics. For transporting IPv4
and IPv6 packets, Windows Vista uses protocols such as
Ethernet, PPP and PPPoE. In support of the IPv4 and IPv6
protocols, Vista includes ancillary protocols such as Address
Resolution Protocol (ARP) and Neighbor Discovery Protocol
(NDP), which are necessary to support the transmission of
IPv4 and IPv6 packets. Windows Vista also introduces support
for the new Link Layer Topology Discovery (LLTD) protocol,
which is used to provide network maps to assist in diagnosing
networking problems.

We analyzed the ancillary support protocols ARP and NDP
to determine how they responded to redirection attacks and
address conflict situations. We also performed an analysis of
the LLTD protocol. As for all link layer protocols, attacks
against these protocols are limited to the local network. We
did not perform an analysis of Ethernet due to its simplicity,
nor of PPP or PPPoE, since those protocols are typically used
on private links to which an attacker is unlikely to have access.
Analysis of PPP and PPPoE may be warranted in the future.

A. Link Layer Topology Discovery protocol

The Link Layer Topology Discovery (LLTD) protocol is
a newly developed protocol, designed by Microsoft for dis-
covering the topology of the local network, and to serve as
a tool for diagnosing quality of service issues. LLTD is a
core component of Microsoft’s network diagnostic strategy.
By providing high quality topology information to end users,
Microsoft hopes to make it easier for users to manage their
home networks. LLTD is also part of Windows Rally[44].
Subsequent to the first edition of this paper[49], Microsoft
has provided complete documentation for LLTD[33] and a
development kit[45].

LLTD on Vista logically consists of two components: a
client program (mapper) that initiates and directs topology
discovery, and a server (responder), implemented as a kernel
driver, which responds to requests. The client program is
invoked when a user requests that a network map, such as
that in Figure 1, be generated from the networking control
panel. The responder is a standard part of a Vista installation,
and is always running unless explicitly disabled; upon request,

SYMANTEC ADVANCED THREAT RESEARCH 6

Fig. 1. Sample topology map within Vista

the responder provides information such as host name and
Ethernet, IPv4, and IPv6 address.

The protocol sits directly on top of the Ethernet frame and
has three layers of headers. As a non-routable protocol that
elicits only basic information from hosts, minimal require-
ments exist for authentication, authorization and confidential-
ity. LLTD’s security model is primarily designed to thwart
denial-of-service attacks that are triggered by the usage of
LLTD traffic against a LAN. We provide many more details
on LLTD and its security model in Appendix II.

As a short research project, we investigated the security
model, and the as-yet unknown vulnerabilities in the LLTD
protocol and its Microsoft Windows Vista implementation.
This research was performed on the latest Beta 2 build
available at the time (5472). The development kit had not yet
been released. We provide details on this analysis and our
findings in Appendix III.

We found no major concerns, but some lesser ones. We
found that we could spoof information and conduct a denial-
of-service attack though simple packet injection. We were
able to spoof another host, and even set up the user to go
to an unintended external web page, instead of the local
management interface they expected. We could also spoof
being located on a bridge near the target, and it was possible
to entirely impersonate another device. We found a number of
ways to cause the mapping operation to fail. We also noted
that devices (including an attacker) can provide an icon image
that displays on the network map, which could support attacks.
As a result of these findings, we recommend that users regard
the information presented in the network map as unreliable.

In conclusion, LLTD is a simple non-routable protocol
which — assuming the existence of some vulnerabilities —
would require an attacker to have a presence on the local
network, in order to exploit those vulnerabilities. From the re-
search, it is clear that Microsoft utilized a secure development
life-cycle to implement security at every stage, from design
through implementation of the LLTD protocol. From a design
perspective, this approach is evidenced in the restrictions

around the use of the broadcast address, as well as the use of
a credit model as guard against denial-of-service. Evidence at
the implementation stage includes the use of compiler security
features (/GS) combined with secure coding practices such as
the use of the safe equivalent functions for string handling.
Additionally, the diverse set of test cases applied resulted in
findings of relatively small significance, which demonstrates
Microsoft’s success at preempting potential types of LLTD
attacks. That said, many vendors may implement LLTD as part
of the Windows Rally program, which may put responders
on a network that — in terms of security development and
adherence to the specification — are less well-implemented.

B. Address Resolution

The ARP[52] and NDP[48] protocols provide Ethernet ad-
dress resolution for IPv4 and IPv6, respectively. ARP operates
at the link layer and provides mechanisms for querying the link
layer address of an IPv4 node and for propagating address
changes to other hosts on the link. NDP is implemented
using ICMPv6[8] packets above the IPv6 layer, but provides
necessary services to transmit packets at the link layer: query-
ing for the link layer address of an IPv6 node, propagating
address changes, and address and route auto-configuration.
NDP makes use of well-defined IPv6 multicast addresses[20]
with fixed link layer addresses[10] to avoid bootstrapping
problems. Both protocols are integral to the operation of the
IP network stack and are enabled during installation.

ARP packets are sent in Ethernet frames, but NDP commu-
nicates using ICMPv6. However, NDP is presumably invul-
nerable to remote attack (assuming RFCs are followed) since
link-local addresses are used, and the network stack verifies
that an ND packet has a hop limit of 255 before processing its
contents. The hop limit is decremented by one every time a
packet is forwarded, and the packet discarded when its hop
limit becomes zero. Since 255 is its maximum value, ND
packets cannot be received from a remote network with a hop

SYMANTEC ADVANCED THREAT RESEARCH 7

limit of 2552.
ARP is susceptible to a redirection attack when an attacker

sends a “gratuitous” ARP packet to a target host. (Such
packets are normally used to propagate address changes.) After
receiving such a packet, the Vista stack forwards any packets
that are waiting for the MAC address for the IPv4 host to
the attacker’s node, rather than to the intended target. The
association between the MAC address and the attacker’s IPv4
address is stored and used for future packets if there is either
an existing entry (which is overwritten) or if the the ARP is
sent directly to the host, rather than to the Ethernet broadcast
address. When an existing ARP table entry is overwritten, no
warnings are displayed to the user.

In the case that a Vista machine receives a conflicting
directed or broadcast message for the statically configuredIP
address, that address becomes unusable and a pop-up message
announces the conflict (similarly to Windows XP). Attempts
to use the network result in an error until the network interface
is reset.

One function of NDP is its namesake, Neighbor Discovery
(ND). This function provides a similar link-layer address-to-IP
address mapping as ARP. We found ND to be more resistant
to attacks than the ARP implementation. We observed that
Windows Vista hosts will not process unsolicited Neighbor
Advertisements (NAs) unless they update an existing neighbor
cache entry. However, it is still possible to perform a redirect
attack by sending spoofed NAs in response to actual queries,
or by blindly sending out NAs periodically3. We observed
that Vista automatically configures a replacement RFC 3041
address[47] in the event of an apparent conflict, such as an
attacker could simulate.

We provide more details on our ARP and ND spoofing tests
in Appendix V and VI, respectively.

III. N ETWORK LAYER

Microsoft chose to rewrite the Windows Vista IP stack
rather than derive it from the previous Windows XP stack.
This new stack integrates support for IPv4 and IPv6 into a
single network stack and, according to Microsoft, is easierto
maintain, gives increased performance, and is more stable than
their previous network stack[55].

Windows Vista is the first Windows operating system to
enable both IPv4[53] and IPv6[10] during installation. The
Vista stack integrates IPv4 and IPv6 into a single network
stack whereas previous implementations offered a separate
IPv6 stack as an optional component. Many implementation
characteristics are shared between both stacks as a result of
this tight integration.

The inclusion of IPv6 support in Windows Vista is a major
departure for Microsoft. IPv6 provides significant function-
ality, backed by code that is not tried by extensive use in
a hostile environment. To make matters worse, many of the
defenses that are relied on to protect today’s IPv4 networks

2Tunneling protocols may provide a way around this restriction. We have
not investigated any ND attacks used in conjunction with tunneling.

3The IETF has defined SEND[2] as a way to provide secured Neighbor
Discovery, though Windows does not currently support it.

either do not yet support IPv6 or are similarly immature. As
IPv6 is more widely deployed, we expect IPv6 to be heavily
scrutinized by those with malicious intent.

In the following subsections, we discuss Vista’s IP protocol
behavior, supported upper level protocols, and tunneling pro-
tocols (especially Teredo). We also report our observations on
ICMP, IGMP/MLD, and attacks.

A. IP Behavior

We measured implementation characteristics of the IPv4
and IPv6 protocol layer and, where relevant, compared them
to previous implementations. The characteristics we measured
were IP ID generation, IP fragment reassembly behavior, and
source routing.

1) IPv4 ID Generation:Based on more than 600,000 data
points, we observed that the Windows Vista stack generates
IPv4 packet identifiers (used in IPv4 fragment reassembly)
sequentially. Windows XP’s stack also generates these sequen-
tially. However, on Windows Vista, these wrap around starting
at 0x7FFF, but on XP we have observed IPv4 IDs above this
maximum. This can potentially be used for differentiation;a
packet from a host with an IP ID that is 0x8000 or above
cannot be Vista. Full details on this testing are available in
Appendix VII.

Sequential IDs can be used to measure the network activity
of a host. When two packets are received from a host, the
amount of traffic that was sent in the intervening time is the
difference between the IDs in each packet. Sequential IDs are
also useful in counting hosts behind a NAT firewall [5].

There are a few differences in the use of the IPv6 ID field
compared to this field in IPv4: (1) the field grows from 16 to
32 bits, (2) the field is moved to the Fragmentation extension
header, (3) the field is normally only present when there is
actual fragmentation, and (4) fragmentation is less common,
since on-route IPv6 fragmentation is prohibited. Since it is
seen less often, we did not study how IDs are generated under
IPv6.

2) IP Fragmentation Reassembly:The Windows Vista net-
working stack behaved differently to the previous XP stack
and other popular networking stacks when reassembling IPv4
and IPv6 fragments. Based on 64 test cases, we observe that,
in most cases, Vista appears to discard an entire fragmented
packet (the set of fragments with the same IP ID) if it contains
partial overlaps. However, if the partial overlap fits within the
leading part of the packet that could be reassembled based on
fragments already sent, the overlapping fragment is ignored. In
cases of exact overlap, newer fragments are discarded in favor
of previously received fragments. This behavior was observed
both for IPv4 and IPv6. (We describe this more fully, and
give a primer on fragmentation, in Appendix VIII.) Given
this behavior, this reassembly policy seems more likely to be
the result of the data structures used for reassembly, than the
result of explicit design. Hence, this behavior is more likely
to change, possibly as a result of even small code changes.

The Windows XP stack allows for partial overlaps for IPv4.
As a result of these differences, identical traffic sent to XP
and Vista targets may be interpreted differently. Ambigui-
ties in the interpretation of traffic provide opportunitiesfor

SYMANTEC ADVANCED THREAT RESEARCH 8

confusing network intrusion detection devices, unless handled
appropriately[50].

Our IPv4 testing included sending fragmented UDP packets
and observing the result on the recipient system. As described
in Appendix VIII-B, for IPv6 we needed to take a different
approach. We observed the reassembly via an ICMPv6 error
message, which we induce by sending an unknown destination
option. In both cases, we observed that an ICMP fragmentation
timeout message would usually be produced after a one minute
delay, but in some cases this error was not produced; the
conditions required to produce the error message are not clear
to us. We also observed ICMPv4 parameter problem messages
sent in response to certain IPv4 overlap cases (specifically,
when two fragments overlap at the end of the fragment, but
the second one has More Fragments (MF) set).

3) Source Routing:Source routing describes a process
where the packet originator predefines a series of “hops” to
take on the way to a destination. Source routing is available
in both IPv4 and IPv6. This function can be used by an
attacker in a number of types of attacks, including bypassing
access control. A best practice is to block it unless it is
absolutely necessary. Windows XP never supported serving
as an intermediate hop for IPv4 source routing; however,
versions prior to SP2 would accept packets that were source-
routed. By examining settings and observing actual behavior
(Appendix IX), we confirmed that the Vista release continues
this behavior for IPv4. In IPv6, Vista accepts packets that had
been source-routed with type 0 for source routing4.

B. IPv4 and IPv6 Supported Protocols

We explored what protocols Vista supports on top of IPv4
and IPv6. If a network stack responds to a probe with an ICMP
message indicating that it does not support a protocol, thenit
becomes possible map out supported protocols.

As for the Windows XP stack, by default, the Windows
Vista stack (in which the firewall is enabled by default) does
not respond to received IPv4 packets that have an unsupported
protocol number. However, it does respond to unsupported
IPv6 Next Header values with an ICMPv6 Parameter Problem
message about the Next Header value. (The IPv6 Next Header
field is the same as the IPv4 protocol field except that it also
encodes extension headers; the same number-space is used for
both.) To get a more complete picture, we decided to test both
IP protocol versions, with and without the Windows Firewall
turned on (see Appendix X and XI). We summarize the results
in Figure 2.

There are a number of noteworthy results here. It is sur-
prising that protocols 43 and 44 appear to be supported under
IPv4; in IPv6, these numbers denote IPv6 extension headers,
but they have no meaning in IPv45. We had seen 43 and 44

4This could be related to future mobile IPv6 support[38], although that
does not use type 0 source routing, and there are no direct signs that mobile
IPv6 is supported by the release build of Vista.

5The protocols 249 and 251, which we noted in earlier builds[49], have
been explained (and hidden by the stack). Reportedly, theseprotocol codes are
used internally by the stack for communication with the IPsec offload module;
these were not intended to be visible externally, but Windows Firewall failed
to treat these as externally unsupported.

with IPv4 in beta builds (where sending packets to those would
cause problems)[49], but had expected them to be removed by
the release build. These protocol numbers no longer appear to
cause problems in Vista, but due to limited time we did not
explore if these are actually usable in some manner.

Vista seems to support a large number of tunneling options.
We have not yet tested which, if any, could be used by default,
and have not explored their security implications. Over IPv4,
it appears that the Vista stack can support IPv4, IPv6, and
GRE6. Here, IPv4 and IPv6 are directly encapsulated on IPv4;
IPv6 over IPv4 is used for ISATAP and 6to4. GRE[15] has
been historically used to tunnel IPv4 over IPv4, and over other
protocols.

Over IPv6, it appears that direct IPv4 and IPv6 encapsu-
lation is supported. IPv6 over IPv6 is used in Mobile IPv6
(RFC 3775[26]), and IPv4 over IPv6 is a transition mechanism
required in the future for IPv4 traffic, when a network only
supports IPv6. Noteworthy here is that the apparent supportfor
IPv4 over IPv6 is only present when the firewall is enabled;
this may be an intentional policy decision similar to requiring
an IPv6 firewall for Teredo to be available (see Appendix XIII-
F).

C. Teredo and Other Tunneling Protocols

Teredo supports many tunneling protocols. We mentioned
several in Section III-B that we detected that are apparently
supported by Vista. Though it may be fruitful, we have not
had the opportunity to look into most of these.

Windows Vista employs IPv6 transition technologies, which
allow IPv6 to be used in an IPv4 environment that has limited
or no IPv6 infrastructure[11]. Microsoft documentation ([32])
describes Teredo, ISATAP, 6to4, IPv6 automatic tunneling,
and 6over4, as available in Windows 2003, so these may be
presumed to be available on Vista as well. Among these, we
have done a thorough investigation of Teredo (Appendix XII
and XIII), and we have seen evidence of ISATAP support
(Appendix XXVII and section III-B).

Teredo, defined in RFC 4380[23], is an IPv4-IPv6 transition
technology, which Windows Vista uses if there are no neigh-
boring IPv6 routers or ISATAP servers. We expect this to be
the most common environment among Windows Vista users,
until IPv6 sees wider network support.

Teredo works by carrying IPv6 packets inside of UDP
packets sent over IPv4 networks. What makes Teredo unique
among IPv6 transition mechanisms is its NAT traversal fea-
tures. Teredo hosts establish and maintain a connection to one
of a set of public Teredo servers. The IPv6 address assigned to
a Teredo host encodes the public Teredo server that assignedit,
as well as the public address and port assigned to the host (its
address as seen outside of the NAT). A NAT-protected host
can establish a direct connection to another such host with
the assistance of the peer’s Teredo server. The host can notify
its peer that it wants to establish a connection by sending the
packet to the peer’s Teredo server, which is forwarded on to the
peer host. The two peers may then send packets to each other,

6This tentative conclusion is based solely on the lack of an ICMP protocol
unreachable when probing those.

SYMANTEC ADVANCED THREAT RESEARCH 9

Protocol/EH code Description IPv4 + firewall IPv4 - firewall IPv6 + firewall IPv6 - firewall
0 Hop-by-Hop Options EH filtered not supported supported supported
1 ICMPv4 filtered supported not supported not supported
2 IGMP filtered supported not supported not supported
4 IPv4 over IPv4/IPv6 filtered supported supported not supported
6 TCP filtered supported supported supported

17 UDP filtered supported supported supported
41 IPv6 over IPv4/IPv6 filtered supported supported supported
43 Routing EH filtered supported supported supported
44 Fragment EH filtered supported supported supported
47 GRE filtered supported not supported not supported
50 IPsec ESP filtered supported supported supported
51 IPsec AH filtered supported supported supported
58 ICMPv6 filtered not supported supported supported
59 IPv6 No Next Header filtered not supported supported supported
60 Destination Options EH filtered not supported supported supported

(unsupported protocols) filtered proto unreachable param problem param problem

Fig. 2. Vista’s supported IPv4 and IPv6 protocols and extension headers. Results are shown for both with the firewall on (the default) and with the firewall
off. EH stands for IPv6 extension header.

opening up mutual holes in their NAT gateways for return
traffic to flow through. The two peers can maintain these NAT
mappings indefinitely by periodically exchanging traffic.

Teredo restores global addressability and routing to hosts
using private IPv4 addresses. This is a huge benefit in terms of
functionality, but also has serious security implications. Many
individuals and companies use private addresses as a key part
of their defense strategy, and they will be left unexpectedly
exposed to the Internet when Vista is installed, unless strict
egress filtering is in place.

Furthermore, network based-security controls, such as NIPS
and firewalls, are bypassed by the Teredo tunnels unless they
are specifically Teredo-aware (and examine all Teredo traffic:
clients and relays do not use fixed ports). This means that
not all the intended security controls are applied as expected
to Teredo tunneled IPv6 traffic. At a minimum, defense-in-
depth is lost and, at worst, an important security mechanism
is not applied7. We explore this and other Teredo security
implications in more detail and describe how Teredo works,
in a spin-off paper titled,The Teredo Protocol: Tunneling Past
Network Security and Other Security Implications[22].

In investigating Vista’s Teredo implementation on the RC2
Vista build (full details are in Appendix XIII), we found that,
in order for Vista to use Teredo, an IPv6-capable firewall
must be registered, and that Windows Firewall and other
firewalls that use the Windows Filtering Platform[43] (such
as Symantec’s Vista-enabled NIS/NAV 2007) should apply
protection equally to native IPv6 traffic and to Teredo tunneled
IPv6 traffic.

We found no faults in the protocol parsing in Microsoft’s
Teredo stack implementation. However, relative to what is pro-
vided for in the Microsoft-sponsored, standard document[23],
we found that some of the security features in the Windows
Vista Teredo implementation are implemented minimally. In

7However, if Teredo proves to be more manageable and becomes used for
a situation instead of a less manageable form of tunneling, there has been
some benefit. The ideal, however, would be have no tunneling.

at least one situation (length of the ping test nonce), the
implementation of these security features is sub-par to that
which is recommended (32 bits instead of at least 64 bits),
and the value “0” was used repeatedly.

As we describe in Appendix XIII-A, it is not entirely clear
or easy to describe the circumstances under which Teredo
will be used under Vista. However, when on two occasions
we briefly connected our typically isolated network hosts (the
network in Appendix I-A, which was not intended for use
in Teredo testing) to an Internet-connected network, we found
that they had configured a Teredo address (Appendix XXVIII).
This occurred during Windows Activation and during Vista
installation, when a host was accidentally connected to the
wrong network. Thus we expect Teredo will be frequently
used under Vista.

Organizations should pay attention to Teredo. We recom-
mend that organizations and individuals wanting to use IPv6
do so properly by upgrading their security mechanisms to
support native IPv6, and then acquire a native IPv6 Internet
connection. Teredo and other IPv6 transition mechanisms
should be disabled on the client (see Appendix XIII-E) and
blocked on the network unless the security implications have
been carefully considered and found acceptable.

D. ICMP

Vista supports ICMPv4 in association with IPv4 and
ICMPv6 in association with IPv6. The basic ICMPv4 and
ICMPv6 headers are syntacticly identical, though there are
differences in the meaning of ICMP types and codes and in
how the two versions of ICMP are used.

The testing described in Appendix XVI-A gave an op-
portunity to assess how much of the original packet the
Vista network stack includes in ICMPv6 error messages. We
found that it follows RFC 2463[8] and includes as much of
the original packet as can fit in a 1280-octet return packet.
Assuming no extension headers, this corresponds to 1232
octets of the original IPv6 packet.

SYMANTEC ADVANCED THREAT RESEARCH 10

We observed that Vista rate limits ICMPv4 and ICMPv6
error messages, as required for ICMPv6 by RFC 2463[8]. Vista
appears to suppress error messages when another was sent
within the previous second. This caused a degree of difficulty
in our testing, as we could not impute any significance to the
absence of an error message, when one had been seen in the
previous second. This required our UDP, IP, and other scanning
to be run more slowly.

ICMPv4 and ICMPv6 echo services are available on Vista,
but must have a firewall exception configured in order for them
to be usable remotely.

E. IGMP and MLD

MLD is the Multicast Listener Discovery Protocol. Its job
for IPv6 is equivalent to the job of IGMP for IPv4; that is, —
to keep the network informed of the types of multicast traffic
hosts on the network require. IGMPv3[7] and MLDv2[59] bear
a strong resemblance to each other; the main difference is that
IGMP sits directly on top of IPv4, whereas MLD (like NDP)
sits on top of ICMPv6.

Vista uses IGMPv3 and MLDv2, often in tandem, to pro-
vide corresponding services for IPv4 and IPv6, respectively.
On a clean install of Vista, we saw them used together to
subscribe or unsubscribe from multicast addresses for IPv4
and IPv6 LLMNR (Link Local Multicast Name Resolution [1])
addresses and for SSDP (Simple Service Discovery Protocol)
and UPnP addresses.

F. Defect Testing

We conducted tests to assess the stability of the Windows
Vista TCP/IP stack:

1) We ran several historic attack scripts that have affected
network stacks in the past. We found (Appendix XV)
that the only attacks with a noticeable impact are those
that produced a large number of packets per second. In
the case of opentear, the host GUI became unresponsive
until the attack was stopped, but we conclude that this
was due to the overwhelming packet volume sent. The
udp and udp2 attacks caused network congestion and
interfered with our reverse ping.

2) We retested the three defects that we reported in the
previous edition of this report[49], and which we found
through the use of ISIC[16] (the crash1.py, crash2.py
and crash3.py scripts); we observed no resultant impact.

3) Appendix XVI details tests that we conducted by gener-
ating IPv6 destination options with a malformed pay-
load. These varied from totally random to precisely
crafted tests. We have observed no persistent effects
from any of these8.

IV. T RANSPORTLAYER

Windows Vista supports the TCP and UDP transport proto-
cols over IPv4 and IPv6. We investigated the implementation
characteristics of these protocols.

8As these tests were run mostly unsupervised in the background, we would
be unlikely to notice any resultant short term or transient problems.

A. Ephemeral Ports

We found that the default ephemeral port range for both
UDP and TCP has changed with Vista. It is now 49152–
65535, though it can be adjusted using netsh. TCP and UDP
are controlled separately, although the ephemeral port settings
for each protocol under IPv6 and IPv4 are shared. In fact, we
infer that the “next port to use” state for each of TCP and
UDP applies to both IPv4 and IPv6. Thus, unless a socket
creation call is made that applies to both IPv4 and IPv6, the
same port number will not be used for both IPv4 and IPv6.
We have observed the former case with TCP and the latter for
UDP. We describe this in more detail in Appendix XVII.

B. TCP

We measured Windows Vista’s TCP ISN generation, seg-
ment reassembly, and “fingerprint” behaviors and observed
several behavioral differences from the earlier Windows XP
stack.

The choice of the Initial Sequence Number to be used when
establishing a TCP connection has a profound impact on the
security of a TCP connection[4], [46], [51]. We measured
Windows Vista’s ISN generation and found that it appears
to follow the generation algorithm recommended by RFC
1948[3], which generates ISN values by adding a system-
wide counter to a secret hash of the connection identifier. This
generation scheme offers strong protection against TCP attacks
relying on poor ISN generation. We used two techniques to
plot differences in Vista’s sequential ISNs for both IPv4 and
IPv6 and found what appears to be a uniform distribution (see
Appendix XVIII).

We measured the TCP reassembly behavior of Windows
Vista (Appendix XIX). When reassembling a TCP stream,
Windows Vista resolved any conflicts in overlapping TCP
segments by preferring data received in earlier segments over
data received in later segments. This behavior differs from
the behavior observed in the earlier Windows XP networking
stack and in other popular stacks. Due to these differences,
identical traffic sent to XP and Vista targets may be interpreted
differently. Ambiguities in the interpretation of traffic pro-
vide opportunities for confusing network intrusion detection
devices, unless handled appropriately[50].

There are many network stack fingerprinting methods which
identify an operating system through its network stack im-
plementation details[19]. We looked at the TCP behavior
measured by the Nmap[18] utility. We observed that the
Windows Vista networking stack behaves distinctly differently
to the previous Windows XP version and other popular net-
work stacks. The details of these differences are noted in
Appendix XX. Because most incoming TCP traffic is filtered
by Windows Firewall, this testing was done with the firewall
turned off. However, there are likely other techniques that
could be used to fingerprint Vista, even with its firewall turned
on.

For both IPv4 and IPv6, we found that Windows Firewall
filtered RST messages that would normally result from closed
TCP ports.

SYMANTEC ADVANCED THREAT RESEARCH 11

C. UDP

For both IPv4 and IPv6, we found that Windows Firewall
filtered ICMP port unreachable messages that would normally
result from probes to unused UDP port numbers. Thus, in the
default configuration, one cannot remotely map out currently
used UDP ports, at least using the most obvious technique.

V. FIREWALL

A new and extended version of Windows Firewall comes
with Vista. This provides protection against malicious attack
by filtering out incoming packets before they are processed.
Windows Vista configures Windows Firewall during installa-
tion, and Windows Firewall is running on all Windows Vista
machines unless explicitly disabled. We measured the firewall
configuration of a Windows Vista machine after installation,
and after several common configuration changes. We also
noted methods that could be used to detect the presence of
a Windows Vista host, even when protected by Windows
Firewall.

We provide full details in Appendix XXI and present our
main findings here.

A. Firewall Rules

In Vista, all network interfaces are—at any given time—a
part of one of three pre-defined profiles[12]: public, private,
or domain. The public profile (the default) is for when the
interface is connected to an untrusted network, for example,
at a coffee shop. The private profile is for when the user is at
home or work, and the domain profile is for cases where the
host is part of a Windows domain. Windows Firewall makes
use of these profiles to essentially maintain three different sets
of firewall exceptions; this makes sense, as some networks are
more trusted than others. This reflects Microsoft adapting to
an increasingly mobile user base.

We found that each entry in the exceptions list in the Win-
dows Firewall control panel corresponds to a similarly named
group of firewall rules. These individual firewall rules—which
can be observed using the application Windows Firewall with
Advanced Security, in the inbound table—can apply to one or
more profiles. Although these can be controlled individually
and manually, they are normally enabled or disabled as a
group, either for all profiles or for specific profiles. There
are more general capabilities, but in our testing, enablinga
rule means creating an exception for the circumstances that
are governed by the rule. These rule parameters affect the
circumstances in which an exception applies: protocol, local
port, remote port, local network, remote network, and (local)
program; these all must match for an exception to apply.

The application, Windows Firewall with Advanced Security,
also contained outbound firewall settings and IPsec configura-
tion in separate sections, but these were not within the scope
of the research.

B. Initial State

We list Windows Firewall’s inbound initial state in Table I
(page 83). This consists of 166 rules.

In its default configuration, Windows Vista has three firewall
rule groups that are enabled for at least one profile. The “Core
Networking” group is active for all profiles, and the “Network
Discovery” and “Remote Assistance” are active for the private
profile only; thus by default there is considerably less exposure
than if the network interface is set to private or domain. Core
Networking covers ICMP errors, DHCP, IGMP, MLD, NDP,
and Teredo. Network Discovery covers LLMNR, Netbios,
web services discovery, SSDP and UPnP. Remote Assistance
covers SSDP, UPnP, RPC Endpoint mapper, raserver.exe, and
msra.exe. The firewall exceptions only matter if there is a
program listening on a socket behind it, and that is not always
the default case for these groups. For example, we notice
that raserver.exe and msra.exe are not initially running (see
Figure 48).

All of the TCP and UDP firewall rules present in the initial
state that have “Any” as a remote port have a specific program
that they are bound to, apparently limiting the breadth of
exposure.

C. Configuration

Several common Windows configuration changes introduce
filtering exceptions into Windows Firewall configuration; turn-
ing on File and Print sharing (CIFS), opting into People Near
Me, using Windows Meeting Space, and enabling Windows
Media Sharing are all examples of such changes. These
changes must be authorized by the user using the Windows
Vista consent mechanism. In Figure 3 we show what groups
and profiles are enabled or disabled in some tests we con-
ducted. The details of these firewall configuration changes can
be found in Appendix XXI-C.

One surprising result, noted in many cases (as can be seen
in the table), is that firewall rules are not disabled upon turning
off the Vista function that causes the rules to be enabled (i.e.,
the rules were “sticky”). The exceptions persist even across
a system restart; thus, until they are manually disabled, a
legacy of firewall exceptions accumulates on a system. One
of the conceivable, negative effects of this is that a malicious
application could communicate through the exception without
a consent prompt, and that a listener or service could remain
exposed. The sticky situations we observed are the following:
People Near Me, Windows Meeting Space, and partly for
media sharing.

We examined the socket listener changes (as seen through
netstat) that correspond to the configuration changes. We
noticed that for a duration after Windows Meeting Space was
enabled, a meeting was created, a meeting was closed, and
the Windows Meeting Space was closed, leftover processes
continued. One of these, DFSR.exe (TCP port 5722 on IPv4
and IPv6), could be reached remotely even after its reason
for existence discontinued; however, this only lasted for afew
minutes, so the extra exposure is limited.

In previous builds of Vista[49], Teredo quietly created
firewall exceptions; retesting this was out of the scope of this
project.

SYMANTEC ADVANCED THREAT RESEARCH 12

Firewall group Profile In
in

iti
al

st
at

e

E
na

bl
e

F
ile

S
ha

rin
g

or
P

ub
lic

F
ol

de
r

S
ha

rin
g

D
is

ab
le

F
ile

S
ha

rin
g

or
P

ub
lic

F
ol

de
r

S
ha

rin
g

E
na

bl
e

M
ed

ia
S

ha
rin

g

D
is

ab
le

M
ed

ia
S

ha
rin

g

D
is

ab
le

N
et

w
or

k
D

is
co

ve
ry

S
et

up
P

eo
pl

e
N

ea
r

M
e

S
ig

n
in

to
P

eo
pl

e
N

ea
r

M
e

S
ig

n
ou

t
of

P
eo

pl
e

N
ea

r
M

e
an

d
re

bo
ot

S
ig

n
in

to
W

in
do

w
s

M
ee

tin
g

S
pa

ce

C
re

at
e

W
in

do
w

s
M

ee
tin

g
S

pa
ce

m
ee

tin
g

E
nd

W
in

do
w

s
M

ee
tin

g
S

pa
ce

m
ee

tin
g,

si
gn

ou
t,

an
d

re
bo

ot

Core Networking
private X

domain X

public X

Remote Assistance
private X

domain
public

Network Discovery
private X −
domain
public

File and Printer Sharing
private + − + −
domain
public

Windows Media Player
Network Sharing Service

private + −
domain + −
public

Windows Media Player
private +

domain +

public

Windows Peer to Peer
Collaboration Foundation

private + +

domain + +

public + +

Windows Meeting Space
private +

domain +

public +

Network Projector
private +

domain +

public +

Fig. 3. The enabling or disabling of firewall groups for profiles as series of actions were taken. Note that some never became disabled. The initially enabled
groups are also listed. Firewall groups not involved are omitted.

D. Discovery

Windows Vista hosts that are protected by Windows Fire-
wall can be discovered in several ways, even though ICMP
echoes (pings) are filtered over both IPv4 and IPv6. Hosts on
the same network can effectively “ping” a host by querying for
the host’s hardware address using the ARP or ND protocols,
by requesting all neighbors to respond to a LLTD request, or
by simply listening on the network. Detection using LLTD is
particularly attractive because it returns the host’s Ethernet,
IPv4 and IPv6 addresses and host name. Hosts that are not on
the same local network can elicit responses from a Windows
Vista host remotely by using routable IPv4 and IPv6 packets.
As previously mentioned, Windows Vista responds to IPv6
packets with unknown Next Header values. TCP port 5357 can
also be attempted. Vista responds to packets received usingan
unhandled protocol or with certain malformed fields[20] with
ICMP errors.

E. Tunneling

The tunneling protocols supported by Windows Vista have
implications for firewalls protecting Vista hosts. If not blocked,
tunnels may provide an attacker with an avenue to bypass all
firewall restrictions. The tunneling protocols may also provide
avenues for bypassing Windows Firewall. Exploring tunnel-
based attacks was outside the scope of this project.

VI. N ETWORK SERVICES

A. Active TCP Ports

We applied standard techniques to remotely enumerate the
network services using the TCP transport over IPv4 and IPv6
in Windows Vista (Appendix XXII). We observed that in
Vista’s default configuration for the private profile, Windows
Firewall allowed access to TCP port 5357 (Web Services for
Devices, WSD) and there was a live service running on that
port; therefore this provides a point of exposure to Vista hosts.

SYMANTEC ADVANCED THREAT RESEARCH 13

TCP port description IPv4 + firewall IPv4 - firewall IPv6 + firew all IPv6 - firewall
135 RPC endpoint mapper filtered open filtered open
139 NBT filtered open filtered closed
445 SMB filtered open filtered open

5357 WSD open open open open
49152 RPC ephemeral filtered open filtered open
49153 RPC ephemeral filtered open filtered open
49154 RPC ephemeral filtered open filtered open
49155 RPC ephemeral filtered open filtered open
49156 RPC ephemeral filtered open filtered open
49157 RPC ephemeral filtered open filtered open

(closed ports) filtered RST filtered RST

Fig. 4. Vista’s open TCP ports over IPv4 and IPv4, with and without the firewall on.

UDP port description IPv4 + firewall IPv4 - firewall IPv6 + firew all IPv6 - firewall
123 NTP open or filtered open open or filtered open
137 NetBIOS name service open or filtered open open or filtered closed
138 NetBIOS datagram open or filtered open open or filtered closed
500 ISAKMP open or filtered open open or filtered open

1900 UPnP/SSDP open or filtered open open or filtered open
3702 Web Services Discovery open or filtered open open or filtered open
4500 IPsec open or filtered open open or filtered closed
5355 LLMNR open or filtered open open or filtered open

3–4 ephemeral ports clients filtered open open or filtered open
(unused ports) filtered port unreachable filtered port unreachable

Fig. 5. Vista’s used UDP ports over IPv4 and IPv4, with and without the firewall on.

By scanning with the firewall turned off and by using
netstat, we found other active ports that the firewall filtered, in
the default configuration (see Figure 4). All the ports that have
services on IPv4, also have services on IPv6, except for port
139 (NBT). These filtered ports would need to be exposed (for
example, by enabling corresponding Windows functionality) to
be used by an attacker.

B. Active UDP Ports

Through remote enumeration, we found that Windows Fire-
wall filtered access to all closed UDP ports over both IPv4 and
IPv6. With the firewall turned off and with netstat, we found
eight well-known ports in use (five through IPv6) and three
or four varying ephemeral ports in use. We shows these in
figure 5. (Due to the nature of UDP, no protocol-independent
way exists to determine which of these ports offer services
and which are purely clients.) The ephemeral ports and NTP
are likely clients. In either case, for packets to reach the port
in order to potentially attack it, the firewall must allow access.

We provide more details on this testing in Appendix XXIII.

C. File Sharing

It is common for computer users with several machines
to turn on File and Printer Sharing, and we expect many
Windows Vista users will do this. Windows Vista supports
the SMB protocol and introduces the new SMB2[60] variant
of the protocol.

SMB2 is a new implementation of the SMB protocol that
provides a clean slate for Microsoft. It eliminates many of the

legacy SMB calls that are no longer used. It supports high
performance marshaling with fixed header sizes and better
alignment rules, and it provides larger field widths for many
of the protocol fields to ensure support for larger disks and
faster computers in the future. SMB2 is the preferred protocol
when supported by both client and server (two Windows
Vista hosts, for example), but support is included for legacy
interoperability.

File sharing allows remote access to named pipes. These
pipes are often used as a transport mechanism for application
protocols. We enumerated the named pipes (Appendix XXV)
that could be accessed over both null (anonymous) and au-
thenticated sessions, and summarized the results at the start
of Figure 6. We could successfully access the netlogon, lsarpc
and samr pipes without any authentication. All of these pipes
are aliases and refer to the pipe named “lsass.” This pipe is
used as a transport for several RPC based interfaces. With
the authenticated access, we found that success sometimes
depended on whether the connection was coming from XP
(which uses SMB) or Vista (SMB2), which may mean that
the two protocols are handled by different implementations.

We enumerated the accessible RPC interfaces available over
the named pipes. The interfaces that we could successfully use
via null or authenticated sessions are listed in Figure 6. We
identified which procedures could be called, on each of these
interfaces, under the different access circumstances. Ourcalls
were made without knowledge of the proper parameters, so we
regarded a BADSTUB DATA as successful. In Figure 7 we
present the 102 procedure calls that successfully completed
over a null session. The names on the list are based on

SYMANTEC ADVANCED THREAT RESEARCH 14

Interface ls
ar

pc
,s

am
r,n

et
lo

go
n

ls
as

s,
pr

ot
ec

te
ds

to
ra

ge

W
32

T
IM

E
A

LT

w
ks

sv
c

at
sv

c,
R

O
U

T
E

R
,b

ro
w

se
r

sr
vs

vc

tr
kw

ks

ke
ys

vc

In
itS

hu
td

ow
n

ev
en

tlo
g

nt
sv

cs

sc
er

pc

LS
M

A
P

I
se

rv
ic

e,
ta

ps
rv

,p
lu

gp
la

y

ep
m

ap
pe

r

M
sF

te
W

ds

can be opened any A A A A A A A A A A A A A A
achieved success or BADSTUB DATA any A V-A A A X-A A A A A A X-A V-A A
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)) any A V-A A A X-A A A A A A X-A V-A A
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA access
(lsarpc))

any A

12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv) any A
3919286a-b10c-11d0-9ba8-00c04fd92ef5[v0.0] (LSA DS access
(lsarpc))

any A

c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] (efsrpc) any A
300f3532-38cc-11d0-a3f0-0020af6b0add[v1.2] (trkwks) X-A X-A X-A A X-A X-A X-A X-A
6bffd098-a112-3610-9833-46c3f87e345a[v1.0] (wkssvc) V-A A X-A X-A X-A X-A
8fb6d884-2388-11d0-8c35-00c04fda2795[v4.1] (w32time) X-A X-A X-A X-A X-A
1ff70682-0a51-30e8-076d-740be8cee98b[v1.0] (atsvc) X-A A X-A X-A X-A
4b324fc8-1670-01d3-1278-5a47bf6ee188[v3.0] (from srvsvc.dll,
Netr*)

X-A A X-A X-A X-A

6bffd098-a112-3610-9833-012892020162[v0.0] (from browser.dll,
I Browserr*, NetrBrowser*)

X-A A X-A X-A X-A

82273fdc-e32a-18c3-3f78-827929dc23ea[v0.0] (eventlog, from
wevtsvc.dll)

A X-A X-A

367abb81-9844-35f1-ad32-98f038001003[v2.0] (Services Control
Manager (SCM))

X-A A X-A

93149ca2-973b-11d1-8c39-00c04fb984f9[v0.0] (scesrv) X-A X-A X-A
3dde7c30-165d-11d1-ab8f-00805f14db40[v1.0] (BackupKey) X-A X-A X-A
8d9f4e40-a03d-11ce-8f69-08003e30051b[v1.0] (umpnpmgr) X-A X-A X-A
894de0c0-0d55-11d3-a322-00c04fa321a1[v1.0] (InitShutdown) X-A
0b0a6584-9e0f-11cf-a3cf-00805f68cb1b[v1.1] (localpmp) X-A
e1af8308-5d1f-11c9-91a4-08002b14a0fa[v3.0] (epmapper) A

Fig. 6. Successful calls to UUIDs from pipes under differentcircumstances. Values are listed for a UUID and named pipe when we observed a successful call
(resulting in “success” or “BADSTUB DATA”) to a procedure in the UUID using the named pipe. “X-A” means the interface only succeeded from Windows
XP (SMB) with an authenticated session, “V-A” means the interface only succeeded from Windows Vista (SMB2) with an authenticated session, “A” means
it succeeded from both sources of authenticated session, and “any” means that it succeeded from both XP and Vista and bothnull and authenticated sessions.
Note that some columns represent multiple pipes that behaved identically for UUID access. Also listed are the circumstances under which pipes could be
opened and successfully used. The faint dotted grid lines onevery fifth row and column are depicted only to facilitate reading the rows and columns; no
grouping is implied.

available symbols; static analysis of system executables also
helped inform the list of UUIDs to look for. More details
on this and on the procedures that could be reached in other
configurations are available in Appendix XXVI.

We saw ACCESSDENIED appearing at a per-procedure
level, suggesting that access control is being employed.

D. RPC Services Over TCP

In the release build of Vista there are no RPC TCP ports
available in the initial configuration. In fact, we know of
no remote RPC access available initially. However, with file
sharing enabled, the endpoint mapper could be reached. We
document the results of an enumeration of this service in
Appendix XXIV.

Among other results, the endpoint mapper tells us that the
six ephemeral TCP ports we saw active earlier (49152–49157)
are associated with RPC. These are not accessible with just
file sharing enabled. However, the endpoint mapper port (TCP
135) is and, as we did across named pipes, we enumerated
the RPC interfaces supported on this port using a brute force
enumeration technique. We provide more complete results in
Appendix XXVI-B, but there were seven procedures between

two interfaces that we could successfully call. Within the
IOXIDResolver interface, the ResolveOxid, SimplePing, Com-
plexPing, ServerAlive, ResolveOxid2, and ServerAlive2 pro-
cedures were accessible. On the RPC remote management in-
terface, only the fourth procedure (rpcmgmt inq princ name)
was callable. We observed that the TCP port 135 had fewer
interfaces that could be successfully accessed than using
anonymous named pipes. Similarly, the interfaces in common
had fewer procedures that could be successfully called using
port 135 than anonymous named pipes.

Not all interfaces available on a network port are actually
usable; there are RPC mechanisms for blocking requests ar-
riving over the network ([30], [28]). This is useful for services
that do not wish to be available over the network but share
a process with another service that uses a network transport.
This fact could explain some of the ACCESSDENIED errors
received when calling certain procedures.

VII. U NSOLICITED TRAFFIC

To get a feel for the active services and protocols on a
default Windows Vista installation, we observed the packets
that Vista sends out during certain transitions and looked
for unsolicited traffic. Traffic captures from Vista starting up,

SYMANTEC ADVANCED THREAT RESEARCH 15

afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0]
(rpcmgmt (ifids)):

• rpc mgmt inq if ids
• rpc mgmt inq stats
• rpc mgmt is serverlistening
• rpc mgmt stop serverlistening
• rpc mgmt inq princ name

12345778-1234-abcd-ef00-0123456789ab[v0.0]
(LSA access (lsarpc)):

• LsarClose
• LsarEnumeratePrivileges
• LsarQuerySecurityObject
• LsarChangePassword
• LsarOpenPolicyRPC
• LsarQueryInformationPolicy
• LsarSetPolicyReplicationHandle
• LsarEnumerateAccounts
• LsarEnumerateTrustedDomains
• LsarLookupNames
• LsarLookupSids
• LsarOpenAccount
• LsarEnumeratePrivilegesAccount
• LsarGetQuotasForAccount
• LsarGetSystemAccessAccount
• LsarOpenTrustedDomain
• LsarQueryInfoTrustedDomain
• LsarLookupPrivilegeValue
• LsarLookupPrivilegeName
• LsarLookupPrivilegeDisplayName
• LsarEnumerateAccountsWithUserRight
• LsarEnumerateAccountRights
• LsarQueryTrustedDomainInfo
• LsarOpenPolicy2
• LsarGetUserName
• LsarQueryInformationPolicy2
• LsarQueryTrustedDomainInfoByName
• LsarEnumerateTrustedDomainsEx

• LsarSetPolicyReplicationHandle
• LsarQueryDomainInformationPolicy
• LsarOpenTrustedDomainByName
• LsarLookupSids2
• LsarLookupNames2
• LsarLookupNames3
• LsarQueryForestTrustInformation

12345778-1234-abcd-ef00-0123456789ac[v1.0]
(samsrv):

• SamrConnect
• SamrCloseHandle
• SamrQuerySecurityObject
• SamrLookupDomainInSamServer
• SamrEnumerateDomainsInSamServer
• SamrOpenDomain
• SamrQueryInformationDomain
• SamrEnumerateGroupsInDomain
• SamrEnumerateUsersInDomain
• SamrEnumerateAliasesInDomain
• SamrGetAliasMembership
• SamrLookupNamesInDomain
• SamrLookupIdsInDomain
• SamrOpenGroup
• SamrQueryInformationGroup
• SamrGetMembersInGroup
• SamrOpenAlias
• SamrQueryInformationAlias
• SamrGetMembersInAlias
• SamrOpenUser
• SamrQueryInformationUser
• SamrChangePasswordUser
• SamrGetGroupsForUser
• SamrQueryDisplayInformation2
• SamrGetDisplayEnumerationIndex
• SamrGetUserDomainPasswordInformation
• SamrQueryInformationDomain2
• SamrQueryInformationUser2
• SamrQueryDisplayInformation2

• SamrGetDisplayEnumerationIndex2
• SamrQueryDisplayInformation3
• SamrOemChangePasswordUser2
• SamrUnicodeChangePasswordUser2
• SamrGetDomainPasswordInformation
• SamrConnect
• SamrConnect3
• SamrConnect4
• SamrUnicodeChangePasswordUser3
• SamrConnect5
• SamrRidToSid

3919286a-b10c-11d0-9ba8-00c04fd92ef5[v0.0]
(LSA DS access (lsarpc)):

• DsRolerGetPrimaryDomainInformation

c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0]
(efsrpc):

• EfsRpcOpenFileRaw
• EfsRpcReadFileRaw
• EfsRpcWriteFileRaw
• EfsRpcCloseRaw
• EfsRpcEncryptFileSrv
• EfsRpcDecryptFileSrv
• EfsRpcQueryUsersOnFile
• EfsRpcQueryRecoveryAgents
• EfsRpcRemoveUsersFromFile
• EfsRpcAddUsersToFile
• EfsRpcSetFileEncryptionKey
• EfsRpcNotSupported
• EfsRpcFileKeyInfo
• EfsRpcDuplicateEncryptionInfoFile
• EfsUsePinForEncryptedFiles
• EfsRpcAddUsersToFileEx
• EfsRpcFileKeyInfoEx
• EfsRpcGenerateEfsStream
• EfsRpcGetEncryptedFileMetadata
• EfsRpcSetEncryptedFileMetadata
• EfsRpcFlushEfsCache

Fig. 7. The names of the procedures we either successfully called or received BADSTUB DATA via null session named pipe access, when file sharing was
enabled. There were no procedures that we discovered we could call via null session that we do not know the name of.

shutting down, and changing IP addresses were analyzed, and
the protocol and protocol uses that we saw for each are listed
in Appendix XXVII. We also collected a few weeks of traffic
captures and identified the traffic that was apparently not the
result of a direct user request. We summarize that data in
Appendix XXVIII. Many of these messages represent requests
to which a well-placed attacker could reply, in order to conduct
an attack or to gather information.

We saw new protocols in use, including Teredo, IPv6,
ICMPv6, NDP, MLD, Web Service Discovery (WS-
Discovery), and LLMNR. Several of the protocols were used
in apparent efforts to find Internet access on our isolated
network, including SSDP, LLMNR, and NBNS, plus a Router
Solicitation message. Similarly, LLMNR, NBNS, SSDP, WS-
Discovery are used to automatically discover devices and
services. We saw Vista clients that reside on the same network
share information with each other; the protocols were WS-
Discovery and UPnP (both resolve and probe).

VIII. C ONCLUSION

The network stack in Windows Vista was rewritten from the
ground up. By rewriting the stack, Microsoft has removed a
large body of tested code and replaced it with newly written
code, possibly introducing new corner cases and defects. This

will provide for a more stable networking stack in the long
term, but it will not be immune to attack, especially in the short
term. A networking stack is a complex piece of software that
typically takes many years to mature, though Microsoft seems
to have successfully accelerated this process and reduced
the timeframe, at least to a degree, by extensive testing and
forethought.

Microsoft chose Vista as the platform to introduce new
protocols and new implementations of old protocols. IPv6 and
its supporting protocols are enabled during installation for the
first time in Windows Vista. The IPv6 protocol is not new,
but it has yet to see widespread deployment. To support the
process of transitioning from IPv4 networks to IPv6 networks,
and to increase the usefulness of peer-to-peer technologies,
Microsoft has also enabled IPv6 tunneling support in Windows
Vista; IPv4-based tunneling also appears to be available.

Some of these tunneling protocols, including Teredo, restore
global addressability to hosts behind NAT firewalls, increasing
the exposure of many users. We found that Vista requires a
capable firewall to be running in order for Teredo tunneling to
be active; this also appears to be the case for IPv4 over IPv6.
These are sensible security precautions but cannot compensate
for all of Teredo’s problematic security implications. Tunnel-
ing methods can be used to evade security controls, and that

SYMANTEC ADVANCED THREAT RESEARCH 16

is what Teredo does (though that was not the intent). Unless
network firewalls and IDSs are specifically aware of this
protocol, they will not be applying the appropriate filtering to
the IPv6 packet and its contents; this reduces defense-in-depth,
and may result in a failure to apply important security controls.
Compounding this issue is if Teredo will often be used on.
Teredo is enabled by default and we found that it was readily
used, despite Microsoft’s apparently inaccurate statements[36]
that downplay its level of activity. In addition, in our study of
Vista’s Teredo implementation, we found that some security
features recommended by the Microsoft-developed standard
were implemented minimally or at a strength less than that
recommended by the standard.

Firewalls and IDSs will have to consider the presence of
new Vista machines on their networks. If left unhandled and
unchecked, IPv6 and its accompanying transition technologies
allow an attacker access to hosts on private internal networks
without the administrator expecting this global accessibility.
Unwanted access can be prevented by analysis of IPv6 pro-
tocols in the firewall or IDS or by completely blocking all
IPv6 protocols. Implementation-specific behavior of the new
Vista stack allows an attacker to create ambiguous traffic that
may be improperly interpreted by a passive intrusion detection
device. IDSs will have to faithfully replicate Vista’s behavior
when analyzing data destined for Vista hosts. IDSs will also
have to analyze new protocols and new versions of existing
protocols or face being blind to their traffic.

In support of peer-to-peer communications, such as Peo-
ple Near Me and Windows Meeting Space and other local
network discovery, Microsoft Vista supports the new server-
less host information protocols LLTD, LLMNR, and PNRP.
Taken together, these technologies provide mechanisms to
discover and deliver payloads between peers. These features
are critical to the success of Microsoft’s peer-to-peer initiative,
but are also the same features an attacker needs to deliver
malicious content to his victims. We expect IPv6 and the
new peer-to-peer protocols to play an increasing role in the
delivery of malicious payloads as these technologies see wider
deployment.

In our review of LLTD and its implementation on Vista, we
found that the display of the network topology map that Vista
provides is not entirely trustworthy. As of the 5472 build, it
was possible with simple packet injection to achieve different
kinds of spoofing on the map (possibly even tricking a user
to visit an unintended web site as a result) and to cause the
mapping to completely fail. We did find definite signs that
Microsoft used a secure development life-cycle though, from
design to implementation.

Vista has a new version of Windows Firewall which may
contain unexpected quirks. One case, that at least users
may find surprising, is that when firewall exceptions become
enabled due to a feature such as People Near Me and Windows
Meeting Space, they are not disabled as a result of turning off
the feature; this can keep functionality such as ping activeor
make it easier for an attacker. Although the accessible ports
and built-in firewall exceptions seem generally reasonable, we
did find that in Vista’s default configuration, TCP port 5357
was usable from off-host.

IX. FUTURE WORK

Our analysis of the networking technologies available in
Windows Vista was both broad and sometimes deep. Due
to the finite amount of time available, we could not test
and review all areas of interest. In this new stack, with new
protocols, many potential areas of interest still exist.

At the link layer, we did not investigate the Ethernet, PPP or
PPPoE protocols, nor any of the link layer tunneling protocols,
and we did not investigate all of the features of the ND
protocol. We did look into the LLTD protocol, and we could
look at the reference and third-party implementations; we
could also update our results with a release or later build. We
did not study precisely when ARP broadcast replies would be
used.

At the network layer, we did not look into the ISATAP
or 6to4 tunneling protocols. Tunneling protocols often in-
validate some of the assumptions made in the design of
other protocols, which may have security consequences. An
analysis of attacks that could be performed in conjunction with
tunneling protocols would likely be fruitful. We did not getan
opportunity to try the different tunneling methods that appear
to be implemented (IPv4 over IPv6, IPv4 over IPv4, IPv6 over
IPv6, IPv6 over IPv4 and GRE) in order to understand what
is required for them to be usable; nesting these might also
prove interesting. All the tunneling protocols should be tested
more thoroughly for implementation flaws. It would also be
useful to map out the IPv6 options and option lengths that
Vista supports.

At the higher levels of the protocol stack we left the
LLMNR, PNRP, SSDP, and UPnP protocols completely un-
touched. These protocols should be analyzed and their security
implications understood. The SMB2 protocol was covered
summarily, but could also benefit from a deeper analysis. The
firewall could also use more testing, particularly to determine
how the firewall behaves when the same port is reused in IPv4
and IPv6 by different programs (or if that is even possible).

REFERENCES

[1] Aboda, B., D. Thaler, L. Esibov, “Link-local Multicast Name Reso-
lution (LLMNR),” RFC 4795, January 2007,〈http://www.ietf.
org/rfc/rfc4795.txt 〉

[2] Arkko, J., J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor
Discovery (SEND),” RFC 3971, March 2005,〈http://www.ietf.
org/rfc/rfc3971.txt 〉

[3] Bellovin, S., “Defending Against Sequence Number Attacks,”
RFC 1948, May 1996.〈http://www.ietf.org/rfc/rfc1948.
txt 〉

[4] Bellovin, S., “Security Problems in the TCP/IP ProtocolSuite,” Com-
puter Communications Review2:19, pp 32–48, April 1989.〈http:
//www.cs.columbia.edu/ ˜ smb/papers/ipext.pdf 〉

[5] Bellovin, S., “A Technique for Counting NATted Hosts,” Proc. Second
Internet Measurement Workshop, November 2002.〈http://www.
cs.columbia.edu/ ˜ smb/papers/fnat.pdf 〉

[6] British Telecom, “BT Exact IPv6 Tunnel Broker”.〈https://tb.
ipv6.btexact.com/ 〉

[7] Cain, B. and S. Deering, I. Kouvelas, B. Fenner, A. Thyagarajan,
“Internet Group Management Protocol, Version 3”, RFC 3376,October
2002.〈http://www.ietf.org/rfc/rfc3376.txt 〉

[8] Conta, A. and S. Deering, “Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specifica-
tion,” RFC 2463, December 1998.〈http://www.ietf.org/rfc/
rfc2463.txt 〉

SYMANTEC ADVANCED THREAT RESEARCH 17

[9] Cover Pages, “Microsoft Releases Web Services Dynamic Discovery
Specification (WS-Discovery)”,Cover Pages, October 2004.〈http:
//xml.coverpages.org/ni2004-02-17-b.html 〉

[10] Crawford, M., “Transmission of IPv6 Packets over Ethernet Net-
works,” RFC 2464, December 1998,〈http://www.ietf.org/
rfc/rfc2464.txt 〉

[11] Davies, J. “Changes to IPv6 in Windows Vista and Windows
Server ‘Longhorn’”, The Cable Guy, October 2005.〈http:
//www.microsoft.com/technet/community/columns/
cableguy/cg1005.mspx 〉

[12] Davies, J. “Network Location Types in Windows Vista”, The Ca-
ble Guy, Sept 2006.〈http://www.microsoft.com/technet/
community/columns/cableguy/cg0906.mspx 〉

[13] Deering, S. and R. Hinden, “Internet Protocol Version 6(IPv6) Spec-
ification,” RFC 2460, December 1998,〈http://www.ietf.org/
rfc/rfc2460.txt 〉

[14] Denis-Courmont, R., “Miredo : Teredo IPv6 tunneling for Linux and
BSD”. 〈http://www.simphalempin.com/dev/miredo/ 〉

[15] Farinacci, D., T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic
Routing Encapsulation (GRE)”, RFC 2784, March 2000.〈http:
//www.ietf.org/rfc/rfc2784.txt 〉

[16] Frantzen, M. and S. Xiao, “ISIC - IP Stack Integrity Checker 0.06,”
〈http://www.packetfactory.net/Projects/ISIC/ 〉

[17] Frost, G., “Quality Windows AV Experience (qWAVE) and
Network Quality of Service (QoS)”, Microsoft presentation.
〈http://download.microsoft.com/download/9/8/f/
98f3fe47-dfc3-4e74-92a3-088782200fe7/TWMO05011_
WinHEC05.ppt 〉

[18] Fyodor, “Nmap (Network Mapper),”〈http://www.insecure.
org/nmap/ 〉

[19] Fyodor, “Remote OS detection via TCP/IP Stack FingerPrinting,”
October 1998, 〈http://www.insecure.org/nmap/
nmap-fingerprinting-article.html 〉

[20] Hauser, V., “Attacking the IPv6 Protocol Suite,” CORE05, Novem-
ber 2005. 〈http://www.thc.org/papers/vh_thc-ipv6_
attack.pdf 〉

[21] Hinden, R. and B. Haberman, “Unique Local IPv6 Unicast Ad-
dresses”, RFC 4193, October 2005.〈http://www.ietf.org/
rfc/rfc4193.txt 〉

[22] Hoagland, J., “The Teredo Protocol: Tunneling Past Network
Security and Other Security Implications”, Symantec Response
whitepaper, November 2006.〈http://www.symantec.com/
avcenter/reference/Teredo_Security.pdf 〉

[23] Huitema, C., “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs)”, RFC 4380. February 2006.〈http:
//www.ietf.org/rfc/rfc4380.txt 〉

[24] Internet Assigned Number Authority, “Protocol Numbers,”
IANA registry. 〈http://www.iana.org/assignments/
protocol-numbers 〉

[25] Internet Assigned Number Authority, “Port Numbers,” IANA registry.
〈http://www.iana.org/assignments/port-numbers 〉

[26] Johnson, D., C. Perkins and J. Arkko, “Mobility Supportin IPv6”,
RFC 3755. June 2004.〈http://www.ietf.org/rfc/rfc3755.
txt 〉

[27] Marchand, J-B, “Network Store Interface”, Windows Network Ser-
vices Internals, May 2006.〈http://www.hsc.fr/ressources/
articles/win_net_srv/msrpc_winnsi.html 〉

[28] Marchand, J-B, “RPC services protection”, Windows Network Services
Internals, May 2006. 〈http://www.hsc.fr/ressources/
articles/win_net_srv/rpc_services_protection.
html 〉

[29] Microsoft, “Appendix A: TCP/IP Configu-
ration Parameters”. 〈http://technet2.
microsoft.com/WindowsServer/en/library/
db56b4d4-a351-40d5-b6b1-998e9f6f41c91033.mspx 〉

[30] Microsoft, “Be Wary of Other RPC Endpoints Running in the
Same Process,” Platform SDK.〈http://msdn2.microsoft.
com/en-us/library/aa373564.aspx 〉

[31] Microsoft, ”/GS (Buffer Security Check)”, MSDN,〈http://msdn2.
microsoft.com/en-us/library/8dbf701c.aspx 〉

[32] Microsoft, “IPv6 Transition Technologies,” November2002.
〈http://www.microsoft.com/windowsserver2003/
techinfo/overview/ipv6coexist.mspx 〉

[33] Microsoft, “Link Layer Topology Discovery Protocol Specifica-
tion”, Sept 2006.〈http://www.microsoft.com/whdc/Rally/
LLTD-spec.mspx 〉

[34] Microsoft, “Microsoft Security Bulletin MS06-032”, June 2006.
〈http://www.microsoft.com/technet/security/
Bulletin/MS06-032.mspx 〉

[35] Microsoft, “Quality Windows Audio-Video Experience -qWave”,
August 2002.〈http://www.microsoft.com/whdc/device/
stream/qWave.mspx 〉

[36] Microsoft. “Teredo Overview.”〈http://www.microsoft.com/
technet/prodtechnol/winxppro/maintain/teredo.
mspx〉.

[37] Microsoft, “Tracing”, MSDN. 〈http://msdn2.microsoft.
com/en-us/library/ms764325.aspx 〉

[38] Microsoft, “Understanding Mobile IPv6”, January 2007. 〈http:
//www.microsoft.com/downloads/details.aspx?
FamilyID=f85dd3f2-802b-4ea3-8148-6cde835c8921 〉

[39] Microsoft, “Windows Rally: Web Services on Devices”.〈http://
www.microsoft.com/whdc/rally/rallywsd.mspx 〉

[40] Microsoft, “Teredo”, MSDN.〈http://msdn2.microsoft.com/
en-us/library/aa965909.aspx 〉

[41] Microsoft, “Link Layer Topology Discovery (LLTD)
Responder”, KB 922120. 〈http://www.microsoft.
com/downloads/details.aspx?familyid=
4F01A31D-EE46-481E-BA11-37F485FA34EA 〉

[42] Microsoft, “Windows Driver Kit: Network Devices and Protocols:
NET BUFFER”. 〈http://msdn2.microsoft.com/en-us/
library/ms798961.aspx 〉

[43] Microsoft, “Windows Filtering Platform”. 〈http://www.
microsoft.com/whdc/device/network/WFP.mspx 〉

[44] Microsoft, “Windows Rally: Connectivity Technologies for Devices”.
〈http://www.microsoft.com/whdc/rally/default.
mspx〉

[45] Microsoft, “Windows Rally Development Kit”, January 2007.〈http:
//www.microsoft.com/whdc/rally/rallykit.mspx 〉

[46] Morris, R., “A Weakness in the 4.2 BSD Unix TCP/IP Software,” Bell
Labs Computer Science Technical Report 117, February 1985.〈http:
//pdos.csail.mit.edu/ ˜ rtm/papers/117.pdf 〉

[47] Narten, T. and R. Draves, “Privacy Extensions for Stateless Address
Autoconfiguration in IPv6”, RFC 3041, January 2001.〈http://
www.ietf.org/rfc/rfc3041.txt 〉

[48] Narten, T., E. Nordmark, and W. Simpson, “Neighbor Discovery for
IP Version 6 (IPv6),” RFC 2461, December 1998.〈http://www.
ietf.org/rfc/rfc2461.txt 〉

[49] Newsham, T. and J. Hoagland, “Windows Vista Network Attack
Surface Analysis: A Broad Overview” (first edition), Symantec Re-
sponse whitepaper, July 2006.〈http://www.symantec.com/
avcenter/reference/ATR-VistaAttackSurface.pdf 〉

[50] Newsham, T. and T. Ptacek, “Insertion, Evasion and Denial of Service:
Eluding Network Intrusion Detection,” Secure Networks, Inc. Tech-
nical Report, January 1998.〈http://citeseer.ist.psu.edu/
ptacek98insertion.html 〉

[51] Newsham, T., “The Problem with Random Increments,” Guardent
Technical Report, February 2001.〈http://www.thenewsh.com/
˜ newsham/random-increments.pdf 〉

[52] Plummer, D., “An Ethernet Address Resolution Protocol,” STD
37, RFC 826, November 1982.〈http://www.ietf.org/rfc/
rfc0826.txt 〉

[53] Postel, J., “Internet Protocol,” STD 5, RFC 791,〈http://www.
ietf.org/rfc/rfc791.txt 〉

[54] Ricketts, M. “SendIP”, Project Purple.〈http://www.earth.li/
projectpurple/progs/sendip.html 〉

[55] Scobleizer, “Abolade Gbadegesin and team - Networkingin Win-
dows Vista,” Channel 9 interview,〈http://channel9.msdn.
com/Showpost.aspx?postid=116349 〉

[56] Seki, H., “Fingerprinting through RPC,” BlackHat 04, July
2004. 〈http://www.blackhat.com/presentations/
win-usa-04/bh-win-04-seki-up2.pdf 〉

[57] Song, D., DSniff 2.3, December 2000.〈http://naughty.
monkey.org/ ˜ dugsong/dsniff/ 〉

[58] The UPnP Forum, “UPnP Forum”.〈http://www.upnp.org/ 〉
[59] Vida, R., L. Costa, “Multicast Listener Discovery Version 2 (MLDv2)

for IPv6”, RFC 3810, June 2004.〈http://www.ietf.org/rfc/
rfc3810.txt 〉

[60] The Wireshark Project, “SMB2,”〈http://wiki.wireshark.
org/SMB2 〉

[61] The Wireshark Project, “Wireshark: The World’s Most Popular Net-
work Protocol Analyzer”.〈http://www.wireshark.org/ 〉

SYMANTEC ADVANCED THREAT RESEARCH 18

[62] Zalewski, M., “Strange Attractors and TCP/IP Sequence
Number Analysis,” BindView Technical Report, April 2001.
〈http://www.bindview.com/Services/Razor/Papers/
2001/tcpseq.cfm 〉

[63] Zhang, J. “Diagnosing SideBySide Failures”, Junfeng Zhang’s Win-
dows Programming Notes, April 2004.〈http://blogs.msdn.
com/junfeng/archive/2006/04/14/576314.aspx 〉

SYMANTEC ADVANCED THREAT RESEARCH 19

APPENDIX I
TEST NETWORKS

Three different test network were used for the results presented in this paper. The main one (section I-A) used the release
build of Vista; unless otherwise noted, this is the network that is in use. Our LLTD-related research was completed usingbuild
5472 on the LLTD test network (section I-B) and our dedicatedTeredo-related research was completed using Vista RC2 on
the Teredo test network (section I-C).

A. Main Test Network

Our main test network consists of three physical hosts and three additional virtual hosts, as shown in Figure 8. The virtual
hosts run under VMware 5.5 running on Windows XP, and are connected to the test network via bridged mode. The test
network is isolated and has no routers or switches or any access outside the network; the three physical hosts are connected via
a 10/100 Mbps Ethernet hub. Inside Vista, the network is typically configured as private network[12]; however, Vista sometimes
automatically changes this setting (e.g. when it does not recognize the network), so this may not be the case consistently.

All four Vista hosts (two virtual, two laptops) are running clean installations of the Release To Manufacturing (RTM) build
of Vista (build 6000, November 2006). Minimal configurationchanges were made, except where otherwise noted in this report.
Static IPv4 addresses from the 192.168.0.0/24 address space were configured on Vista. No IPv6 configuration was conducted,
so the Vista machines have a link-local address (fe80::/64); these addresses are RFC 3041 privacy addresses[47], whichwe
never saw change (except as a result of neighbor discovery spoofing, see section VI). A single account was created on all the
hosts, and that was the result of Vista’s guided setup.

A virtual Debian Linux host served as our analysis platform.On this host, we used shell variables to represent the IPv4,
IPv6, and MAC addresses of various hosts, and used those in place of the actual addresses on the command line; we found
this method improves the accuracy of testing and makes it simpler. Those shell variables are shown in this paper as part of
Linux command lines (though we show the actual addresses forWindows command prompt and in the output of scripts).

We list the usual addresses and associated shell variables for the hosts in the following table:

Hostname IPv4 address IPv6 address MAC address
acervista 192.168.0.200 ($acerIP4) fe80::ed59:b7ac:fc61:f865 ($a cerLL6) 00:c0:9f:d2:0c:f8 ($acerMAC)

hpvista 192.168.0.201 ($hpIP4) fe80::45dc:1fa6:3777:a480 ($hpL L6) 00:14:c2:d5:7e:96 ($hpMAC)

vmvista 192.168.0.203 ($vmIP4) fe80::19e6:47a7:f579:3dfc ($vmL L6) 00:0c:29:72:e4:82 ($vmMAC)

vmvista2 192.168.0.204 ($vm2IP4) fe80::f426:13fe:e8e7:720c ($vm 2LL6) 00:0c:29:1b:50:aa ($vm2MAC)

linux 192.168.0.102 ($linuxIP4) fe80::20c:29ff:fecd:b316 ($l inuxLL6) 00:0c:29:cd:b3:16 ($linuxMAC)

B. LLTD Test Network

The computing environment used to perform the analysis of LLTD was as follows:

• 1 x Linksys ADSL Hub and Router
• 1 x Windows XP SP1 Host
• 2 x Windows Vista Beta 2 (32-bit), Build 5472 Hosts

The two Microsoft Windows Vista hosts were running as guest operating systems within VMWare Server 1.0.0. A logical
network diagram can be seen in Figure 9.

Fig. 8. The logical layout of our main test network. Three virtual hosts run under VMware on Windows XP.

SYMANTEC ADVANCED THREAT RESEARCH 20

� � � � � � �
� � 	
 � � �
 � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � �
� � 	
 � � �
 � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � �
� � 	
 � � �
 � � � � � � � � �

� �

! � "

� � � � �

� � � �
 � � �

Fig. 9. The logical layout of LLTD test network.

Fig. 10. The logical layout of Teredo test network.

C. Teredo Test Network

The computing environment used to perform the analysis of Teredo was as follows:

• 1 x Linksys ADSL Hub and Router
• 1 x Linux Host
• 1 x Windows Vista Host

A logical network diagram can be seen in Figure 10. This Vistahost ran the latest Vista builds available at the time of
testing, which was Beta 2 (5536), RC1 (5600), or RC2 (5744).

All testing was done with a restricted cone NAT.

SYMANTEC ADVANCED THREAT RESEARCH 21

APPENDIX II
LLTD I NTRODUCTION

As part of Symantec’s research into the attack surface presented to the network by Windows Vista, we studied the Link
Layer Topology Discovery (LLTD) protocol. We looked into its security model and attempted to find previously unknown
vulnerabilities in the LLTD protocol and its implementation in Microsoft Windows Vista. This research was performed onthe
latest Beta 2 build available at that time, which was 5472. This has not been updated for the release build of Vista: the Vista
build that is the subject of most of the rest of this report. Weintroduce LLTD in this appendix and present our analysis and
findings in Appendix III.

A. Background

The Link Layer Topology Discovery (LLTD) protocol is a layer2 protocol that operates over 802.3 (Ethernet) and 802.11
(Wireless Ethernet) to aid in the discovery and documentation of network topology of small networks. In addition, LLTD can
also be used in the detection and location of network bottlenecks which result in a lower quality of service (QoS). LLTD was
originally designed and developed as part of the Windows Rally set of technologies which is described in the following terms
by Microsoft, “designed to provide manufacturers of network-connected devices with an architecture that enables effortless
setup, more secure and manageable connectivity to other devices and computers, and rich end-user experiences.”[44].

In [33], Microsoft describes LLTD as follows: “... the LLTD protocol operates at Layer 2 in the OSI reference model and
as such is not routable. The protocol is suitable only for networks comprising a single subnet, such as a small office network
or a home network.”

Microsoft goes on to describe the services which are available in LLTD:

• Quick discovery
• Topology discovery
• Quality of service diagnostics for network test
• Quality of service diagnostics for cross-traffic analysis

The purpose of Symantec’s research was to identify generic attacks against the protocol, as well as Microsoft’s implementation
within Microsoft Windows Vista.

In January 2007, Microsoft released a Windows Rally development kit and sample code[45]. This first release is designed
to help in the development of the LLTD protocol. It was not available as a source of insight in time for this research.

B. LLTD Protocol Overview

LLTD messages use Ethernet type 0x88D9 and are compromised of two base headers which are present in all packets. A
third upper-layer header varies depending on the type of LLTD service and function. There are four layers of headers: Ethernet,
the Demultiplex Header, the Base Header, and an upper layer header.

Ethernet (802.3 or 802.11) Topology Upper Layer Headers: QoS Upper Layer Headers:
Demultiplex Header: Discover QoSInitalizeSink

LLTD Version Hello QoSReady
Type of Service Query QoSProbe
LLTD Function Query Response QoSQuery

Base Header: Query Large QoSQueryResp
Real Source MAC Query Large Response QoSReset
Real Destination MAC Emit QoSError
LLTD Sequence Number Probe QoSAck

Flat QoSCounterSnapshot
Train QoSCounterResult
Ack QoSCounterLease

The typical protocol flows can be seen in Figure 11.

C. LLTD Security Model

As LLTD is a non-routable protocol which elicits only basic information from hosts there are minimal requirements with
regards to authentication, authorization and confidentiality. LLTD’s security has been primarily designed to thwart Denial of
Service attacks being triggered by the usage of LLTD traffic against a LAN.

The only exception to this is that certain packets can be broadcast. An attacker can conceivably send these to the LAN’s
broadcast address and affect many different hosts if a vulnerability were discovered. The packets that can be sent to the
broadcast address are shown in tables 12 and 13 (both based on[33]).

SYMANTEC ADVANCED THREAT RESEARCH 22

Typical Protocol Flow- Topology & Quick Typical Protocol Fl ow- QoS

Fig. 11. The typical communication that occurs during a topology discovery and QoS analysis and how they relate.

Function Value Broadcast?
Discover 0x00 Required
Hello 0x01 Required
Emit 0x02 No
Train 0x03 No
Probe 0x04 No
Ack 0x05 No
Query 0x06 No
QueryResp 0x07 No
Reset 0x08 Permitted
Charge 0x09 No
Flat 0x0A No
QueryLargeTlv 0x0B No
QueryLargeTlvResp 0x0C No

Fig. 12. The LLTD topology related packet types and their broadcast state.

As previously mentioned, LLTD’s security features are designed to mitigate denial-of-service conditions. Within the
specification ([33]), Microsoft makes explicit exactly howand when data should be sent, received, and processed.

The security mechanisms within LLTD can be broadly described as follows.

• Minimal traffic sent to the broadcast address.
• No traffic with a source address of the broadcast address should be replied to.
• A mapping host must accrue credit with a responder in order for the responder to send a PROBE in response to an EMIT

command. Credit is based upon both size of data and number of packets. Credit is accrued through the mapping host
sending CHARGE packets to the responder.

• Accrued credit is valid only within a strict time limit; thisrestriction prevents malicious hosts accruing vast amounts of
credit in order to unleash on a target.

• Strict time limits are enforced when processing certain protocol states and packets, such as QUERY and QUERY
RESPONSE packets.

The emit phase of the protocol has the following security precautions, which are performed on all triplets within the EMIT
packet[33]:

“For security reasons, a responder must perform the following checks before placing Train or Probe frames on
the wire:

• The Emit request must not have been sent to the broadcast address.
• Train and Probe src field must equal the Responder’s normal address or be within the range of the organizationally

unique identifier (OUI) that is allocated to Microsoft for this protocol.
• Trains and Probe dst field must not be Ethernet broadcast or multicast.”

SYMANTEC ADVANCED THREAT RESEARCH 23

Function Value Broadcast?
QosInitializeSink 0x00 No
QosReady 0x01 No
QosProbe 0x02 No
QosQuery 0x03 No
QosQueryResp 0x04 No
QosReset 0x05 No
QosError 0x06 No
QosAck 0x07 No

Fig. 13. The LLTD QoS related packet types and their broadcast state.

These security mechanisms mitigate the impact of a whole range of different attacks previously seen with other protocols,
such as amplification attacks.

SYMANTEC ADVANCED THREAT RESEARCH 24

APPENDIX III
LLTD A NALYSIS AND FINDINGS

A. Vista LLTD Implementation

The implementation of LLTD on Vista is broken down into a number of operating system components; these are described
in Figure 14.

The key client and server components (lltdio.sys, rspndr.sys, lltdsvc.dll and lltdapi.dll) were all verified as compiled with the
/GS flag under Microsoft Visual Studio[31]. The mechanism enabled by this flag is designed to mitigate against the successful
exploitation of stack based buffer overflows.

A small amount of function use analysis was conducted against lltdsvc.dll. The result confirmed that all string handling
functions are performed with safe equivalents, such as the following:

• StringCbCopyW(ushort *,uint,ushort const *)
• StringCbPrintfW(ushort *,uint,ushort const *,...)
• StringCchCatA(char *,uint,char const *)
• StringCchCatW(ushort *,uint,ushort const *)
• StringCchCopyA(char *,uint,char const *)
• StringCchCopyW(ushort *,uint,ushort const *)
• StringCchLengthA(char const *,uint,uint *)
• StringCchLengthW(ushort const *,uint,uint *)
• StringCchPrintfA(char *,uint,char const *,...)
This result, combined with our analysis of the implementation through fuzzing and test case creation, demonstrates that

Microsoft has made a concerted effort to protect against common vulnerabilities that may yield a remote compromise of the
host.

It should be noted that there were examples of unsafe functions calls such as memcpy() and memmove() used in a number
of the kernel drivers. However, the instances analyzed did not reveal any exploitable conditions.

We also note is that the QoS component of LLTD in Microsoft Windows Vista appears to be taken from the qWave (Quality
Windows Audio-Video Experience) framework[17], [35], which is designed specifically for QoS services in A/V rich wireless
environments.

B. Disabling LLTD Within Vista

LLTD is covered by the “Network Discovery” item in the “Sharing and Discovery” section component of the “Network and
Sharing Center” control panel of Microsoft Windows Vista. It should be noted that disabling this item disables the “Network
Discovery” firewall group (see Appendix XXI-C.1), and hencethis action affects UPnP, SSDP, NetBIOS, WS-Discovery, and
LLMNR, in addition to LLTD.

Microsoft provides the option to disable this on a per-network-interface basis, regardless of its demarcation as public or
private (see Figure 15).

It was observed that if “Network Discovery” is turned off while the Network interface is configured as a “Private Network”
and the user selects “View full map”, then no network traffic will originate from the host. The result is that only the user’s

File Role

lltdio.sys Kernel I/O driver which handles all NDIS interactions for discovery; presents to the operating
system as\ Device\ lltdio; responsible for discovery of other hosts on the network as well as
determining network bandwidth.

rspndr.sys Kernel I/O driver which handles all NDIS interactions for responding; presents to the operating
system as\ Device\ rspndr; responsible for answering mapper requests to enable the host to be
discovered on the network.

qwavedrv.sys Kernel I/O driver related to qwave.dll.

lltdsvc.dll Service which runs as “Local Service” and communicates with the LLTD I/O kernel driver
lltdio.sys.

lltdapi.dll Used by the user’s explorer process to interactwith the lltdsvc service via COM.

qwave.dll Used for QoS related services; holds its configuration parameters in the registry, which allows the
turning on of tracing.

networkmap.dll Used by the user’s Explorer process to draw the network topology map and interacts with
lltdapi.dll.

Fig. 14. The LLTD Windows Vista components and their roles.

SYMANTEC ADVANCED THREAT RESEARCH 25

Fig. 15. Option to enable or disable Network Discovery on 5472 Vista

host, network, and Internet objects are included in the finaltopology map. However, while in this state, if another host sends
an LLTD DISCOVER packet, then the host with “Network Discovery” disabled responds with a HELLO packet. The result is
that the responding host is included in the topology map of the network.

The above is not true if the network interface is configured asa “Public Network”. In this scenario, no information will be
solicited from the target host.

Another method of disabling LLTD on a per-network-interface basis is to manually unbind the kernel drivers from the
specific interface. This can be achieved via the “Network Connections” control panel applet (See Figure 16).

C. Topology Map in Vista

The topology map, as displayed on Microsoft Windows Vista (Figure 1), is actually produced by the user’s Explorer process
with the support of two DLLs (NetworkMap.dll and XMLLite.dll), both of which reside in the System32 directory on the host.
The Explorer process loads NetworkMap.dll; NetworkMap.dll is itself a COM object that operates as a Control Panel plug-in.
NetworkMap.dll, in turn, uses the LLTDAPI to communicate with the LLTDSVC service via COM to initiate a mapping
session. LLTDAPI and LLTDSVC create the map which is then passed back to the NetworkMap COM component for parsing
and display.

D. Hosts with Multiple Interfaces

We found that hosts with multiple interfaces do not retransmit LLTD packets received on one interface over a different
interface. That is, any LLTD traffic (including probes) received on an interface for one network is not retransmitted to asecond

SYMANTEC ADVANCED THREAT RESEARCH 26

Fig. 16. Protocol Bindings Under Vista

Fig. 17. Additional hosts discovered via NetBIOS

network, even if there is another interface that connects toit. Machines that are multi-homed, and that wish to perform a
network map, must do so separately for each interface present.

E. Interaction with Other Protocols

LLTD does not interact with other protocols directly; however, the Microsoft Windows Vista Network Map does. Figure 17
shows two additional hosts discovered on the network: “HAIL” and “MARITE”. The Network Map learned of these additional
hosts from the NetBIOS name table (Figure 18). Due to the factthat neither of these hosts are running LLTD responders,
the Network Map has no way of knowing where they exist within the topology, and thus they are placed at the bottom of the
diagram. Hosts that are discovered by way of the NetBIOS nametable become clickable within the map (Figure 19). If the
user left-clicks on the host’s icon, a connection attempt ismade via NetBIOS using its UNC name. If the user right-clicks
upon the hosts icon, they are presented with the menu seen in Figure 19.

The other protocol which the Network Map uses to discover andinteract with hosts is UPnP[58]. UPnP-enabled devices
also become clickable in a similar fashion to those discovered via NetBIOS. However, instead of attempting a connectionvia
NetBIOS when the user left-clicks on the device, it will instead automatically open Internet Explorer and connect the host on
port 80. When the user right-clicks on an UPnP-enabled device, they are able to display a properties dialog box (see Figure 20).
This provides a wealth of information about the device obtained via UPnP.

F. Policy Controls

Microsoft provides group policy settings to allow administrators to control the usage of LLTD within an enterprise
environment. All of the policy settings exist under the registry key: HKLM\ SOFTWARE\ Policies\ Microsoft\ Windows\ LLTD.

SYMANTEC ADVANCED THREAT RESEARCH 27

C:\Users\Ollie>nbtstat -r

NetBIOS Names Resolution and Registration Statistics
--- -

Resolved By Broadcast = 19
Resolved By Name Server = 0

Registered By Broadcast = 6
Registered By Name Server = 0

NetBIOS Names Resolved By Broadcast

MARITE <00>
HAIL
MARITE
HAIL
MARITE
HAIL
MARITE
VISTA02

Fig. 18. NBTSTAT output

Fig. 19. Right-click menu for NetBIOS discovered host

Each setting is a DWORD, which should be set to either 0 or 1 to enable or disable, respectively. Each of the group policy
settings is explained in the following:
Policy Registry DWORD Comment
EnableLLTDio If set to 0 will disable the networking mappingability under “Network and Sharing Center”
ProhibitLLTDioOnPrivateNet If set to 1 will disable LLTD oninterfaces marked as on a “Private” network.
AllowLLTDioOnPublicNet If set to 1 will enable LLTD on interfaces marked as on a “Public” network.
AllowLLTDioOnDomain If set to 1 will enable LLTD on a networkinterface where the domain controller for the

domain the host is a member of can be communicated with.

G. Mapper and Responder Relationship

Within LLTD topology discovery are the concepts of “Mapper”and “Responder”. The Mapper, as the name implies, is the
host that initiates a mapping session for the network, and isthe host on which the topology map is displayed. The Responder
is an agent that is present on one or more hosts, which when requested interacts with the Mapper9.

A Mapper may communicate with one or more responders at any one time, however only one Mapper may be active on the
network at a time.

H. Generation and Sequence Numbers

LLTD has the concepts of “generation” and “sequence numbers”. These are not designed to provide security as the number
is only a 32-bit number that is typically incremented. For more information, refer to the sections “Base Header Format”,
“Generation Numbers”, and “Sequence Number Management” inthe LLTD specification document[33].

9An LLTD responder is available for Windows XP[41], but we have not studied it.

SYMANTEC ADVANCED THREAT RESEARCH 28

Fig. 20. UPnP output from Gateway

Fig. 21. Symantec LLTD Responder supplied icon

I. Device Supplied Images

This following does not describe an attack and it is only included for informational purposes. Within LLTD, two of the
optional TLV types available within the HELLO packet are 0x0E (icon image) and 0x18 (detailed icon image). These allow a
responder to supply their own Windows Icon to be shown in the Network Map.

The following restrictions are placed upon these images[33]:

”..... ensure that the Icon Image TLV is set in the Hello frameif the image is smaller than or equal to 32,768
octets. Otherwise, set only this Detailed Icon Image TLV in the Hello frame if the icon image is greater than 32,768
octets and smaller than or equal to 262,144 octets.”

Symantec implemented this feature within its LLTD responder, the result of which is shown in Figure 21. We simply supply
a very small black bitmap icon file, which is shown in the network map.

This feature currently poses no threat to Microsoft WindowsVista. However, if an icon file format parsing bug is discovered in
the future, this would be a vector for exploitation. Conceivably, this feature can be used in pranks or as part of a deception-based
attack.

It should also be noted that two formats are supported for theicon images: the traditional bitmap and the Portable Network
Graphics (PNG) format. Research into Microsoft’s handlingof PNG parsing was outside the scope of this project, so may
represent an uninvestigated attack surface.

SYMANTEC ADVANCED THREAT RESEARCH 29

+--------+--------+--------+--------+--------+----- ---+
|00000010|00000100| Characteristics |
+--------+--------+--------+--------+--------+----- ---+
Type=0x02 Length=4

This property allows a responder to report various simple ch aracteristics of its host or the
network interface that it is using.
MSB
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N|N|F|M|L| | | | | | | | | | | |
|P|X|D|W|P|0|0|0|0|0|0|0|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | | | | | | | | | | | | | | | |
|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

LSB
Bits 0-28: Reserved, must be zero.
Bit 27: (LP) 1 = Interface is looping back outbound packets.
Bit 28: (MW) 1 = Device has management Web page accessible via HTTP protocol. The mapper
constructs a URL from the reported IPv6 address. If one is not available, the IPv4 address is
used instead. The URL is of the form: http://<ip-address>/
Bit 29: (FD) 1 = Interface is in full duplex mode.
Bit 30: (NX) 1 = Interface is NAT-private side.
Bit 31: (NP) 1 = Interface is NAT-public side.

Fig. 22. LLTD Hello packet TLV characteristics, from [33].

J. Internal XML Representation

Within the EXPLORER process that displays the Network Map onMicrosoft Windows Vista, XML is used to describe the
network elements, their properties, and their connections. This is then parsed and the network map drawn. During the course
of the research, it was hypothesized that it may be possible to perform an XML injection attack to influence the network map.

In order to either prove or disprove this hypothesis, it is important to understand the internal XML schema that is used by
the Network Map application. We show the results in AppendixIV.

The research showed that XML injection is not possible due tothe fact that the less than (<) and greater than (>) characters,
which are used to delimit an XML tag, are encoded as their equivalent XML entities (“<” and “>”, respectively). For
example, a hostname of “</>A” would be converted to “</>A”. The result of this encoding is that the characters become
benign in the context of the XML.

K. Attack: Spoof and Management URL IP Redirect

One of the attacks discovered during the course of the research into LLTD was the “Spoof and Management URL IP
Redirect” attack.

Within LLTD HELLO packets, one of the TLV fields contains the characteristics of the device in question (see Figure 22).
One of these characteristics (located at bit 28) is the whether or not the device has a management web interface. This “MW”
characteristic can be combined with two other TLV types 0x07(the device’s “IPv4 Address”) and with 0x0F (the device’s
“Machine Name”) in order to spoof another device on the network.

The result of this attack can be seen in Figure 23: two hosts appear on the network with the same name. The key difference
between the two hosts displayed is that the second is fake (our malicious host), which is to say while the MAC address is
valid (i.e. the attacker’s), the real hostname is “RAIN” andits IP address is 192.168.1.102. Microsoft Windows Vista’smapper
does not appear to verify that the MAC and IP address combination contained in an LLTD packet relate to actual hostnames
or IP addresses on the network.

The result of this is that when the second VISTA02 host (lowerof the two) network map item is clicked (the method
of gaining access to other hosts) or the user right-clicks and selects “Management URL”, the user’s Internet Explorer is
automatically loaded and directed to the external IP address of 216.239.113.101 (www.news.com). This relationship can be
seen in Figure 24. This popup displays for a few seconds when the user hovers their mouse over the network device’s icon.
Thus an attacker can cause a user to go to a different web site than they expected.

L. Attack: Spoof on Bridge

The “Spoof on Bridge” attack works by making the Microsoft Windows Vista’s mapper modify its network diagram to make
our attacking host appear physically closer to the spoofed host. In the previous example it was easy to differentiate between
the two hosts due to their different locations within typology.

SYMANTEC ADVANCED THREAT RESEARCH 30

Fig. 23. Two hosts with same name, different IPs and MACs

The “Spoof on Bridge” attack works by spoofing the Layer 2 MAC address, providing the MAC address of the spoofed host
while maintaining a different LLTD BASE header MAC. The BASEheader “Real Source” field under normal circumstances
in a HELLO packet would be same MAC as that found at Layer 2 (Ethernet / Wireless Ethernet). In instances where this
is not the case it is assumed that the spoofed host is acting asa bridge and that the spoofing host is actually behind it. The
result of the attack can be seen in Figure 25. This attack can be extended to cause many fake hosts to appear in the network
topology map.

One interesting characteristic of this attack is that the attacking host cannot be seen by the spoofed host when it performs
a network map. One advantage of this type of attack for the attacker, is that the attacking host only has to send a HELLO
packet; all other packets, such as the PROBE and QUERY packets, are sent for processing to the Layer 2 MAC of the host
that is being spoofed. Switches that enforce Layer 2 security controls to mitigate ARP spoofing would mitigate the risk ofthis
attack as well.

M. Attack: Total Spoof

The Total Spoof attack, as the name implies, allows an attacker to completely spoof another host on the network. This is
essentially a race condition. When the attacking host sees the DISCOVERY packet from the mapper, they must be able to
generate a HELLO packet with the spoofed host’s MAC address in the Layer 2, BASE header, and HELLO TLV parts of the
packet.

If the attacking host’s reply is received by the mapper before that from the spoofed host, then the details in the attacking
host’s reply will be used in the network map instead of the details provided by the spoofed host. If the attacking host’s reply
is observed by the spoofed host (which it should be, as it is sent to the broadcast address), before the spoofed host transmits
its own reply, it will not transmit. Even though the spoofed host does not respond to the mapper’s initial DISCOVERY packet,
it will still reply to QUERY and PROBE packets allowing the mapping operation to complete successfully. The result of this
attack can be seen in Figure 26.

We can see in Figure 26 that the details from the spoofed HELLOpacket sent by “RAIN” are used on the network diagram
when describing VISTA02. This can be used by an attacker to redirect traffic for known hosts in certain circumstances, such
as for a management URL to an external IP address. This shouldnot impact users who use this method to connect to file and
print sharing, as that will use the UNC path and not the IP address.

Switches that enforce Layer 2 security controls to mitigatethe risk of ARP spoofing would also mitigate the risk of this
attack as well.

N. Denial of Service

There are a number of ways to cause the mapping process to totally fail. The research showed that the mapping process
could be made to fail reliably by not sending ACKs in responseto EMIT packets from the mapper. This result can be seen in
Figure 27. A single malicious responder on the network can achieve this.

SYMANTEC ADVANCED THREAT RESEARCH 31

Fig. 24. Vista network map information popup

Fig. 25. “Spoof on Bridge” attack

Fig. 26. Result of the “Total Spoof” attack

SYMANTEC ADVANCED THREAT RESEARCH 32

Fig. 27. Mapping denial of service.

A number of SideBySide errors were be present in the Application Event Log on the mapping host. Using the method
described by Microsoft to debug SideBySide errors[63], thefollowing debug information was obtained:

=================
Begin Activation Context Generation.
Input Parameter:

Flags = 0
ProcessorArchitecture = x86
CultureFallBacks = en-US;en
ManifestPath = C:\Windows\system32\NetworkMap.dll
AssemblyDirectory = C:\Windows\system32\
Application Config File =

INFO: Parsing Manifest File C:\Windows\system32\Network Map.dll.

INFO: Manifest Definition Identity is (null).
ERROR: Line 3: XML Syntax error.

ERROR: Activation Context generation failed.
End Activation Context Generation.

As can be seen above, the error occurs due a malformed XML element. The result is that no map is drawn. To sustain this,
the attacker must simply have a malicious responder on the segment in question.

O. Quality of Service Component

The Quality of Service (QoS) component of LLTD was briefly researched. It was determined that, as this is a non-broadcast
protocol, it poses even less of a threat than the topology component. In addition, the QoS protocol packets only support variable

SYMANTEC ADVANCED THREAT RESEARCH 33

length payloads in three packets: QoSProbe (sent from the controller (source) to the sink (destination)), QosQueryResp (sent
from the sink to the controller), and QoSCounterResult (sent from the sink to the controller).

The only observations that raised concern were those relating to the QoSProbe packet:

• probegap contains an 802.1p (QoS) element to be included in the 802.1q component of the packet. However, no 802.1q/p
enabled switches were available during this research to enable further study of the potential impact of this.

• probegap contains a variable size payload, which is replicated on the return path. No maximum size exists for this; as a
result, it is only limited to the maximum 802.3 or 802.11 frame size.

• during timed probe the sink (receiver) has to be able to allocate space for 82 probe packets which can contain the variable
size payload; as a result, the sink has to dynamically allocate memory to store this.

The implementation was not assessed.

P. Other Attempted Test Cases

Figure 28 documents the test cases which were attempted during the course of the research in to LLTD and the observed
results.

SYMANTEC ADVANCED THREAT RESEARCH 34

Documented Test Cases and Results
Test LLTD Pkt Type Result

Set the LLTD Demultiplex type to TOPOLOGY and
service to PROBE and have no LLTD Base header.

Demultiplex No impact

Set the LLTD Base “Real Source” header field to the
broadcast MAC address (FF:FF:FF:FF:FF:FF).

Base Device’s MAC address is noted as
FF:FF:FF:FF:FF:FF in network map

Set the LLTD Base “Real Source” header field to
the broadcast MAC address (FF:FF:FF:FF:FF:FF) in a
HELLO packet.

Base No response from hosts

Send unknown TLV types. Hello No impact

Send many TLV types, up to the maximum frame size. Hello No impact

Set Machine Name to over 32bytes in length and have the
correct length in TLV section of packet.

Hello Device called Unknown in network map

Send an IP address over 4 bytes in length and have the
correct length in TLV section of packet.

Hello IP address omitted from network map

Send an IP address over 4 bytes in length and have an
incorrect length in TLV section of packet.

Hello TLV Device omitted from network map

Omit the mandatory “Host ID” TLV field. Hello Device omitted from network map

Include multiple entries for the same TLV field. Hello Only first instance is used in network map

Use a machine name TLV field containing a format string. Hello No Impact

Use a machine name TLV field containing XML tags. Hello No Impact

Use a machine name TLV field containing 16< characters
(since these will get expanded to “<”).

Hello No Impact

Do not send an ACK to an EMIT. Emit This causes network mappingfails with
“An error happened during the mapping
process”.

Set the MORE bit in Query Large Response packets for
every response.

Query Large Re-
sponse

This causes 195 requests to be generated by
the mapper to the responder; after 195 the
mapper stops sending requests. This has no
net impact.

Set the Hardware ID in Query Large Response to over
200 bytes in length.

Query Large Re-
sponse

No impact

Send Query Response packets with the number of descees
set to 255 and the actual contents of one descee.

Query Response The network mapping fails with “An error
happened during the mapping process”.

Send Query Response packets with the number of descees
set to one more than the actual quantity included.

Query Response The network mapping fails with “An error
happened during the mapping process”.

Send Query Response packets with the number of descees
set to one less than the actual quantity included.

Query Response The network mapping succeeds, but takes
114 packets to complete mapping operation
between two hosts instead of the normal
approximately 50.

Set the Hardware ID in a Query Large Response to contain
prohibited characters—ASCII values less than 0x20 and
more than 0x80, white space (0x20) and commas.

Query Large Re-
sponse

No impact

Send Query Large packets to the broadcast address with
types 0x00 through 0xFF with an offset of 0xFFFFFF.

Query Large No impact

Send Query Large packets to the responder address with
types 0x00 through 0xFF with an offset of 0xFFFFFF.

Query Large No impact

Fig. 28. The LLTD test cases we attempted.

SYMANTEC ADVANCED THREAT RESEARCH 35

APPENDIX IV
XML F ORMAT USED BY NETWORK MAP

The XML contained is Figure 29 is used by the Network Map application to produce the diagram contained in Figure 30.
This XML is never written to disk but solely used within memory.

<map>
<node type =” s w i t c h ” l i n k =” r o o t ”>

<node type =” h o s t ” l i n k =” d i r e c t ”>
<prop guid =”{00000000−0000−0000−0000−000000000000} ” t ype =”mac”>00 : 0 c : 2 9 : 4 1 : 3 e : 3 a< / prop>
<prop guid =”{00000000−0000−0000−0000−000000000001} ” t ype =”mac”>00 : 0 c : 2 9 : 4 1 : 3 e : 3 a< / prop>
<prop guid =”{58DF2E46−8CCD−4253−B61C−A97D341CCA3D} ” t ype =” u i n t 3 2 ”>6< / prop>
<prop guid =”{A083365B−B0DB−4B11−984A−13FD2D95B303} ” t ype =” u i n t 3 2 ”>0< / prop>
<prop guid =”{04 FB5875−62A0−437B−BE51−864A741C3C0F} ” t ype =” u i n t 6 4 ”>3579545< / prop>
<prop guid =”{B8C91D7B−5159−4894−B593−348F452E72A6} ” t ype =” u i n t 3 2 ”>10000000< / prop>
<prop guid =”{2AD8768D−0C88−45E4−B174−0ED928254127} ” t ype =” ipv4 ”>1921681103< / prop>
<prop guid =”{9E459B9C−D773−4CA2−9CB0−1307FA3F41C8} ” t ype =” un i code ”>VISTA01< / prop>
<prop guid =”{7CD2CBB4−BC07−438D−992B−5E33D23EB868} ” t ype =” u i n t 3 2 ”>2147483648< / prop>
<prop guid =”{94 E379F0−E45E−43EA−8CD1−DC1C7AF497F1} ” t ype =” ipv6 ”>

f e 8 0 : 0 0 0 0 : 0 0 0 0 : 0 0 0 0 : b d a d : 4 b 5 3 : 7 a a 1 : d f 2 b< / prop>
< / node>

<node type =” s w i t c h ” l i n k =” d i r e c t ”>
<node type =” h o s t ” l i n k =” d i r e c t ”>

<prop guid =”{00000000−0000−0000−0000−000000000000} ” t ype =”mac”>00 : 1 1 : 2 5 : 4 8 : 7 9 : 0 0< / prop>
<prop guid =”{00000000−0000−0000−0000−000000000001} ” t ype =”mac”>00 : 1 1 : 2 5 : 4 8 : 7 9 : 0 0< / prop>
<prop guid =”{58DF2E46−8CCD−4253−B61C−A97D341CCA3D} ” t ype =” u i n t 3 2 ”>0< / prop>
<prop guid =”{A083365B−B0DB−4B11−984A−13FD2D95B303} ” t ype =” u i n t 3 2 ”>0< / prop>
<prop guid =”{9E459B9C−D773−4CA2−9CB0−1307FA3F41C8} ” t ype =” un i code ”>&l t ; /& g t ;A< / prop>

< / node>
< / node>

< / node>
< / map>

Fig. 29. Example of network map XML

Fig. 30. Network map that resulted from example XML in Figure29.

SYMANTEC ADVANCED THREAT RESEARCH 36

APPENDIX V
ARP SPOOFING

We observed that a Vista host accepts solicited responses, but only stores them if they are sent directly to it, as opposedto
the Ethernet broadcast address. Vista hosts also overwriteexisting ARP table entries with the data contained in unsolicited ARP
message. Vista hosts are vulnerable to a denial-of-serviceattack when they receive a gratuitous ARP for their own address.

We used the arpspoof tool from the dsniff[57] suite for our testing. Testing was performed using a Linux host as the attacker
and a Vista machine as the target (the host that gratuitous ARPs were sent to). As a victim (the IP address whose ARP entry
is being spoofed) we variously used real (in use) and unused IP addresses on our test network. We used the arp -a command
on the target to list the ARP entries (IP addresses, MAC addresses, and entry state). To determine which MAC address Vista
would actually use, we ran “ping” on the target with the spoofed IP address, and we monitored network traffic from Linux
using Ethereal [61]; if there is no ARP table entry, this is also a way of inducing an ARP request.

We found that no ARP table entry is created for an unsolicitedARP reply and it is apparently not stored in any way. That
is true when the ARP message is directed at a the victim’s MAC address specifically, and also when it is sent to the Ethernet
broadcast address (FF-FF-FF-FF-FF-FF).

For directed replies, an unsolicited reply will overwrite (update) an existing ARP table entry, and an entry will be created
for an apparent response to a request (if the victim IP address is in use, this would set up a race to provide the first reply, and
to provide an overwriting response). As expected, we found that ARP tables entries are used when needed.

For broadcast replies, an unsolicited reply will overwritean existing ARP entry. Unlike directed replies, a solicitedreply
that is sent to the broadcast address, rather than to the requesting address will not create an ARP table entry, but it willget
used. This needs to be studied more; there may be a short wait before the broadcast reply is used.

If a Vista machine receives a conflicting directed or broadcast message for the IP address that it is statically configured
with, that address becomes unusable and a pop-up message announces the conflict (similar to Windows XP). Attempts to use
the network (for example, to run “ping”), result in error code 1231 (ERRORNETWORK UNREACHABLE). This condition
persists until the network interface is reset.

SYMANTEC ADVANCED THREAT RESEARCH 37

APPENDIX VI
NEIGHBOR DISCOVERY SPOOFING

We observed that Windows Vista hosts will not process unsolicited Neighbor Advertisements (NAs) unless they update an
existing neighbor cache entry. However, it is still possible to perform a redirect attack by sending spoofed NAs in response
to actual queries or by blindly sending out NAs periodically. In the event of a conflict, Vista automatically configures a
replacement RFC 3041 (privacy) address[47].

We performed our testing with the ndspoof.py script that wasconstructed specifically for the purpose. Testing was performed
using a Linux host as the attacker and a Vista machine as the target (the host that gratuitous NAs were sent to). As a victim
(the IP address whose cache entry is being spoofed), we variously used real (in use) and unused IPv6 addresses on our test
network. All packets sent out had the solicited bit left unset.

We used the “netsh interface ipv6 show neighbors” command onthe target to list the neighbor cache entries (IPv6 addresses,
MAC addresses, and entry state). To determine which MAC address Vista would actually use, we ran “ping” on the target
with the IPv6 address being spoofed, and we monitored network traffic from Linux using Ethereal; if there is no cache entry,
this is also a way of inducing an Neighbor Solicitation.

As with ARP, no neighbor cache entry is created for an unsolicited NA and it is not stored. This is true for both a targeted
message and for messages sent out to ff02::1 (local scope all-nodes multicast address). However, existing entries are updated
and entries are created for apparently solicited NAs.

For a directed conflict (when the NA is sent to the existing owner of an address), we have see the following for a link-local
RFC 3041 address:

1) the victim sends out four of its own NAs before giving up
2) the victim generates a new RFC 3041 (privacy) address
3) the victim begins Duplicate Address Detection (DAD) for the new address
4) having seen no one else claim that address, it begins usingit. MLDv2 and other packets associated with moving to a

new IPv6 address are seen.

For conflicts that Vista notices by listening to ff02::1 (again for link-local RFC 3041 addresses), Vista immediately goes to
step 2 above (generating a new address). In both cases, no popup is presented to the user as the conflict is handled automatically.

SYMANTEC ADVANCED THREAT RESEARCH 38

APPENDIX VII
IPV4 ID GENERATION

We monitored the IPv4 ID of packets sent out from a specific Windows Vista machine over the course of a few weeks,
gathering 609,482 data points across different IP protocols. We observed that Vista increments the IPv4 ID used for each
packet, regardless of the protocol that it is used for and thedestination. The range Vista uses is [0,0x7fff]; after sending
0x7fff, it uses 0 for the next packet. This is similar to Windows XP, except that XP uses the full range. This can be used for
differentiation; if one sees a (naturally sent) packet froma host and its IP ID is 0x8000 or above, it is not Vista.

Here is some sample output of our ipid.py script from this data collection.

./ipid.py $acerIP4
0b67 192.168.0.200 -> 192.168.0.102 proto 1
0b68 192.168.0.200 -> 192.168.0.102 proto 1
0b69 192.168.0.200 -> 192.168.0.102 proto 1
0b6a 192.168.0.200 -> 192.168.0.102 proto 1
0b6b 192.168.0.200 -> 192.168.0.102 proto 1
...
1021 192.168.0.200 -> 192.168.0.102 proto 1
1022 192.168.0.200 -> 192.168.0.255 proto 17
1023 192.168.0.200 -> 192.168.0.102 proto 1
1024 192.168.0.200 -> 192.168.0.255 proto 17
1025 192.168.0.200 -> 192.168.0.102 proto 1
1026 192.168.0.200 -> 192.168.0.255 proto 17
1027 192.168.0.200 -> 192.168.0.255 proto 17
...
1ee6 192.168.0.200 -> 192.168.0.102 proto 1
1ee7 192.168.0.200 -> 192.168.0.102 proto 1
1ee8 192.168.0.200 -> 192.168.0.102 proto 6
1ee9 192.168.0.200 -> 192.168.0.102 proto 6
1eea 192.168.0.200 -> 192.168.0.102 proto 6
...
7ffe 192.168.0.200 -> 192.168.0.102 proto 1
7fff 192.168.0.200 -> 192.168.0.102 proto 1
0000 192.168.0.200 -> 192.168.0.102 proto 1
0001 192.168.0.200 -> 192.168.0.102 proto 1
0002 192.168.0.200 -> 192.168.0.102 proto 1
...

We needed to filter out some Land attack packets (from testingin Appendix XV) and four other packets in which the IPv4
address was forged, and presenting as from the Vista host being monitored.

To help analyze this, we wrote a script to fold up consecutiveIP IDs. This is the full set of IP IDs observed:

0b67-0de7 (641 IDs)
0e5a-256c (5907 IDs)
27a8-27da (51 IDs)
281e-28a1 (132 IDs)
2a7f-2d0b (653 IDs)
2d0c-3581 (2166 IDs)
3583-3585 (3 IDs)
3587-358c (6 IDs)
358e-3599 (12 IDs)
359b-35a3 (9 IDs)
35a5-35a7 (3 IDs)
35a9-35ae (6 IDs)
35b0-35bb (12 IDs)
35bd-3b09 (1357 IDs)
3b0b-3b10 (6 IDs)
3b12-3b15 (4 IDs)
3b17-3b1d (7 IDs)
3b1f-3b22 (4 IDs)
3b24-3b4b (40 IDs)
3b4d-3b50 (4 IDs)
3b52-3b53 (2 IDs)
3b55-3b69 (21 IDs)
3b6b-3b71 (7 IDs)
3b73-3b75 (3 IDs)
3b77-3b7c (6 IDs)
3b7e-3b82 (5 IDs)

3b84-3b88 (5 IDs)
3b8a-3b8b (2 IDs)
3b8d-3b8f (3 IDs)
3b91-3b94 (4 IDs)
3b96-3b98 (3 IDs)
3b9a-3b9b (2 IDs)
3b9d-3b9f (3 IDs)
3ba2 (1 ID)
3ba4-3ba8 (5 IDs)
3bab (1 ID)
3bae-3bb4 (7 IDs)
3bb8-3bc8 (17 IDs)
3bcb-3bcf (5 IDs)
3bd2-3bd4 (3 IDs)
3bd7 (1 ID)
3bd9-3bdc (4 IDs)
3bde-3bdf (2 IDs)
3be1-3be8 (8 IDs)
3bea-3bf3 (10 IDs)
3bf6 (1 ID)
3bf8-3bfa (3 IDs)
3bfd-3c03 (7 IDs)
3c05-3c17 (19 IDs)
3c19-3c1d (5 IDs)
3c1f-3c25 (7 IDs)
3c27 (1 ID)

3c29-3c3a (18 IDs)
3c3c-3c3d (2 IDs)
3c40 (1 ID)
3c42 (1 ID)
3c44 (1 ID)
3c46-3c4a (5 IDs)
3c4c-3c4f (4 IDs)
3c51 (1 ID)
3c53-7fff (17325 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-4d52 (19795 IDs)
4d54-4d55 (2 IDs)
4d57-4d58 (2 IDs)
4d5a-4d5b (2 IDs)
0a70-5836 (19911 IDs)
043f-0af4 (1718 IDs)
0af7-0f2d (1079 IDs)
57d6-7fff (10282 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)

SYMANTEC ADVANCED THREAT RESEARCH 39

0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)

0000-7fff (32768 IDs)
0000-7fff (32768 IDs)
0000-7fff (32768 IDs)

0000-7fff (32768 IDs)
0000-0f06 (3847 IDs)

The short breaks are believed to be due to packet loss (the network was occasionally flooded); the large gaps are believed
to be due to reboots.

In addition, when Nmap[30] was run in verbose mode for OS detection (see Appendix XX), it reported “IPID Sequence
Generation: Incremental”, which supports our conclusion.

SYMANTEC ADVANCED THREAT RESEARCH 40

APPENDIX VIII
IP FRAGMENT REASSEMBLY

Vista’s networking stack behaves differently than earlierversions of the stack (in Windows XP and Windows 2000) when
reassembling IP Fragments. We observed that Vista more strictly discarded IP packets with partially overlapping fragments;
in many cases, such fragments were discarded. However, the stack never discarded packets with fully overlapping fragments,
favoring the old data. We found IPv4 and IPv6 reassembly followed the same pattern.

In many but not all cases when the fragment was not reassembled, a fragmentation timeout message was sent, via ICMPv4
or ICMPv6, as appropriate after a delay of approximately 60 seconds. Thus, a given sequence of fragments can be classified
as belonging to one of three groups: will-reassemble, will not reassemble but sends error, and will not reassemble and sends
no error.

A. Fragmentation Background

In IPv4, fragmentation is specified in the base IPv4 header[53]. For IPv6, the fragmentation fields were moved to a separate
Fragment extension header, which is only supposed to be included if the packet is a fragment[13]. In both cases there is a
certain octet range in the reassembled packet that has been fragmented for transmission, which we refer to as the fragmentation
space. In IPv4, this is the entire IPv4 payload. In IPv6, it isthe space beyond the Fragment extension header; another extension
header could precede this and the fragment space could contain the extension header before the IPv6 payload.

For both IPv4 and IPv6, there are four fields pertaining to fragmentation reassembly. An ID field identifies the packet that
is being reassembled. An offset field indicates how deeply into the reassembled packet’s IP payload the fragment should be
placed; this is a multiple of eight octets. From the IP headerlength field (IPv4 total length and IPv6 payload length), onecan
infer the length of the fragment and hence, when added to the offset, the result is the ending offset of the fragment. The last
field is a more fragments (MF) field; this is a bit which, if set,indicates that this fragment does not contain the end of the
fragmentation space. Under normal circumstances, there isa single fragment which has MF unset. The maximum offset of
that packet defines the size of the space that is being reassembled and hence the length of the IP payload.

Normally, exactly one fragment should exist that represents any given portion of the fragmentation space. Aside from the
possibility of a buggy sending stack, the only legitimate case in which this is not true, is where a fragment becomes duplicated.
Even in that case, the fragment data found in fragments should be identical, and the fragments should represent the same part
of the fragmentation space.

However, there are illegitimate cases. Neither the IPv4 northe IPv6 RFCs define how to handle badly overlapped fragments,
fragments with mismatched data, and conflicting specifications for the fragment’s end. Hence, different stacks reassemble
differently, which is a pain point for network-based IDSs/IPSs, which must correctly match the recipient operating systems
fragmentation reassembly behavior in order to correctly understand the effect of the reassembled packet[50].

B. Fragmentation Testing Methodology

We developed 64 test cases, each of which consists of a sequence of fragments to be sent in a particular order. Test cases
were added in an ad hoc manner to explore which cases producedreassembly or error messages. Every case except #29 and
#30 contain at least one piece of data for each part of the fragmentation space. Every test case except #7 and #30 contain
conflicting data some part of the fragmentation space or contain fragments that do not overlap exactly.

Although the test cases are shared, we took different approaches to testing the reassembly under IPv4 and IPv6, largely due
to protocol differences.

1) IPv4 Methodology:To test reassembly behavior under IPv4, we used a packet that, when reassembled, would be a UDP
packet with checksums disabled (using the distinguished value of zero). We avoided sending conflicting UDP headers. However,
there could be multiple ways to reassemble the UDP payload. We observed how the Vista stack interpreted it by observing
the payload of the reassembled packets that were delivered to the application layer on the target machine.

Specifically, we started our fragorder.py tool on our analysis host with the arguments 1–64, which instruct it to serve up
tests 1 through 64 in order. On the Vista machine, we started netcat as “nc -u 192.168.0.102 999 ” and repeatedly hit
the Enter key. Fragorder.py monitors UDP packets coming into port 999 and sends the sequence of fragments for a test case in
response to each Enter key pressed in netcat. If reassembly succeeds, the Vista stack passes the UDP payload to netcat, which
displays it. For IPv4, we always append a newline character to any fragment that includes the last octet of the reassemblyspace,
to ensure proper and unambiguous display through netcat. Any successful reassembly displayed is recorded to a file alongwith
the test number. Since no proper socket had been set up on the analysis machine, we ran “iptables --protocol icmp
-A OUTPUT --icmp-type port-unreachable -j DROP ” to suppress Linux’s natural response to the incoming UDP
packet.

Prior to the above, we started a network monitoring script, fragorderwatcher.py, on our analysis host. This monitors the
network for any packets that correspond to fragorder.py testing; specifically, it looks for the fragmented UDP packet and
any fragmentation timeout ICMP messages. When given a signal to shut down, it reads the file in which we were recording
successful re-assemblies, and reports on what it saw, organized by test. The following is an example of reported data:

SYMANTEC ADVANCED THREAT RESEARCH 41

Test 46: (192.168.0.102 -> 192.168.0.200, id=a32e)
Fragment # 1: [MF] hhhhhhhh1111111111111111
Fragment # 2: [MF] 2222222222222222
Fragment # 3: [MF] 44444444
Fragment # 4: 3333333333333333\n

from 1164810579.6807 to +0.0019
reassembled as: hhhhhhhh11111111111111112222222222222 2223333333333333333\n

It knows to which test number the fragmented packet corresponds, since it is encoded in the lower half of the IP ID. It also
organizes the tests into the three result groups and reportsthose together.

2) IPv6 Methodology:Changes with IPv6 required us to take a different approach, which also allowed for a simpler setup.
With IPv6, UDP checksumming is no longer optional. That means that we would need to anticipate the recipients method of
reassembly, and use that to compute the checksum correctly;if the checksum was not computed correctly, the recipient stack
would silently discard the packet.

We instead developed the approach of intentionally creating a condition in the reassembled packet that would cause the
remote stack to respond with an ICMPv6 error message. ICMPv6error messages are required to include the full content of
the original packet (up to 1280 octets) which in this case is really the reassembled packet as perceived by the stack. Thuswe
can read the reassembly result directly on the analysis machine.

The method of generating an error packet we chose was to have the fragmentation payload consist of a destination options
extension header that is encoded with No Next Header as the following header. The options encoded in the extension header
began with 9f 04 00 00 00 00, which encodes the option type 0x9fwith a four-byte value consisting of zeros. No option 0x9f
has been defined, but since the first bit of the option code is set, RFC 2460[13] requires that an ICMPv6 Parameter Problem
error be returned to inform the sender of this. Those first 6 octets of the extension header payload are fixed. Including the
extension header, next header field and length, this leaves the first 8 octets of the reassembly space as overhead, as in theIPv4
case. The rest of the extension header is tested in the reassembly test; in our testing this did not correspond to valid options,
but could have been made to correspond to valid options if required for successful testing.

To do the test, we started our fragorder6.py tool on our analysis host as “./fragorder6.py $vmLL6%2 $vmMAC
1-64 ” which causes the tests 1 though 64 to be sent to vmvista, withshort pauses in between. If reassembly succeeds the
Vista stack returns the parameter problem; if it fails, it may or may not respond with an fragmentation timeout message. As
with the IPv4 case, we also had a network monitoring script (fragorder6watcher.py) running during the test to capture and
collate packets corresponding to fragorder6.py tests. When given a keyboard interrupt, the script reports what it saw,organized
by result group. The following is an example:

Test 1: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dca01)
Fragment # 1: [MF] 2222222222222222
Fragment # 2: [MF] 5555555555555555
Fragment # 3: 6666666666666666
Fragment # 4: [MF] 4444444444444444
Fragment # 5: [MF] oooooooooooooooo
Fragment # 6: [MF] 3333333333333333
Fragment # 7: [MF] pppppppp1111111111111111

from 1164060733.6128 to +0.0066
got frag timeout at: +41.4019

Again here, the test number was encoded in the IP ID.

C. Test Cases and Results

Figure 31 shows the IPv6 test cases in which reassembly succeeded, along with the result. Figure 32 shows the IPv6 test
cases in which reassembly did not succeed, but a timeout error was produced, and Figure 33 shows the cases where reassembly
failed and no error message was observed.

Our IPv4 testing produced nearly identical results. However, as tested, #16, #18, and #20 produced an error message. We
tested without the added newline and produced the same result as IPv4. The addition of the newline to those cases (or anything
that made the line other than a multiple of eight) caused the error message to be sent.

For IPv4 we noticed that, in certain cases where reassembly does not take place, an ICMPv4 parameter problem message
for “bad ip header” with pointer 0 was sent. This happened whenever a case was similar to the following test case:

Test 20: (192.168.0.102 -> 192.168.0.200, id=8914)
Fragment # 1: 22 22222222\n
Fragment # 2: [MF] 333333333333333333333333333333333333 333333333333\n
Fragment # 3: [MF] hhhhhhhh1111111111111111

from 1164810560.9851 to +0.0090
got frag timeout at: +41.0352

where an MF fragment corresponds in offsets to a previous fragment sent without MF. These fragments are logically
contradictory.

SYMANTEC ADVANCED THREAT RESEARCH 42

Test 4: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dcd04)
Frag #1: 6666666666666666
Frag #2: [MF] 4444444444444444
Frag #3: [MF] oooooooooooooooo
Frag #4: [MF] 33333333
Frag #5: [MF] pppppppp1111111111111111

from 1164060748.6379 to +0.0589
reassembled as:pppppppp11111111111111113333333344444 444444444446666666666666666

at +0.0607

Test 6: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dcf06)
Frag #1: 33333333
Frag #2: [MF] pppppppp1111111111111111

from 1164060758.7082 to +0.0012
reassembled as:pppppppp111111111111111133333333

at +0.0022

Test 7: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dd007)
Frag #1: [MF] 55555555
Frag #2: 6666666666666666
Frag #3: [MF] 44444444
Frag #4: [MF] 33333333
Frag #5: [MF] pppppppp1111111111111111

from 1164060763.7135 to +0.0039
reassembled as:pppppppp11111111111111113333333344444 444555555556666666666666666

at +0.0046

Test 46: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df72e)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 2222222222222222
Frag #3: [MF] 44444444
Frag #4: 3333333333333333

from 1164060958.8917 to +0.0042
reassembled as:pppppppp11111111111111112222222222222 2223333333333333333

at +0.0051

Test 47: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df82f)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 2222222222222222
Frag #3: [MF] 44444444
Frag #4: 3333333333333333
Frag #5: [MF] 55555555

from 1164060963.8977 to +0.0045
reassembled as:pppppppp11111111111111112222222222222 2223333333333333333

at +0.0040

Test 48: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df930)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: 3333333333333333
Frag #3: [MF] 22222222

from 1164060968.9042 to +0.0031
reassembled as:pppppppp11111111111111113333333333333 333

at +0.0022

Test 49: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dfa31)
Frag #1: [MF] pppppppp111111111+1
Frag #2: [MF] 22
Frag #3: [MF] 33333333333333333333333333333333
Frag #4: [MF] 444444444444444444444444
Frag #5: [MF] 5555555555555555
Frag #6: [MF] 66666666
Frag #7: 77777777

from 1164060973.9092 to +0.0060
reassembled as:pppppppp111111111+1222222222222222222 222222222222222222222277777777

at +0.0064

Test 50: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dfb32)
Frag #1: [MF] pppppppp111111111+1
Frag #2: [MF] 22
Frag #3: [MF] 33333333333333333333333333333333
Frag #4: [MF] 444444444444444444444444
Frag #5: [MF] 5555555555555555
Frag #6: [MF] 6666666666666666
Frag #7: 77777777

from 1164060978.9162 to +0.0059
reassembled as:pppppppp111111111+1222222222222222222 222222222222222222222277777777

at +0.0069

Test 54: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dff36)
Frag #1: [MF] pppppppp111111111+1
Frag #2: [MF] 22
Frag #3: [MF] 33333333333333333333333333333333
Frag #4: [MF] 444444444444444444444444
Frag #5: [MF] 55555555555555555555555555555555
Frag #6: [MF] 66666666666666666666666666666666
Frag #7: 77777777

from 1164060998.9378 to +0.0055
reassembled as:pppppppp111111111+1222222222222222222 222222222222222222222277777777

at +0.0065

Test 55: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e0037)
Frag #1: [MF] 2222222222222222
Frag #2: [MF] pppppppp1111111111111111
Frag #3: [MF] 44444444
Frag #4: 3333333333333333
Frag #5: [MF] 55555555

from 1164061003.9452 to +0.0087
reassembled as:pppppppp11111111111111112222222222222 2223333333333333333

at +0.0047

Test 58: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e033a)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 2222222222222222
Frag #3: [MF] 55555555
Frag #4: [MF] 4444444444444444
Frag #5: 33333333

from 1164061018.9663 to +0.0043
reassembled as:pppppppp11111111111111112222222222222 2225555555533333333

at +0.0050

Test 59: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e043b)
Frag #1: [MF] 2222222222222222
Frag #2: [MF] 55555555
Frag #3: [MF] pppppppp1111111111111111
Frag #4: [MF] 4444444444444444
Frag #5: 33333333

from 1164061023.9723 to +0.0030
reassembled as:pppppppp11111111111111112222222222222 2225555555533333333

at +0.0039

Test 61: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e063d)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 2222222222222222
Frag #3: [MF] 55555555
Frag #4: [MF] 66666666
Frag #5: [MF] 444444444444444444444444
Frag #6: 33333333

from 1164061034.0066 to +0.0087
reassembled as:pppppppp11111111111111112222222222222 222555555556666666633333333

at +0.0092

Test 62: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e073e)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 55555555
Frag #3: [MF] 2222222222222222
Frag #4: [MF] 44444444
Frag #5: 3333333333333333

from 1164061039.0185 to +0.0081
reassembled as:pppppppp11111111111111115555555522222 222222222223333333333333333

at +0.0090

Fig. 31. Successful IPv6 fragment reassembly test cases andresults. On some of the long packets, we shorten the lines by using “+” to represent six
additional instances of the previous character. We notice that the last fragment in tests #47 and #55 is extraneous (useless) under any realistic assembly policy,
due to the fact that a complete packet was already sent by the time those fragments were sent.

Test 1: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dca01)
Frag #1: [MF] 2222222222222222
Frag #2: [MF] 5555555555555555
Frag #3: 6666666666666666
Frag #4: [MF] 4444444444444444
Frag #5: [MF] oooooooooooooooo
Frag #6: [MF] 3333333333333333
Frag #7: [MF] pppppppp1111111111111111

from 1164060733.6128 to +0.0066
got frag timeout at: +41.4019

Test 2: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dcb02)
Frag #1: [MF] 5555555555555555
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] oooooooooooooooo
Frag #5: [MF] 3333333333333333
Frag #6: [MF] pppppppp1111111111111111

from 1164060738.6242 to +0.0059
got frag timeout at: +39.5266

Test 3: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dcc03)
Frag #1: [MF] 5555555555555555
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] oooooooooooooooo
Frag #5: [MF] 33333333
Frag #6: [MF] pppppppp1111111111111111

from 1164060743.6325 to +0.0049
got frag timeout at: +41.1388

Test 5: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dce05)
Frag #1: [MF] 4444444466666666
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] 4444444444444444
Frag #5: [MF] 33333333
Frag #6: [MF] pppppppp1111111111111111

from 1164060753.7000 to +0.0065
got frag timeout at: +41.0888

Fig. 32. The test cases where IPv6 fragment reassembly did not succeed and an ICMPv6 fragmentation timeout message was produced (part 1). Note that
the elapsed times shown are not accurate due to significant clock skew; the error messages were sent approximately 60 seconds after the fragments were sent.

SYMANTEC ADVANCED THREAT RESEARCH 43

Test 11: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dd40b)
Frag #1: [MF] 2222222222222222
Frag #2: 3333333333333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060783.7302 to +0.0022
got frag timeout at: +39.4492

Test 12: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dd50c)
Frag #1: 3333333333333333
Frag #2: [MF] 2222222222222222
Frag #3: [MF] pppppppp1111111111111111

from 1164060788.7336 to +0.0020
got frag timeout at: +41.1369

Test 13: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dd60d)
Frag #1: 3333333333333333
Frag #2: [MF] 22222222
Frag #3: [MF] pppppppp1111111111111111

from 1164060793.7370 to +0.0010
got frag timeout at: +39.7832

Test 17: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dda11)
Frag #1: 2222222222222222
Frag #2: [MF] 33333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060813.7601 to +0.0019
got frag timeout at: +40.7206

Test 19: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=ddc13)
Frag #1: [MF] 5555555555555555
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] oooooooooooooooo
Frag #5: [MF] 33333333
Frag #6: [MF] 77
Frag #7: [MF] pppppppp1111111111111111

from 1164060823.7667 to +0.0085
got frag timeout at: +41.3263

Test 21: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dde15)
Frag #1: [MF] 22 222222
Frag #2: 33333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060833.7801 to +0.0019
got frag timeout at: +41.3841

Test 22: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=ddf16)
Frag #1: 33333333
Frag #2: [MF] 22 222222
Frag #3: [MF] pppppppp1111111111111111

from 1164060838.7831 to +0.0018
got frag timeout at: +39.9932

Test 23: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de017)
Frag #1: [MF] 22222222222222222222222222222222222222
Frag #2: 33333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060843.7862 to +0.0021
got frag timeout at: +41.8177

Test 24: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de118)
Frag #1: 3333333333333333
Frag #2: [MF] 222222222222222222222222
Frag #3: [MF] pppppppp1111111111111111

from 1164060848.7897 to +0.0029
got frag timeout at: +40.9700

Test 25: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de219)
Frag #1: 666666666666666666666666
Frag #2: [MF] 4444444444444444
Frag #3: [MF] oooooooooooooooo
Frag #4: [MF] 33333333
Frag #5: [MF] pppppppp1111111111111111

from 1164060853.7957 to +0.0035
got frag timeout at: +42.0044

Test 27: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de41b)
Frag #1: 666666666666666666666666
Frag #2: [MF] 4444444444444444
Frag #3: [MF] 33333333
Frag #4: [MF] pppppppp1111111111111111

from 1164060863.8048 to +0.0034
got frag timeout at: +41.4683

Test 28: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de51c)
Frag #1: 3333333333333333
Frag #2: [MF] 2222222222222222
Frag #3: [MF] pppppppp1111111111111111

from 1164060868.8087 to +0.0019
got frag timeout at: +41.6738

Test 29: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de61d)
Frag #1: 666666666666666666666666
Frag #2: [MF] 4444444444444444
Frag #3: [MF] pppppppp1111111111111111

from 1164060873.8115 to +0.0022
got frag timeout at: +40.5193

Test 30: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de71e)
Frag #1: 666666666666666666666666
Frag #2: [MF] 44444444
Frag #3: [MF] pppppppp1111111111111111

from 1164060878.8174 to +0.0035
got frag timeout at: +41.7998

Test 31: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de81f)
Frag #1: [MF] 33333333
Frag #2: 2222222222222222
Frag #3: [MF] pppppppp1111111111111111

from 1164060883.8271 to +0.0022
got frag timeout at: +39.6629

Test 32: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de920)
Frag #1: 2222222222222222
Frag #2: [MF] 33333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060888.8308 to +0.0030
got frag timeout at: +41.2511

Test 33: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dea21)
Frag #1: 33333333
Frag #2: [MF] 2222222222222222
Frag #3: [MF] pppppppp1111111111111111

from 1164060893.8338 to +0.0028
got frag timeout at: +39.9632

Test 34: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=deb22)
Frag #1: [MF] 4444444466666666
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] 33333333
Frag #5: [MF] pppppppp1111111111111111

from 1164060898.8379 to +0.0044
got frag timeout at: +41.2675

Test 35: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dec23)
Frag #1: [MF] 4444444466666666
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] 44444444
Frag #5: [MF] 33333333
Frag #6: [MF] pppppppp1111111111111111

from 1164060903.8431 to +0.0043
got frag timeout at: +40.6217

Test 36: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=ded24)
Frag #1: [MF] 5555555555555555
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] 33333333
Frag #5: [MF] 77777777777777777777777777777777
Frag #6: [MF] pppppppp1111111111111111

from 1164060908.8490 to +0.0063
got frag timeout at: +41.0083

Test 37: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dee25)
Frag #1: [MF] 5555555555555555
Frag #2: 6666666666666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] 33333333
Frag #5: [MF] 77777777
Frag #6: [MF] pppppppp1111111111111111

from 1164060913.8559 to +0.0037
got frag timeout at: +41.1899

Test 38: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=def26)
Frag #1: 5555555555555555
Frag #2: [MF] 66666666
Frag #3: [MF] 4444444444444444
Frag #4: [MF] 33333333
Frag #5: [MF] 77777777
Frag #6: [MF] pppppppp1111111111111111

from 1164060918.8605 to +0.0052
got frag timeout at: +40.0794

Test 39: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df027)
Frag #1: [MF] 22222222
Frag #2: 3333333333333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060923.8664 to +0.0020
got frag timeout at: +41.2485

Test 40: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df128)
Frag #1: [MF] 22222222
Frag #2: 3333333333333333
Frag #3: [MF] pppppppp11111111

from 1164060928.8690 to +0.0024
got frag timeout at: +39.3627

Test 43: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df42b)
Frag #1: [MF] 22222222
Frag #2: 3333333333333333
Frag #3: [MF] pppppppp

from 1164060943.8800 to +0.0021
got frag timeout at: +41.4088

Test 53: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dfe35)
Frag #1: [MF] 2222222222222222
Frag #2: [MF] 44444444
Frag #3: 3333333333333333
Frag #4: [MF] 55555555
Frag #5: [MF] pppppppp1111111111111111

from 1164060993.9334 to +0.0023
got frag timeout at: +39.9880

Test 60: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e053c)
Frag #1: [MF] 2222222222222222
Frag #2: [MF] 55555555
Frag #3: [MF] 4444444444444444
Frag #4: [MF] pppppppp1111111111111111
Frag #5: 33333333

from 1164061028.9783 to +0.0078
got frag timeout at: +39.6508

Fig. 32. part 2.

SYMANTEC ADVANCED THREAT RESEARCH 44

Test 8: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dd108)
Frag #1: 2222222222222222
Frag #2: [MF] pppppppp1111111111111111

from 1164060768.7189 to +0.0016

Test 9: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7:f 579:3dfc, id=dd209)
Frag #1: 2222222222222222
Frag #2: [MF] pppppppp1111111111111111

from 1164060773.7225 to +0.0023

Test 10: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dd30a)
Frag #1: 22 22
Frag #2: [MF] pppppppp1111111111111111

from 1164060778.7276 to +0.0015

Test 14: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dd70e)
Frag #1: [MF] 22222222
Frag #2: [MF] 33333333
Frag #3: pppppppp1111111111111111

from 1164060798.7407 to +0.0074

Test 15: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dd80f)
Frag #1: [MF] 22222222
Frag #2: [MF] 33333333
Frag #3: [MF] 44444444
Frag #4: [MF] 55555555
Frag #5: [MF] 66666666
Frag #6: pppppppp1111111111111111

from 1164060803.7503 to +0.0050

Test 16: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dd910)
Frag #1: 2222222222222222
Frag #2: [MF] 3333333333333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060808.7566 to +0.0025

Test 18: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=ddb12)
Frag #1: 22222222
Frag #2: [MF] 33333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060818.7630 to +0.0022

Test 20: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=ddd14)
Frag #1: 22 2222
Frag #2: [MF] 33 33333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060828.7772 to +0.0023

Test 26: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=de31a)
Frag #1: 6666666666666666
Frag #2: [MF] 4444444444444444
Frag #3: [MF] oooooooooooooooo
Frag #4: [MF] 3333333333333333
Frag #5: [MF] pppppppp1111111111111111

from 1164060858.7999 to +0.0040

Test 41: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df229)
Frag #1: [MF] 22222222
Frag #2: 3333333333333333
Frag #3: [MF] pppppppp11111111

from 1164060933.8745 to +0.0030

Test 42: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df32a)
Frag #1: 2222222222222222
Frag #2: [MF] pppppppp11111111

from 1164060938.8779 to +0.0008

Test 44: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df52c)
Frag #1: [MF] 2222222222222222
Frag #2: 3333333333333333
Frag #3: [MF] pppppppp1111111111111111

from 1164060948.8834 to +0.0029

Test 45: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=df62d)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 2222222222222222
Frag #3: 3333333333333333

from 1164060953.8880 to +0.0024

Test 51: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dfc33)
Frag #1: [MF] pppppppp111111111+1
Frag #2: [MF] 22222222222222222222222222222222
Frag #3: [MF] 33333333333333333333333333333333
Frag #4: 77777777

from 1164060983.9241 to +0.0027

Test 52: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=dfd34)
Frag #1: [MF] pppppppp111111111+1
Frag #2: [MF] 66666666
Frag #3: [MF] 444444444444444444444444
Frag #4: [MF] 22
Frag #5: 77777777

from 1164060988.9278 to +0.0039

Test 56: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e0138)
Frag #1: [MF] 2222222222222222
Frag #2: [MF] 44444444
Frag #3: [MF] pppppppp1111111111111111
Frag #4: 3333333333333333
Frag #5: [MF] 55555555

from 1164061008.9557 to +0.0043

Test 57: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e0239)
Frag #1: [MF] 2222222222222222
Frag #2: [MF] 44444444
Frag #3: 3333333333333333
Frag #4: [MF] pppppppp1111111111111111
Frag #5: [MF] 55555555

from 1164061013.9607 to +0.0041

Test 63: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e083f)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 2222222222222222
Frag #3: [MF] 44444444
Frag #4: [MF] 55555555
Frag #5: 3333333333333333

from 1164061044.0294 to +0.0138

Test 64: (fe80::020c:29ff:fecd:b316 -> fe80::19e6:47a7: f579:3dfc, id=e0940)
Frag #1: [MF] pppppppp1111111111111111
Frag #2: [MF] 22222222
Frag #3: [MF] 55555555
Frag #4: [MF] 4444444444444444
Frag #5: [MF] 77777777
Frag #6: 33333333

from 1164061049.0461 to +0.0051

Fig. 33. The test cases where IPv6 fragment reassembly did not succeed and an ICMPv6 fragmentation timeout message was not produced. On some of the
long packets, we shorten the lines by using “+” to represent six additional instances of the previous character.

D. Analysis

Vista’s reassembly behavior is different that either Windows XP or Red Hat Linux, as demonstrated in Figure 34. Earlier
Windows versions, such as Windows XP, used a different reassembly strategy. Overlapping fragments are allowed in some
instances, and are dealt with by trimming the left-hand side(from low to high byte offset) from more recently received
fragments.

We have developed a working model to predict when fragmentation will take place and when it will not. This model
works on all our test cases. We define “leading fragments range” (LFR) as, the extent to which the packet can be completely
reassembled, starting from offset 0 using previously received fragments. That is, as far as one can get in the packet without
finding a gap. We observed the following:

• Vista follows a favor-old behavior
• If a received fragment’s end falls within LFR (i.e., the packet fits inside LFR), it is discarded
• If a received fragment’s entire range aligns exactly with a previously received fragment, it is discarded
• If a received fragment partially overlaps with any fragmentthat is not part of LFR, it becomes impossible to complete

packet reassembly10; packet reassembly state may have been discarded.
• The received fragment (which does not overlap with previousfragments) becomes part of the reassembled packet, if

reassembly succeeds

10In some side testing, we were unable to get it to complete assembly, at that point. We hypothesized about different discard scenarios and tried to send
fragments to fill in the blanks.

SYMANTEC ADVANCED THREAT RESEARCH 45

Test 2:
Linux Red Hat 8 11111111111111113333333333333333oooooooo55555555666 66666
Windows XP not reassembled
Windows Vista not reassembled

Test 3:
Linux Red Hat 8 111111111111111133333333oooooooooooooooo55555555666 66666
Windows XP 111111111111111133333333444444445555555555555555666 66666
Windows Vista not reassembled

Test 4:
Linux Red Hat 8 111111111111111133333333oooooooooooooooo66666666666 66666
Windows XP 111111111111111133333333444444444444444466666666666 66666
Windows Vista 111111111111111133333333444444444444444466666666666 66666

Test 5:
Linux Red Hat 8 111111111111111133333333444444444444444466666666666 66666
Windows XP 111111111111111133333333444444444444444466666666666 66666
Windows Vista not reassembled

Fig. 34. Selected comparative IPv4 reassembly results between Red Hat Linux, Windows XP, and Windows Vista

• If the packet is not completed after approximately 60 seconds (or perhaps 60 seconds without progress), it is discarded
and an ICMP fragmentation timeout message may be sent (depending on the pattern of fragments)

It appears that the reassembly behavior does not occur by design; it may be a byproduct of the algorithms used. Incidental
and unplanned behavior can easily change with even minor code updates (e.g., in response to bugs).

We have not looked at the code that handles the reassembly, but it appears that fragments for a packet are kept two data
structures: a buffer corresponding to LFR, in which info about the original fragments is not maintained, and a list (probably
sorted) of the fragments not in LFR. For fragments that do notoverlap with previous fragments, they are either appended to
the LFR buffer or added to the list. If they are appended to theLFR buffer, the list is then checked and any fragments that
can be appended to the LFR buffer are moved from the list to theLFR buffer. The list does not get consolidated. This seems
consistent with the documented use of NETBUFFERs[42].

For most test cases where reassembly fails, IPv4 or IPv6 sends an ICMP fragmentation timeout message after around 60
seconds, but not in all test cases. Generally, the cases thatdo not produce an error message look “simpler”, but we have not
found good rules to accurately predict the occurrence of either case.

SYMANTEC ADVANCED THREAT RESEARCH 46

APPENDIX IX
SOURCE ROUTING

“Source routing” occurs when the packet originator predefines a series of “hops” to take on the way to a destination. It is
available in both IPv4 and IPv6. Source routing can be exploited by an attacker in various types of attacks, including bypassing
access control. A best practice is to block it. The possible encounters of a node with a source-routed packet can be divided into
two types11. An “en-route” encounter occurs when the packet is encountered on its way to the specified final destination; these
packets will either be dropped or forwarded upon receipt. An“at-end” encounter occurs when the node is the final destination;
these packets will either be accepted or discarded upon receipt.

According to [34] and [29], XP SP2 and later, and Windows Server 2003 SP1 and later, would neither forward en-route
(IPv4) packets nor accept (at-end) packets that were source-routed. However, earlier versions would accept at-end packets. We
examined what Vista would do for IPv4 and IPv6 in both cases.

First we used netsh to examine Vista’s IPv6 source-routing settings.

netsh>interface ipv6 show global
Querying active state...

General Global Parameters

Default Hop Limit : 128 hops
Neighbor Cache Limit : 256 entries per interface
Route Cache Limit : 128 entries per compartment
Reassembly Limit : 4185600 bytes
ICMP Redirects : enabled
Source Routing Behavior : forward
Task Offload : enabled
Dhcp Media Sense : enabled
Media Sense Logging : enabled
MLD Level : all
MLD Version : version3
Multicast Forwarding : disabled
Group Forwarded Fragments : disabled
Randomize Identifiers : enabled
Address Mask Reply : disabled

Current Global Statistics

Number of Compartments : 1
Number of NL clients : 6
Number of FL providers : 4

netsh>interface
netsh interface>ipv6
netsh interface ipv6>show interfaces 8

Interface TestNet Parameters
--
IfLuid : ethernet_4
IfIndex : 8
Compartment Id : 1
State : connected
Metric : 10
Link MTU : 1500 bytes
Reachable Time : 29000 ms
Base Reachable Time : 30000 ms
Retransmission Interval : 1000 ms
DAD Transmits : 1
Site Prefix Length : 64
Site Id : 1
Forwarding : disabled
Advertising : disabled
Neighbor Discovery : enabled
Neighbor Unreachability Detecion : enabled
Router Discovery : enabled
Managed Address Configuration : disabled
Other Stateful Configuration : disabled
Weak Host Sends : disabled
Weak Host Receives : disabled
Use Automatic Metric : enabled
Ignore Default routes : disabled

11By subdividing “en-route” into “specified hop” versus “in-between hop”, it is possible to have a third kind of encounter,which may be a useful division;
however our test network does not support having an in-between hop.

SYMANTEC ADVANCED THREAT RESEARCH 47

In the global settings, Source Routing Behavior is set to “forward”, however the interface for the network had Forwarding set
to “disabled”. Thus, it would seem that at least en-route packets would be dropped. We found the same to be the case for
Teredo interfaces, as of Vista RC2 (Appendix XIII-M). To test behavior, we developed scripts.

First we sent an empty IPv6 packet that was destined for hpvista, but sent through acervista using type 0 source routing
(LSRR). The following shows the packet as shown in Wireshark[61] (output trimmed):

Internet Protocol Version 6
Version: 6
Traffic class: 0x00
Flowlabel: 0x00000
Payload length: 24
Next header: IPv6 routing (0x2b)
Hop limit: 128
Source address: fe80::20c:29ff:fecd:b316 (fe80::20c:29 ff:fecd:b316)
Destination address: fe80::ed59:b7ac:fc61:f865 (fe80:: ed59:b7ac:fc61:f865)

Routing Header, Type 0
Next header: IPv6 no next header (0x3b)
Length: 2 (24 bytes)
Type: 0
Segments left: 1
address 0: fe80::4d5:1fa6:3777:a480 (fe80::4d5:1fa6:37 77:a480)

There was no reaction to this packet, thus acervista did not forward this en-route packet.
Next we constructed two at-end packets destined for acervista that appeared to have been forwarded by hpvista, after being

sent by our linux analysis machine. One was an empty packet, which would not normally generate a response. This looks like:

Internet Protocol Version 6
Version: 6
Traffic class: 0x00
Flowlabel: 0x00000
Payload length: 24
Next header: IPv6 routing (0x2b)
Hop limit: 128
Source address: fe80::20c:29ff:fecd:b316 (fe80::20c:29 ff:fecd:b316)
Destination address: fe80::ed59:b7ac:fc61:f865 (fe80:: ed59:b7ac:fc61:f865)

Routing Header, Type 0
Next header: IPv6 no next header (0x3b)
Length: 2 (24 bytes)
Type: 0
Segments left: 0
address 0: fe80::4d5:1fa6:3777:a480 (fe80::4d5:1fa6:37 77:a480)

The other at-end was a ping packet, which looks like:

Internet Protocol Version 6
Version: 6
Traffic class: 0x00
Flowlabel: 0x00000
Payload length: 36
Next header: IPv6 routing (0x2b)
Hop limit: 128
Source address: fe80::20c:29ff:fecd:b316 (fe80::20c:29 ff:fecd:b316)
Destination address: fe80::ed59:b7ac:fc61:f865 (fe80:: ed59:b7ac:fc61:f865)

Routing Header, Type 0
Next header: ICMPv6 (0x3a)
Length: 2 (24 bytes)
Type: 0
Segments left: 0
address 0: fe80::4d5:1fa6:3777:a480 (fe80::4d5:1fa6:37 77:a480)

Internet Control Message Protocol v6
Type: 128 (Echo request)
Code: 0
Checksum: 0xd231 [correct]
ID: 0xd82c
Sequence: 0xc209
Data (4 bytes)

This ping produced an echo reply (we configured a firewall exception on the target to respond to IPv6 pings):

SYMANTEC ADVANCED THREAT RESEARCH 48

Internet Protocol Version 6
Version: 6
Traffic class: 0x00
Flowlabel: 0x00000
Payload length: 12
Next header: ICMPv6 (0x3a)
Hop limit: 128
Source address: fe80::ed59:b7ac:fc61:f865 (fe80::ed59: b7ac:fc61:f865)
Destination address: fe80::20c:29ff:fecd:b316 (fe80::2 0c:29ff:fecd:b316)

Internet Control Message Protocol v6
Type: 129 (Echo reply)
Code: 0
Checksum: 0xd131 [correct]
ID: 0xd82c
Sequence: 0xc209
Data (4 bytes)

Note that this does not include a reverse source route, whichis not something RFC 2460 requires. Hence for IPv6, Vista by
default drops en-route source routing, but will accept at-end source-routed packets.

Next, we examined IPv4 source routing settings in netsh.

netsh interface ipv4>show global
Querying active state...

General Global Parameters

Default Hop Limit : 128 hops
Neighbor Cache Limit : 256 entries per interface
Route Cache Limit : 128 entries per compartment
Reassembly Limit : 4185600 bytes
ICMP Redirects : enabled
Source Routing Behavior : dontforward
Task Offload : enabled
Dhcp Media Sense : enabled
Media Sense Logging : enabled
MLD Level : all
MLD Version : version3
Multicast Forwarding : disabled
Group Forwarded Fragments : disabled
Randomize Identifiers : enabled
Address Mask Reply : disabled

Current Global Statistics

Number of Compartments : 1
Number of NL clients : 7
Number of FL providers : 4

netsh interface ipv4>show interfaces 8

Interface TestNet Parameters
--
IfLuid : ethernet_4
IfIndex : 8
Compartment Id : 1
State : connected
Metric : 10
Link MTU : 1500 bytes
Reachable Time : 39500 ms
Base Reachable Time : 30000 ms
Retransmission Interval : 1000 ms
DAD Transmits : 3
Site Prefix Length : 64
Site Id : 1
Forwarding : disabled
Advertising : disabled
Neighbor Discovery : enabled
Neighbor Unreachability Detecion : enabled
Router Discovery : dhcp
Managed Address Configuration : enabled
Other Stateful Configuration : enabled
Weak Host Sends : disabled
Weak Host Receives : disabled
Use Automatic Metric : enabled
Ignore Default routes : disabled

SYMANTEC ADVANCED THREAT RESEARCH 49

The global Source Routing Behavior is set to “dontforward” which suggests that it will not pass along en-route IPv4. In
addition, Forwarding on the interface is set to “disabled”.

To test this on Vista hosts, we sent an IPv4 ping to hpvista viaacervista:

Internet Protocol, Src: 192.168.0.102 (192.168.0.102), D st: 192.168.0.200 (192.168.0.200)
Version: 4
Header length: 32 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; E CN: 0x00)
Total Length: 44
Identification: 0x06ba (1722)
Flags: 0x00
Fragment offset: 0
Time to live: 128
Protocol: ICMP (0x01)
Header checksum: 0x4509 [correct]
Source: 192.168.0.102 (192.168.0.102)
Destination: 192.168.0.200 (192.168.0.200)
Options: (12 bytes)

Loose source route (11 bytes)
Pointer: 4
192.168.0.200 <- (current)
192.168.0.201

NOP
Internet Control Message Protocol

Type: 8 (Echo (ping) request)
Code: 0
Checksum: 0xbf38 [correct]
Identifier: 0xd82c
Sequence number: 0xc209
Data (4 bytes)

As in the IPv6 case, acervista did not forward and there were no error messages.
We then sent an IPv4 ping to vmvista that appeared to be sent byour Linux analysis machine and source routed through

hpvista.

Internet Protocol, Src: 192.168.0.102 (192.168.0.102), D st: 192.168.0.203 (192.168.0.203)
Version: 4
Header length: 32 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; E CN: 0x00)
Total Length: 44
Identification: 0x06ba (1722)
Flags: 0x00
Fragment offset: 0
Time to live: 128
Protocol: ICMP (0x01)
Header checksum: 0x3f06 [correct]
Source: 192.168.0.102 (192.168.0.102)
Destination: 192.168.0.203 (192.168.0.203)
Options: (12 bytes)

Loose source route (11 bytes)
Pointer: 8
192.168.0.200
192.168.0.203 <- (current)

NOP
Internet Control Message Protocol

Type: 8 (Echo (ping) request)
Code: 0
Checksum: 0xbf38 [correct]
Identifier: 0xd82c
Sequence number: 0xc209
Data (4 bytes)

Although vmvista had file sharing enabled, which would normally allow responses to IPv4 pings, it did not produce one in
this case. So, it seems Vista actively discards at-end IPv4 source routed packets. Thus, for IPv4 Vista disallows en-route and
at-end source routing, which is a continuation of the Windows XP SP2/Windows Server 2003 SP1 behavior.

In conclusion, the only source routing that Vista allows is IPv6 packets that are source-routed.

SYMANTEC ADVANCED THREAT RESEARCH 50

APPENDIX X
IPV4 PROTOCOL ENUMERATION

We attempted to enumerate the protocols that Vista supportson top of IPv4. With the firewall turned on, as in Windows
XP, we received no responses to our probes, so we turned the firewall off in order to do this enumeration. With the firewall
turned off, an ICMP protocol unreachable message was sent inresponse to protocols that were unavailable.

We constructed a tool, proto.py, which enumerates protocols using this method. We took special measures (waiting long
enough) to ensure that we did not hit Vista’s rate limiting ofICMP errors (section III-D). When run against a Vista machine
(firewall turned off) the results were:

linux# ./proto.py $acerIP4

No protocol unreachables for:

1 icmp ICMP

2 igmp IGMP

4 ipencap IP-ENCAP (IPv4 over IPv4)
6 tcp TCP

17 udp UDP

41 ipv6 IPv6 (IPv6 over IPv4)
43 ipv6-route IPv6-Route (IPv6 Routing extension header)
44 ipv6-frag IPv6-Frag (IPv6 Fragment extension header)
47 gre GRE

50 esp IPSEC-ESP (IPSec ESP)
51 ah IPSEC-AH (IPSec AH)

We observed the same results on 32- and 64-bit Vista. The results on an nmap -sO run were also consistent with this. Our
inferred meaning of the protocol numbers is based on IANA assignment[24].

The apparent support for protocols 43 and 44 is surprising; in IPv6, these denote IPv6 extension headers, but they have no
meaning in IPv4. It would also seem that IPv4 over IPv4 is supported. Testing whether we could use these in any way was
out of scope for this project.

SYMANTEC ADVANCED THREAT RESEARCH 51

APPENDIX XI
IPV6 NEXT HEADER ENUMERATION

We enumerated the supported IPv6 Next Header values on release Vista. The IPv6 Next Header field is similar to the IPv4
protocol field, except that it also encodes extension headers; the same namespace is used for both. We were able to do this
enumeration even with the firewall on, since unserviced values yielded ICMPv6 parameter problems for unrecognized Next
Header (type 4, code 1) that points to the Next Header field in the IPv6 base header. This mechanism could be used to
essentially ping a Vista machine, even if filtering is enabled.

We wrote another tool, proto6.py, to do this test. We had to carefully avoid ICMPv6 error rate limiting. The results were
the following:
linux# ./proto6.py $acerLL6%2 $acerMAC

No protocol unreachables for:

0 ip IP (IPv6 Hop-by-Hop options extension header)
4 ipencap IP-ENCAP (IPv4 over IPv6)
6 tcp TCP

17 udp UDP

41 ipv6 IPv6 (IPv6 over IPv6)
43 ipv6-route IPv6-Route (IPv6 Routing extension header)
44 ipv6-frag IPv6-Frag (IPv6 Fragment extension header)
50 esp IPSEC-ESP (IPSec ESP extension header)
51 ah IPSEC-AH (IPSec AH extension header)
58 ipv6-icmp IPv6-ICMP (ICMPv6)
59 ipv6-nonxt IPv6-NoNxt (no next header)
60 ipv6-opts IPv6-Opts (IPv6 destination option extension header)

From the results, it appears that Vista supports IPv4 over IPv6, which is how IPv4 packets can be carried across an IPv6-only
network. These are all standard values[24].

We performed the same test with the firewall off. The same typeof errors result for unknown protocols. Unexpectedly, the
results of the enumeration were slightly different than with the firewall on. With the firewall off, we saw a parameter problem
for Next Header=4, which we were unable to see with the firewall on. Since the firewall was off, this result is not due to
dynamic filtering. It appears that IPv4 over IPv6 is supported only when the firewall is on. This could be an intentional policy
decision, similar to the policy decision that disallows running of Teredo if there is no IPv6-capable firewall registered[40].

SYMANTEC ADVANCED THREAT RESEARCH 52

APPENDIX XII
TEREDO INTRODUCTION

As described by Microsoft[36]:

“Teredo is an IPv6 transition technology that provides address assignment and host-to-host automatic tunneling
for unicast IPv6 traffic when IPv6/IPv4 hosts are located behind one or multiple IPv4 network address translators
(NATs). To traverse IPv4 NATs, IPv6 packets are sent as IPv4-based User Datagram Protocol (UDP) messages.”

Microsoft implements Teredo in Microsoft Windows Vista in order to provide an interim solution to a lack of global IPv6 access
for clients. This solution works even if their networks do not allow native IPv6 support. Teredo is available under Windows
XP and Windows 2003, but is enabled by default for the first time on Vista[36]. A number of open source implementations
of Teredo exist, including a Unix version called Miredo[14].

In [22] (The Teredo Protocol: Tunneling Past Network Security and Other Security Implications, November 2006, by Jim
Hoagland), Symantec identified a number of security implications associated with the use of Teredo. Some of those are
implementation specific and we test some of those for Vista inthis paper (Appendix XIII), along with some other security-
related analysis of Vista’s Teredo implementation.

A. Protocol Overview

Teredo is a mostly well-documented protocol, so we provide only a summary in this report. [22] and [36] provide a good
description of Teredo and how it works. RFC 4380 (“Teredo: Tunneling IPv6 over UDP through Network Address Translations
(NATs)”[23], February 2006, by Christian Huitema of Microsoft) is the authoritative reference for the protocol.

The need for Teredo arises out of the limitation associated with IPv4 NAT devices (which are widely deployed), namely,
that IPv4 NAT devices do not support either native IPv6 packets or IPv6 tunneled directly over IPv4 (ISATAP/6to4). Thus
Teredo was developed as an IPv6 provider of last resort[23].To avoid the NAT problem, Teredo creates UDP tunnel(s) through
the NAT, so the NAT has no specific awareness of IPv6 or Teredo;in fact no local network devices need be aware of these
protocols.

The Teredo framework consists of three types of components.A Teredo clientis the node that wants to use Teredo to reach
a peer on the IPv6 Internet. For example, a node may want to reach an IPv6-only server. Clients are dual-stack (IPv4 and
IPv6) nodes that are “trapped” behind one or more IPv4 NATs. Teredo clients always send and receive Teredo IPv6 traffic
tunneled in UDP over IPv4 (see Figure 35). The Teredo component on a client prepends the tunnel headers on IPv6 packets
that are sent out by an application (encapsulation), and removes the tunnel headers from application-bound incoming traffic
(decapsulation), thereby abstracting away the IPv6 connectivity method from the application.

Fig. 35. Teredo encapsulates IPv6 packets in UDP over IPv4 when being routed as IPv4. In certain Teredo packets, one or twochunks of data are inserted
between the UDP header and the IPv6 header.

SYMANTEC ADVANCED THREAT RESEARCH 53

Teredo clients
(behind NAT) IPv6

peer

IPv6
peer

IPv6
peer

IPv6
peer

Teredo clients
(behind NATs)

Teredo client
(behind NAT)

Teredo clients
(behind NATs)

IPv6 peer
with host-only

relay

IPv6 peer
with host-only

relay

Teredo
server

Teredo
server

Teredo
relays

IPv4/IPv6
Internet

Fig. 36. A Teredo microcosm, including key Teredo components, native IPv6 nodes, and IPv4 NATs. The cloud represents theInternet, where the yellow areas
are IPv4 only, the dark gray area is IPv6 only, and the mixed gray area supports both. The interior of the cloud represents Internet routers and infrastructure.

Fig. 37. The general format of the authentication data. In secure qualification, this data is positioned after the UDP header.

Teredo relaysserve as a router to bridge the IPv4 and IPv6 Internets for Teredo nodes. IPv6 native packets are encapsulated
for transmission over the IPv4 Internet (including the client), and when packets are received from the IPv4 Internet, they are
decapsulated into native IPv6 packets for the IPv6 Internet. Thus, the peers need not know that the node they are communicating
with is using Teredo. A special case is a host-only relay, which serves as a relay for the local host only. Connections between
a client and a peer use the closest relay to the peer.

Teredo servershelp a client set up its tunnel to IPv6 nodes. They help clients determine their Teredo address and determine
if its NAT is compatible with Teredo. Like relays, Teredo servers sit on both the IPv4 and IPv6 Internets, but they do not
serve as a general relay. The Teredo servers do pass along packets to and from the client, but only messages that pertain to
the functioning of the Teredo protocol; they do not pass along data packets. The locations of Teredo servers are generally
statically configured on the client.

Examples of these components and where they can be situated are shown in Figure 36.

The standard port on which the Teredo servers listen is UDP port 3544. Both clients and relays can use any UDP port for
their Teredo service, so their UDP service port could be ephemeral. Due to the IPv4 NAT(s) it is behind, the external port
number of a client’s Teredo service is, in general, not the same as the local port that is listened on. However, the Teredo
protocol tries to keep that external port number stable since this is the port to which the relays need to connect.

During its qualification phase, a Teredo client, with the help of its server, configures a specially formatted, globally addressable
IPv6 address called a Teredo address. The IANA assigned prefix for Teredo addresses is 2001:0000::/32, and the rest of the
address contains enough information for a relay to reach a client.

Teredo has a provision for “secure qualification”. This addsauthentication data (referred to in the RFC as authentication
encapsulation) to the Teredo encapsulated packet. Withoutthis, the client will not know it is getting a response back from
the actual server (instead of, for example, someone randomly sending RAs to the client). The authentication data takes the
format shown in Figure 37. The client identifier and authentication value are optional and have their specific length indicated
in one octet fields. The nonce value is always present and is always eight octets in length. It is a random number chosen by
the client and repeated by the server in the response. This simple measure establishes (with high probability) that if there is
any attacker, they are on-path between the client and the server.

SYMANTEC ADVANCED THREAT RESEARCH 54

A ping test12 is used in Teredo. In the procedure, the Teredo client sends an ICMPv6 echo request (ping) to a remote native
IPv6 peer via the client’s server. The server passes the pingdirectly over the IPv6 Internet to the peer. The peer then replies
(assuming that it normally responds to pings). The responseis returned to the client via the relay. In creating the ping,the
Teredo client sets the ping payload to a large random number,which the RFC suggests should be at least 64 bits in length.
That value is checked in the reply as an assurance against spoofing. To spoof a reply, an individual would either need to guess
the random number used or be on-path. In addition, the relay that is used is remembered, and subsequent communication from
the IPv6 peer is expected to come through that relay, and thatrelay is used for sending packets to the IPv6 peer.

B. Teredo Security Implications

In [22] we identified that our largest security concern with Teredo was that network-located security controls (including
firewalls and IPSs) are bypassed by the Teredo tunnel. Unlessthey are specifically Teredo-aware, these controls (even ifthey
support IPv6) are not properly applied to the IPv6 content that is located inside the UDP packet. This means that certain
restrictions are not applied to the Teredo traffic (those restrictions that do not have an analogue on the host) or, at least,
defense in depth is reduced. As Teredo clients are directly addressable from the Internet, organizations may find themselves
unexpectedly exposed to the Internet.

Teredo has additional security implications including thefollowing (from [22]):

• The difficulty of finding all Teredo traffic to inspect, due to the lack of fixed client and relay ports.
• Teredo packets are forwarded due to source routing to internal or external hosts after being decapsulated by the client.
• Teredo has provisions for arbitrary IPv4 nodes to poke a holein a Teredo client’s NAT through which they can then send

unsolicited traffic to the client. This means that a restricted NAT is essentially turned into an unrestricted one, for each
port maintained by a Teredo client.

• Teredo advertises (in the Teredo address) an open port in theclient’s NAT, and whether the NAT is more or less restrictive.
• Worms benefit from increasing host reachability, and, with certain types of host vulnerabilities, could possibly spread to

end hosts with single UDP packets.
• It may be easy to deny Teredo service at either the client or the relay.
• The address space to scan for Teredo IPv6 addresses is much smaller than native IPv6 addresses.
• Teredo supports IPsec, and has some anti-spoofing measures automatically applied.
• The RFC requires that Teredo components make sanity checks on packets, which prevents many potential attacks.

12The ping test is referred to by the RFC as the “Direct IPv6 Connectivity Test”. That name does not have a basis in the functionality if provides, so we
call it the “ping test”.

SYMANTEC ADVANCED THREAT RESEARCH 55

APPENDIX XIII
TEREDOANALYSIS AND FINDINGS

We conducted a short-scoped project to investigate the implementation of Teredo on Vista, especially security-related items.
We document our findings here. This research was conducted using the test network described in Appendix I-C, and was
conducted prior to the availability of the release build of Vista. These results were most recently updated with the Release
Candidate 2 (RC2) version of Vista (build 5744, October 2006).

The open source Teredo implementation Miredo[14] was used extensively during the project for different purposes, including:
• Reviewing Miredo source code to identify the types of potential implementation flaws that may be present in other Teredo

implementations.
• Using Miredo as the base engine to a Symantec Teredo fuzzer.
• Using Miredo in order to better understand the functionality that exists within a Teredo client protocol stack.

We are grateful to Rémi Denis-Courmont for making this available.

A. Teredo Use Under Vista

The circumstances under which a Vista application will use Teredo when connecting to a peer is complicated and not entirely
clear. The factors involved include at least:

• Whether the host has native IPv6 access, ISATAP/6to4 access, or neither.
• Whether a Teredo relay is available between the host and the peer or not.
• Whether the peer supports IPv6, IPv4, or both. For access by hostname, this corresponds to whether AAAA (IPv6) or A

(IPv4) DNS records are available, or both.
• Whether the peer address is a Teredo address or not.
• Whether the local network supports Teredo (i.e., does it block any important Teredo traffic) or not.
• Which APIs a particular application uses.
• Whether the application is prepared to use IPv4 or IPv6, or both.
• For application that can use both IPv4 and IPv6, whether it has any bias for or against IPv6, or for or against Teredo.

Of particular interest is whether IPv6 using Teredo is preferred to native IPv4, since we know native IPv4 is available ifTeredo
is being used.

In addition to the circumstances being complicated, the Microsoft documentation on MSDN that should cover this[40] does
not fully describe the possibilities and is unclear in parts. One case in which it is unclear is the “Receiving Solicited Traffic
Over Teredo” section of [40]. At the time of writing, it says both:

“Teredo is not utilized if the supplied hostname resolves toIPv4 addresses only. However, if an application calls
the WSAConnectByName API and both IPv6 and IPv4 addresses are returned, the Windows Vista stack will resolve
the IPv6 address first, allowing the use of the Teredo interface.”

and:
“Due to current bsence [sic] of Teredo relays on the Internet, connections to native IPv6 addresses are unlikely to

succeed over the Teredo interface. If WSAConnectByName is called, Windows Vista will not issue AAAA queries
when Teredo is the only IPv6 capable interface available. This ensures that native IPv6 addresses are not obtained as a
destination and that connections are attempted over IPv4, which has the highest chance of success. In order to obtain
IPv6 addresses when Teredo is the only IPv6 capable interface, an application must explicitly use the DnsQuery API
for AAAA records.”

We encourage Microsoft to improve its documentation, sincethat is in the interest of its users. A flow chart, or an interactive
application that answers whether Teredo would be used in certain specified circumstances would be quite helpful.

Our testing was mostly based on using ping. From this, we learned two circumstances under which our NAT-trapped host
would use Teredo. One was if “ping -6” was used and the remote peer had both A and AAAA DNS records. The the other
was when “ping” was used without the “-6” and the peer had onlyAAAA records13

An important question for security is how often a Teredo address will be qualified (set up and available) in Vista. This is
related to the previous question — if an application is usingTeredo, a Teredo address will be qualified. Thus the complication
and uncertainty associated with that is inherited by this question. Microsoft’s documentation[40] suggests that a Teredo interface
will de-qualify itself if it has been inactive for one hour, unless there is an application listening for unsolicited traffic on the
interface.

The question as to what fraction of Vista hosts will be using Teredo at any given time is one that may only be answered
by history. It will also likely vary over time, as the percentof IPv6 capable servers increases and the percent of NAT trapped
clients decreases. The safest assumption that network owners can make is that Teredo will often be used and hence they should
plan security with that in mind.

13The “-6” option to ping.exe forces it to use IPv6. There is no specific documentation for the IP version choice in the absence of “-4” or “-6”, though the
program is clearly capable of using IPv4 or IPv6 in that case.

SYMANTEC ADVANCED THREAT RESEARCH 56

According to Microsoft’s “Teredo Overview” web page[36] (at the time of writing), “In Windows Vista, the Teredo component
is enabled but inactive by default. In order to become active, a user must either install an application that needs to use Teredo,
or configure advanced Windows Firewall filter settings to allow edge traversal.”. The requirements for activation listed in that
last sentence do not seem consistent with [40] or our experience with the main test network as described in Appendix XXVIII.

B. Vista Teredo Components

The implementation of Teredo in Vista is broken down into a number of different operating system components, which are
detailed in Figure 38.

The role of IPHLPSVC.DLL was verified by listing which process owned the inbound UDP port used to handle incoming
Teredo traffic for a connection:

[svchost.exe]
UDP 192.168.0.13:60819 *:* 1004

As shown above, SVCHOST.EXE, which is responsible for the processing of Teredo traffic, is where IPHLPSVC.DLL exists.
This was validated by using the PID to verify that the instance of SVCHOST.EXE had IPHLPSVC.DLL present in its address
space.

C. Default Teredo settings
The command used to the configure Teredo under Windows Vista is netsh.exe. This can be used to show the current

configuration and to reconfigure the Teredo interface on the host in question. We used netsh to list the default settings:

C:\Users\ollie>netsh interface ipv6 show teredo
Teredo Parameters

Type : default
Server Name : teredo.ipv6.microsoft.com.
Client Refresh Interval : 30 seconds
Client Port : unspecified

The client port “unspecified” means that the Teredo client’sservice port is chosen ephemerally (see Appendix XIII-I). Note
that there is no setting for server port; they are always supposed to run on UDP port 3544.

The default server is ”teredo.ipv6.microsoft.com”. As of early March 2007, this resolves to at least nine IPv4 addresses:

• 65.54.227.120
• 65.54.227.122
• 65.54.227.124
• 65.54.227.126
• 65.54.227.136
• 65.54.227.138
• 65.54.227.140
• 65.54.227.142
• 65.54.227.144

D. Requirements for Elevated Privileges

One interesting observation made during the course of our research was that cmd.exe must be run in elevated mode in order
to gain complete information from the host in question. Figures 39 and 40 show the output of the same netsh.exe command
only seconds apart: the former shows output from a non-elevated copy of cmd.exe and the latter shows output from an elevated
copy. The information contained in Figure 40 is the correct configuration information.

File Role

TUNMP.SYS A kernel driver used to create the virtual networkinterface that Teredo uses. (It is also used for other
tunnel interfaces on Microsoft Windows Vista). This component is /GS compiled[31].

TUNNEL.SYS A kernel driver used to create the virtual network interface that Teredo uses. (It is also used for other
tunnel interfaces on Microsoft Windows Vista). This component is /GS compiled.

IPHLPSVC.DLL A system service which is run by SVCHOST and is the core Teredo tunneling component. This is
responsible for tunnel set-up, configuration and transmission between the Teredo client and the Teredo
server/relay. This component is /GS compiled.

Fig. 38. Teredo Windows Vista components and their roles.

SYMANTEC ADVANCED THREAT RESEARCH 57

C:\Users\ollie>time
The current time is: 8:16:25.54
Enter the new time:

C:\Users\ollie>netsh interface ipv6 show teredo
Teredo Parameters

Type : default
Server Name : teredo.ipv6.microsoft.com.
Client Refresh Interval : 30 seconds
Client Port : unspecified

Fig. 39. Incorrect Teredo settings in netsh from a non-elevated shell. While these look valid (and in fact match the default settings), they were not in fact
accurate for the host being examined. This actual settings at the time this was run are shown in Figure 40.

C:\Windows\system32>time
The current time is: 8:16:30.20
Enter the new time:

C:\Windows\system32>netsh interface ipv6 show teredo
Teredo Parameters

Type : default
Server Name : teredo.remlab.net
Client Refresh Interval : 30 seconds
Client Port : unspecified
State : qualified
Client Type : teredo client
Network : managed
NAT : restricted

Fig. 40. Teredo settings in netsh from an elevated shell.

This finding is interesting for a number of reasons. The finding shows firstly that there is a requirement to run an elevated
command shell in order to be able to gain accurate diagnostics information, and secondly, that the first instance shows an
incorrect Teredo server name. The result shows that it is possible for a malicious user or program to update the Teredo server
settings with a lower likelihood of detection due to the mismatch in available information; however, they would need to make
the change as administrator.

E. Disabling Teredo within Vista

Teredo can be disabled on Microsoft Windows Vista in a numberof ways:

• Stopping the IPHLPSVC service
• Unbinding IPv6 from the network interface
• Configuring the IPv6 stack parameters

The preferred method for disabling Teredo under Microsoft Windows Vista is the third option outlined above[11]: configuring
the IPv6 stack parameters. Under the registry key “HKEYLOCAL MACHINE\ SYSTEM\ CurrentControlSet\ Services\ -
tcpip6\ Parameters”, create an entry of type DWORD called DisabledComponents, then use this table to disable the appropriate
protocols:

Configuration Combination DisabledComponents Value
Disable all tunnel interfaces 0x01
Disable 6to4 0x02
Disable ISATAP 0x04
Disable Teredo 0x08
Disable Teredo and 6to4 0x0A
Disable all LAN and PPP interfaces 0x10
Disable all LAN, PPP, and tunnel interfaces 0x11
Prefer IPv4 over IPv6 0x20
Disable IPv6 over all interfaces and prefer IPv4 to IPv6 0xFF

F. Disabling the Microsoft Windows Firewall Disables Teredo

During the course of the research, we wished to disable Windows Firewall in order to understand the network filtering on
a Microsoft Windows Vista host via a Teredo interface. However, it was discovered that by disabling Windows Firewall, the
following entry is added to the trace information:

SYMANTEC ADVANCED THREAT RESEARCH 58

Fig. 41. Example where TracePrintFExW is imported. This is IPHLPSVC.DLL from Microsoft Windows Vista.

[1636] 11:33:19: Skipping start as firewall is disabled (0) . Handle (0x01263F70)

The result of this action is that Microsoft Windows Vista simply reports that it is either unable to locate the host in question
or that a general failure has occurred. This result occurs inresponse to all requests that interact with IPv6 via Teredo using
either hostnames or IP addresses. The benefits of this resultare obvious: no non-firewalled Microsoft Windows Vista hosts
should be available within the Teredo address space. Additionally, this functionality removes any possible race condition in
the duration between the Teredo interface opening and a firewall starting at system startup.

This behavior is consistent with the documentation in the “Implementing the Teredo Security Model” section of[40], which
indicates “An IPv6-capable host firewall must be registeredwith Windows Security Center (WSC) on the machine. In the
absence of a host-based firewall, or WSC itself, the Teredo interface will not be available for use. This is the only requirement
to receive solicited traffic from the Internet over the Teredo interface.”

G. Settings Storage

Microsoft Windows Vista stores all Teredo-related settings, such as the Teredo server used, within the registry. The registry key
used to store this information is HKLM\ SYSTEM\ CurrentControlSet\ Services\ iphlpsvc\ Teredo. These are the configuration
options to IPHLPSVC.DLL, whose functionality was described in a previous section.

H. Tracing Code

Microsoft left tracing code in IPHLPSVC.DLL in all examinedVista builds. This code, which can be enabled with a standard
API, when combined with the available debugging symbols from Microsoft, provides an invaluable source of information about
the implementation of Teredo on Windows Vista (see AppendixXIV-A). The reason Microsoft kept detailed logging available
is unknown.

This tracing API is part of RRAS (RTUTILS.DLL). Availability for a given component can be determined by discovering
whether it imports TracePrintfExW or similar. If it is available, this can be useful in understanding the states and functionality
of the component in question (i.e., Figure 41). That means the application is using the Microsoft tracing API. To turn on tracing
functionality simply use a registry editor to go to HKLM\ Software\ Microsoft\ Tracing\ [ApplicationName]\ and change the
DWORD “EnableFileTracing” to 1. This results in the creation of a file under C:\ Windows\ Tracing with the same name as
the component. This file is an ASCII log file containing the output of all the TracePrintExW statements. For more details
please refer to [37].

I. Client Service Port Selection

The way that Microsoft Windows Vista automatically selectsa client service port to use was analyzed. This analysis was of
the default Teredo configuration, in which the client port isset to “unspecified”. This port is the local UDP port for all Teredo
packets. This port, as remapped by the NAT, becomes part of the client’s Teredo address; hence packets from relays and the
client’s server arrive on this port.

To accomplish this, a script was developed to force the Teredo client to establish a new connection by changing the Teredo
server in use (Figure 42). The script then caused network traffic to be generated; this allowed us to observe the UDP destination
port used on inbound traffic.

We determined that the client port was chosen in standard ephemeral manner. From Appendix XVII, we show the Vista
ephemeral port range as 49152–65535. That matched our observations: in 1000 connections, the port range was 49596 to
65152.

J. Secure Qualification

Teredo on Microsoft Windows Vista supports only the most basic use of secure qualification. This is demonstrated in
figures 43 and 44. Figure 43 shows the authentication data in the Router Solicitation Packet, whereas Figure 44 shows the
authentication information in the corresponding Router Advertising Packet. Since client identification length and authentication

SYMANTEC ADVANCED THREAT RESEARCH 59

Dim iCount

Do While iCount < 1000
rem W scr i p t . StdOut .wr i t e (” S e t t i n g t o RemLabs ”)
DoItRem
W scr i p t . S leep (5000)
rem W scr i p t . s t d o u t .wr i t e ” S e t t i n g t o MS”
DoItMS
W scr i p t . S leep (5000)
rem W scr i p t . s t d o u t .wr i t e ” Looping . . . ”
iCount = iCount +1

Loop

Sub DoItRem ()
Dim wshShel l

s e t WshShel l=WScr ipt .CreateObject (” W sc r i p t . S h e l l ”)

WshShel l . run ” n e t s h i n t e r f a c e ipv6 s e t t e r e d o servername =t e r e d o . remlab . n e t ” , 1 , t r u e

W scr i p t . S leep (20000)

WshShel l . run ” p ing −6 www. a a i s p . co . uk ” , 1 , t r u e
W scr i p t . S leep (20000)

WshShel l . run ” p ing −6 www. a a i s p . co . uk ” , 1 , t r u e
end Sub

Sub DoItMS ()
Dim wshShel l

s e t WshShel l=WScr ipt .CreateObject (” W sc r i p t . S h e l l ”)

WshShel l . run ” n e t s h i n t e r f a c e ipv6 s e t t e r e d o servername =t e r e d o . ipv6 . m i c r o s o f t . com” ,1 , t r u e

W scr i p t . S leep (20000)

WshShel l . run ” p ing −6 www. a a i s p . co . uk ” , 1 , t r u e
W scr i p t . S leep (20000)

WshShel l . run ” p ing −6 www. a a i s p . co . uk ” , 1 , t r u e
end Sub

Fig. 42. The UDP port enumeration script. This Windows Script Host (VBS) script was used to force the Teredo client to change its UDP port for firewall
purposes. This allowed us to analyze the resulting UDP client port usage. The traffic generated was then captured with Wireshark and the IPv4 UDP destination
port on which the ICMP echo replies were seen was analyzed.

Fig. 43. Ethereal[61] screenshot of a router solicitation (RS) packet (client to server). Only the nonce is included from the authentication data.

SYMANTEC ADVANCED THREAT RESEARCH 60

Fig. 44. Ethereal screenshot of a router advertisement (RA)packet (server to client). Only the nonce is included from the authentication data.

value length are both zero, it is apparent from these samplesthat only nonce authentication is used in the Windows Vista
Teredo implementation. Thus, a man-in-the-middle attack becomes increasingly possible.

This finding was validated on both third-party Teredo servers, as well as on the default Vista Teredo servers at
teredo.ipv6.microsoft.com.

The nonce field from secure qualification is used partly as an anti-spoofing mechanism and partly for authentication. To
assess its effectiveness, it was important to understand how the nonce values are generated. Fortunately, the tracing code in
place within the Teredo stack (see section XIII-H above) allowed the monitoring of nonce mismatches. Here are the nonce
mismatches observed over a three minute period.

[VT:3592] 08:50:01: Nonce mismatch. Received 553648384 Ex pecting 427116032.
[VT:2880] 08:52:13: Nonce mismatch. Received 620757248 Ex pecting 1004707164.
[VT:3060] 08:53:16: Nonce mismatch. Received 771752192 Ex pecting -1769095775.

We can see from this small sample that there is an apparent high degree of randomness in the nonce selection. Also, it is
evident that Microsoft Windows Vista checks the nonce returned and if not correct, the packet is dropped.

K. Same Nonce Used With Different UDP Ports

We note that a nonce appears to relate to a solicitation session; that is, during the qualification (address configuration)
period the same nonce is used to communicate with one or more ports on the same Teredo server and for the life time of that
relationship. This marginally increases the chance of spoofing the nonce (which is required to spoof the server) since there is
a longer opportunity to try distinct nonces in a brute force attempt, and since there is more opportunity to observe the nonce
in transit.

L. Ping Tests

As described earlier (Appendix XII-A), the ping test is usedin part to counter spoofing attempts. To accomplish this, section
5.2.9 of RFC 4380[23] says:

“... the client will pick a random number (a nonce) and formatan ICMPv6 Echo Request message whose source
is the local Teredo address, whose destination is the address of the IPv6 node, and whose Data field is set to the
nonce. (It is recommended to use a random number at least 64 bits long.)”

A selection of different ping tests were collected by performing IPv6 ICMP ECHO REQUESTs to hosts located in
geographically diverse areas on the Internet including North America, Asia and Europe. The purpose of this was to cause
new relays to open up connections with the test Teredo client.

The sample below shows ping tests to four different destinations on the Internet. The data below shows the ICMP echo ID
and sequence number and the data payload of the packet.

SYMANTEC ADVANCED THREAT RESEARCH 61

Ping ID Ping Seq Ping Data
6094 a65e 4275 2fe3

9e05 2971 0000 0000
764f 8e29 0000 0000
8366 f2ea 0000 0000

0ec4 586d d5ac 308c
dd60 9db4 d5ac 308c

98a4 74e6 0000 0000
9a3b 47d4 0000 0000
30b1 4123 0000 0000

From this limited test there are two noteworthy discoveries. The first is that the ICMP echo data is only 32 bits in length and
not the recommended 64 bits. The second is that in some cases the ICMP payload sent is actually all zeros. The consequence of
implementing the ping test in this manner way is that the effectiveness of their anti-spoofing measure is reduced significantly.

When this is compared to the Miredo[14] implementation, thedifference is striking. In Miredo, teredoget pinghash() takes
the PID and current timestamp (which is valid for 30 seconds)and creates a hash seed. This, combined with the source and
destination address, as well as the timestamp again are passed to teredopinghash(), which then passes them to teredohash(),
which uses MD5 to hash all the elements along with 8 bytes of entropy padded to 64 bytes, which results in a hash with a
maximum size of 128 bits.

M. Source Routing

One Teredo concern from [22] was the possibility that sourcerouting could be abused to inject traffic into the local network.
We investigated this for Vista hosts.

The command “netsh interface ipv6 show global” was executedas administrator. The output is identical to what is shown in
Appendix IX. The Teredo interface was then identified using the ipconfig command in the test environment; this was “Local
Area Connection* 7”. Then its the configuration informationwas extracted:
C:\Users\ollie\Desktop>netsh interface ipv6 show interf aces interface="Local Area Connection* 7"

Interface Local Area Connection* 7 Parameters
--
IfLuid : tunnel_3
IfIndex : 10
Compartment Id : 1
State : connected
Metric : 10
Link MTU : 1280 bytes
Reachable Time : 7500 ms
Base Reachable Time : 15000 ms
Retransmission Interval : 2000 ms
DAD Transmits : 0
Site Prefix Length : 64
Site Id : 1
Forwarding : disabled
Advertising : disabled
Neighbor Discovery : enabled
Neighbor Unreachability Detecion : enabled
Router Discovery : enabled
Managed Address Configuration : disabled
Other Stateful Configuration : disabled
Weak Host Sends : disabled
Weak Host Receives : disabled
Use Automatic Metric : enabled
Ignore Default routes : disabled

We can see from the above that the global source routing is setto “forward” but the Teredo interface Forwarding is set to
“disabled”.

Although the global parameter sets Source Routing Behaviorto forward, the fact that the Teredo network interface is
configured with “Forwarding: disabled” means that it will not forward packets that are not destined for itself. Thus source
routing redirection after being de-tunneled would not seemto be a concern under Vista.

N. Use of Address Flag Bits

Teredo addresses contain a 16 bit flags field. RFC 4380 only defines one bit of that field, the cone bit. However, according
to [36], more bits are being used on Vista:

SYMANTEC ADVANCED THREAT RESEARCH 62

Test description Test result

Does Vista (immediately) accept incoming packets from
non-Teredo peers, where the IPv4 source address and port
do not match the expected address and port.

Packet does not get past Windows Firewall

Does Vista (immediately) accept incoming packets from
non-Teredo peers, where the IPv4 source address and port
do not match the expected address and port - different
source port only.

Packet does not get past Windows Firewall

Does Vista accept incoming packets from Teredo addresses,
where the IPv4 source address and port are not the expected
address and port expected (e.g. is a regular relay).

Packet does not get past Windows Firewall

Does Vista check the value returned in the ping? Windows Vista uses the value of the ping in order to map the
packet to the corresponding request.

Does mapping keep-alive to server use bubble per [36] or
RS per [23].

Per the RFC: RS (Router Solicitation)

Does Vista check that the incoming source IP is not
link-local, Unique Local IPv6 Unicast Addresses[21], or
multicast?

It was determined that there are specific checks for Link Local,
Unicast, Loopback, Teredo, ISATAP and Site Local.
This result determined by looking through the IDA disassem-
bly of IPHLPSVC.DLL (see Appendix XIV-B).

Does Vista check that the address is 2001::/32 and not
2001::/16

It was determined that the IN6IS ADDR TERED() function
checks that the destination address begins with 2001::/32.
This result determined by looking through the IDA disassem-
bly of IPHLPSVC.DLL (see Appendix XIV-B).

Does Vista check that the incoming destination IP is
2001::/32

It was determined that the IN6IS ADDR TERED() function
checks that the destination address begins with 2001::/32.
This result determined by looking through the IDA disassem-
bly of IPHLPSVC.DLL (see Appendix XIV-B).

Fig. 45. The attempted Teredo test cases

“For Windows XP-based Teredo clients, the only defined flag isthe high order bit known as the Cone flag. The
Cone flag is set when Teredo client is behind a cone NAT...

For Windows Vista and Windows Server “Longhorn”-based Teredo clients, unused bits within the Flags field
provide a level of protection from address scans by malicious users. The 16 bits within the Flags field for Windows
Vista and Windows Server “Longhorn”-based Teredo clients consists of the following: CRAAAAUG AAAAAAAA.
The C bit is for the Cone flag. The R bit is reserved for future use. The U bit is for the Universal/Local flag (set to
0). The G bit is Individual/Group flag (set to 0). The A bits areset to a 12-bit randomly generated number. By using
a random number for the A bits, a malicious user that has determined the rest of the Teredo address by capturing the
initial configuration exchange of packets between the Teredo client and Teredo server will have to try up to 4,096
(212) different addresses to determine a Teredo client’s address during an address scan.”

We observed this, though we did not analyze the randomness ofthe 12 bits. For example, the address
2001:0:4136:e37a:1c1a:1080:f580:ea94 has 0x1c1a as the flags field. The A bits are 01110011010. Thus, we can verify these
bits are in use. Assuming that 12 bits are selected at random (of which there is no guarantee), these extra 12 bits of entropy
should make it more difficult for the attacker to guess a client’s Teredo address (see [22]).

O. Other Attempted Test Cases

Figure 45 describes the test cases included in the Vista Teredo research, and documents the observed results.

P. Vista Teredo Conclusions

Teredo is a fairly simple tunneling protocol. It takes approximately 138KB of C code to implement[14], as a result there
is a minimal attack surface to pursue apart from the Teredo protocol itself. We found no issues in Microsoft’s Teredo stack
implementation that might lead to the compromise of a remoteWindow Vista host.

We found that some security features in Windows Vista Teredoimplementation are implemented minimally. In at least one
situation, the implementation is below that recommended byMicrosoft[23]. However, the extra 12 bits of randomness should
make Vista Teredo addresses 4096 times harder to guess.

SYMANTEC ADVANCED THREAT RESEARCH 63

APPENDIX XIV
TEREDO IPHLPSVC INVESTIGATION

In the course of our Teredo investigation, we enabled tracing output, studied address checks, and studied function names
for IPHLPSVC.DLL.

A. IPHLPSVC.DLL Tracing Output
The following shows an example of the tracing output from IPHLPSVC.DLL on a Microsoft Windows Vista RC1 build.

[VT:71240] 14:39:52: TeredoClientTimerCallback: System Time 4214681000
[VT:71240] 14:39:52: Get lock invoked at d:\vistarc1\net\ netio\iphlpsvc\service\client.c : 896
[VT:71240] 14:39:52: Lock acquired at d:\vistarc1\net\ne tio\iphlpsvc\service\client.c : 896. Return 0
[VT:71240] 14:39:52: Next callback interval is 1
[VT:71240] 14:39:52: TeredoReferenceClient: ++4 @ d:\vis tarc1\net\netio\iphlpsvc\service\client.c:2649
[VT:71240] 14:39:52: Transmitting a Router Solicitation
[VT:71240] 14:39:52: TeredoPrimaryTransmitPacket: 0x02 E02608
[VT:71240] 14:39:53: DeviceTransmitComplete: 0x02E0260 8
[VT:71240] 14:39:53: TeredoDereferenceClient: --5 @ d:\v istarc1\net\netio\iphlpsvc\service\client.c:2080
[VT:71240] 14:39:53: Client State is 5, Router Solicit Coun t is 5
[VT:71240] 14:39:53: Lock released at d:\vistarc1\net\ne tio\iphlpsvc\service\client.c : 898. Return 1
[VT:71240] 14:39:53: TeredoClientPrimaryReceive: 0x030 12EB8
[VT:71240] 14:39:53: Destination address of IPV6 is link lo cal
[VT:71240] 14:39:53: TeredoClientRouterAdvertisement
[VT:71240] 14:39:53: Get lock invoked at d:\vistarc1\net\ netio\iphlpsvc\service\client.c : 3410
[VT:71240] 14:39:53: Lock acquired at d:\vistarc1\net\ne tio\iphlpsvc\service\client.c : 3410. Return 0
[VT:71240] 14:39:53: Entered: TeredoClientQualified
[VT:71240] 14:39:53: TeredoClientQualified: Mapped-add ress is 88.96.142.161, source address is 192.168.0.8.
[VT:71240] 14:39:53: TeredoMappedIpAddressToLocation: Location = 88.
[VT:71240] 14:39:53: Lock released at d:\vistarc1\net\ne tio\iphlpsvc\service\client.c : 3527. Return 1
[VT:71240] 14:39:53: DeviceReceiveComplete: 0x03012EB8
[VT:1028] 14:40:02: SetHelperServiceStatus: Setting sta te to 3
[VT:1028] 14:40:02: ServiceHandler: Got a SERVICE_CONTRO L_STOP control
[VT:67280] 14:40:02: Entered: OnStop
[VT:67280] 14:40:02: OnStop: Synchronizing with startup.
[VT:67280] 14:40:02: OnStop: Done synchronizing with star tup, continuing...
[VT:67280] 14:40:02: Entering DeregisterNotificationHa ndlers
[VT:67280] 14:40:02: DeregisterNotificationHandlers: H andler 1
[VT:67280] 14:40:02: DeregisterNotificationHandlers: H andler 2
[VT:67280] 14:40:02: DeregisterNotificationHandlers: H andler 3
[VT:67280] 14:40:02: DeregisterNotificationHandlers: H andler 4
[VT:67280] 14:40:02: DeregisterNotificationHandlers: H andler 5
[VT:67280] 14:40:02: DeregisterNotificationHandlers: H andler 6
[VT:67280] 14:40:02: DeregisterNotificationHandlers: H andler 7
[VT:67280] 14:40:02: DeregisterNotificationHandlers: D isconnecting...
[VT:67280] 14:40:02: Leaving DeregisterNotificationHan dlers
[VT:67280] 14:40:02: Get lock invoked at d:\vistarc1\net\ netio\iphlpsvc\service\svcmain.c : 176
[VT:67280] 14:40:02: Lock acquired at d:\vistarc1\net\ne tio\iphlpsvc\service\svcmain.c : 176. Return 0
[VT:67280] 14:40:02: Entering StopHelperService
[VT:67280] 14:40:02: Entered: TeredoUninitialize
[VT:67280] 14:40:02: TeredoStopServer
[VT:67280] 14:40:02: CloseThreadpoolWait complete
[VT:67280] 14:40:02: CloseThreadpoolWait complete
[VT:67280] 14:40:02: CloseThreadpoolWait complete
[VT:67280] 14:40:02: CloseThreadpoolWait complete
[VT:67280] 14:40:02: CloseThreadpoolWait complete
[VT:67280] 14:40:02: DereferenceService: --5 (TeredoCle anupServer) @
d:\vistarc1\net\netio\iphlpsvc\service\server.c:734
[VT:67280] 14:40:02: Lock released at d:\vistarc1\net\ne tio\iphlpsvc\service\teredo.c : 1287. Return 1
[VT:67280] 14:40:02: Get lock invoked at d:\vistarc1\net\ netio\iphlpsvc\service\teredo.c : 1293
[VT:67280] 14:40:02: Lock acquired at d:\vistarc1\net\ne tio\iphlpsvc\service\teredo.c : 1293. Return 0
[VT:67280] 14:40:02: Leaving: TeredoUninitialize
[VT:71240] 14:40:02: No timer callbacks pending
[VT:71240] 14:40:02: CloseThreadpoolWait complete
[VT:71240] 14:40:02: DereferenceService: --4 (IsatapTim erCleanup) @
d:\vistarc1\net\netio\iphlpsvc\service\isatap.c:149 4
[VT:67280] 14:40:02: IsatapUninitialize: Uninstalling i nterface isatap.
{9F8B50B5-99A8-47EC-B505-75F0A8846CC4}
[VT:67280] 14:40:02: UpdateLinkAddress: LUID 8300000200 0000 DlAddressLength 12
[VT:67280] 14:40:02: IsatapUpdateLinkAddress: isatap.{ 9F8B50B5-99A8-47EC-B505-75F0A8846CC4} - link address
= 0.0.0.0; Succeeded
[VT:67280] 14:40:02: Entered: UninitializePorts
[VT:67280] 14:40:02: Get lock invoked at d:\vistarc1\net\ netio\iphlpsvc\service\proxy.c : 1119
[VT:67280] 14:40:02: Lock acquired at d:\vistarc1\net\ne tio\iphlpsvc\service\proxy.c : 1119. Return 0
[VT:67280] 14:40:02: Lock released at d:\vistarc1\net\ne tio\iphlpsvc\service\proxy.c : 1129. Return 1
[VT:67280] 14:40:02: Leaving: UninitializePorts

SYMANTEC ADVANCED THREAT RESEARCH 64

[VT:67280] 14:40:02: Entering UninitializeRelays
[VT:67280] 14:40:02: Cancelling RT
[VT:67280] 14:40:02: Leaving UninitializeRelays
[VT:67280] 14:40:02: Deleting compartment 1
[VT:67280] 14:40:02: TeredoUninitializeCompartment: 1
[VT:71240] 14:40:02: No timer callbacks pending
[VT:71240] 14:40:02: CloseThreadpoolWait complete
[VT:71240] 14:40:02: TeredoDereferenceCompartment: 0x0 2E007C8 : --3 @
d:\vistarc1\net\netio\iphlpsvc\service\teredo.c:105 5
[VT:71240] 14:40:02: DereferenceService: --3 (TeredoTim erCleanup) @
d:\vistarc1\net\netio\iphlpsvc\service\teredo.c:105 6
[VT:67280] 14:40:02: TeredoStopClient 0x02E01488 (compa rtment 1, state 5)
[VT:67280] 14:40:02: Max previous state entries: 8
[VT:67280] 14:40:02: Unable to open key
System\CurrentControlSet\Services\iphlpsvc\Teredo\P reviousState\00-14-6c-a9-bc-a0. Error 2
[VT:67280] 14:40:02: Open key System\CurrentControlSet\ Services\iphlpsvc\Teredo\PreviousState\
00-14-6c-a9-bc-a0 Status = 2
[VT:67280] 14:40:03: Maximum state entries: 0, Oldest stat e is ??
[VT:67280] 14:40:03: Create key System\CurrentControlSe t\Services\iphlpsvc\Teredo\PreviousState\
00-14-6c-a9-bc-a0 Status = 0
[VT:71240] 14:40:03: TeredoClientTunnelReceive: 0x0301 07C8
[VT:71240] 14:40:03: DeviceReceiveComplete: 0x030107C8
[VT:71240] 14:40:03: TeredoClientTunnelReceive: 0x0301 0D58
[VT:71240] 14:40:03: DeviceReceiveComplete: 0x03010D58
[VT:71240] 14:40:03: TeredoClientTunnelReceive: 0x0301 1878
[VT:71240] 14:40:03: DeviceReceiveComplete: 0x03011878
[VT:67280] 14:40:03: TeredoSqmProcessHibernate: Timest amp 68714515
[VT:67280] 14:40:03: TeredoSqmProcessQualified: Addres sLifetime = 219 seconds
[VT:67280] 14:40:03: TeredoSqm: set DATAID_TEREDO_SQM_V ERSION to 4
[VT:67280] 14:40:03: TeredoSqm: set DATAID_FWT_CONNECTI VITY_TYPE to 5
[VT:67280] 14:40:03: TeredoSqm: set DATAID_AVG_RTT_TO_S ERVER (PortPreservingNat) to 0
[VT:67280] 14:40:03: TeredoSqm: set DATAID_TEREDO_PEER_ PEER_RTT (UpnpNat) to 0
[VT:67280] 14:40:03: TeredoSqm: set DATAID_TEREDO_CLIEN T_TYPE to 0
[VT:67280] 14:40:03: TeredoSqm: set DATAID_TEREDO_NETWO RK_TYPE to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_GEOGR APHIC_LOCATION to 88
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_ADDRE SS_ETA to 313
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_ADDRE SS_LIFETIME to 219
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_SESSI ON_DURATION to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_FAILU RE_DURATION to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_CLIEN T_SERVER_RTT to 251
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_DATA_ TRANSFERRED to 1842
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_FAILU RE_REASON to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_PORT_MAINTEN ANCE_TRAFFIC to 1190
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_DATA_TO_OTHE R_SERVERS to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_DATA_RECEIVE D_FROM_SERVER to 48
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TOTAL_DATA_S ENT_TO_PEERS to 260
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TOTAL_DATA_R ECEIVED_FROM_PEERS to 344
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_MIN_PEER_CON NECTION_TIME to -1
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_MAX_PEER_CON NECTION_TIME to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_SUCCESSFUL_N ATIVE_PEER_CONNECTIONS to 1
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_UNSUCCESSFUL _NATIVE_PEER_CONNECTIONS to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_SUCCESSFUL_C ONE_PEER_CONNECTIONS to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_UNSUCCESSFUL _CONE_PEER_CONNECTIONS to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_SUCCESSFUL_R ESTRICTED_PEER_CONNECTIONS to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_UNSUCCESSFUL _RESTRICTED_PEER_CONNECTIONS to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TOTAL_CONNEC TS_TO_BAD_ADDDRESSES to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_SYSTE M_ERROR_CODE to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_SESSI ON_END_REASON to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_LIST_ APP_TRIGGER_COUNT to 0
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_OUT_P KT_TRIGGER_COUNT to 1
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_NSI_T RIGGER_COUNT (Total dormancy exits) to 1
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_DORMA NCY_RELATED_ADDR_CHANGES to 1
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_START UP_TIME to 360
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_PS_RE SPONSE_TIME to 78
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_CRYPT O_HASH to 1
[VT:67280] 14:40:03: TeredoSqm: Set DATAID_TEREDO_ACTIV E_LIFETIME to 219
[VT:67280] 14:40:03: TeredoSqmStopClient: Timestamp 687 14515.
[VT:67280] 14:40:03: TeredoSqmStopClient: SessionDurat ion = 68658 seconds
[VT:67280] 14:40:03: TeredoSqm: set DATAID_TEREDO_SQM_V ERSION to 4
[VT:67280] 14:40:03: TeredoSqm: set DATAID_FWT_CONNECTI VITY_TYPE to 2
[VT:67280] 14:40:03: TeredoSqm: set DATAID_AVG_RTT_TO_S ERVER (PortPreservingNat) to 1
[VT:67280] 14:40:03: TeredoSqm: set DATAID_TEREDO_PEER_ PEER_RTT (UpnpNat) to 0
[VT:67280] 14:40:03: TeredoSqm: set DATAID_TEREDO_CLIEN T_TYPE to 2

B. Address Checks in IPHLPSVC.DLL
It was discovered the Teredo stack specifically checks that incoming packets are not from link local addresses:

SYMANTEC ADVANCED THREAT RESEARCH 65

. t e x t :25254225 ; s t d c a l l IN6 IS ADDR LINKLOCAL (x)

. t e x t :25254225 IN6 IS ADDR LINKLOCAL@4 proc near ; CODE XREF: Ipv6Un i cas tAddre ssS c op e (x)+20 p

. t e x t :25254225 ; T e r e d o C l i e n t P r o c e s s P e e r M u l t i c a s t (x)+2D p . . .

. t e x t :25254225

. t e x t :25254225 a r g0 = dword p t r 8

. t e x t :25254225

. t e x t :25254225 ; FUNCTION CHUNK AT . t e x t :25254213 SIZE 0000000D BYTES

. t e x t :25254225

. t e x t :25254225 mov edi , ed i

. t e x t :25254227 push ebp

. t e x t :25254228 mov ebp , esp

. t e x t :2525422A mov eax , [ebp+ a r g 0]

. t e x t :2525422D cmp byte p t r [eax] , 0FEh

. t e x t :25254230 j z sh o r t l oc 25254213

. t e x t :25254232

. t e x t :25254232 loc25254232 : ; CODE XREF: IN6 IS ADDR LINKLOCAL (x)−B j

. t e x t :25254232 xor al , a l

. t e x t :25254234

. t e x t :25254234 loc25254234 : ; CODE XREF: IN6 IS ADDR LINKLOCAL (x)−7 j

. t e x t :25254234 pop ebp

. t e x t :25254235 r e t n 4

. t e x t :25254235 IN6 IS ADDR LINKLOCAL@4 endp

We can see in the above disassembly at 2525422D that it specifically compares the least significant octet of the address with
FEh, which is an indicator of a link local address. After the JZ above is taken there is a further comparison to ensure that the
address is within fe80::/9, which is the link local address space for IPv6.

. t e x t :25254213 loc25254213 : ; CODE XREF: IN6 IS ADDR LINKLOCAL (x)+B j

. t e x t :25254213 mov al , [eax+1]

. t e x t :25254216 and al , 0C0h

. t e x t :25254218 cmp al , 80h

. t e x t :2525421A j nz sh or t l oc 25254232

. t e x t :2525421 C add al , 81h

. t e x t :2525421 E jmp sh or t l oc 25254234

. t e x t :2525421 E ; END OF FUNCTION CHUNK FOR IN6 IS ADDR LINKLOCAL@4

It was also discovered that the checks performed to determine if an address is a Teredo address or not, involve checking
the first four octets as expected. At 25262DEE below we see as comparison between the value of the address and
in6addrteredoprefix which is 0120h (2001) then below that at 25262DFB we see a comparison between that AX and

word 2525FBE2 which is 00.

IN6 IS ADDR TEREDO@4 proc near ; CODE XREF: T e r e d o V a l i d A d v e r t i s e d P r e f i x (x , x , x)+14 p
. t e x t :25262DE3 ; TeredoSqmProcessPeerConnec t ion (x , x)+6F p . . .
. t e x t :25262DE3
. t e x t :25262DE3 a r g0 = dword p t r 8
. t e x t :25262DE3
. t e x t :25262DE3 mov edi , ed i
. t e x t :25262DE5 push ebp
. t e x t :25262DE6 mov ebp , esp
. t e x t :25262DE8 mov eax , [ebp+ a r g 0]
. t e x t :25262DEB mov cx , [eax]
. t e x t :25262DEE cmp cx , ds : i n 6 a d d r t e r e d o p r e f i x
. t e x t :25262DF5 j nz sh or t l oc 25262E08
. t e x t :25262DF7 mov ax , [eax+2]
. t e x t :25262DFB cmp ax , ds : word 2525FBE2
. t e x t :25262 E02 j nz sh or t l oc 25262E08
. t e x t :25262 E04 mov al , 1
. t e x t :25262 E06 jmp sh or t loc 25262E0A
. t e x t :25262 E08 ; −−−
. t e x t :25262 E08
. t e x t :25262 E08 loc25262E08 : ; CODE XREF: IN6 IS ADDR TEREDO (x)+12 j
. t e x t :25262 E08 ; IN6 IS ADDR TEREDO (x)+1F j
. t e x t :25262 E08 xor al , a l
. t e x t :25262E0A
. t e x t :25262E0A loc25262E0A : ; CODE XREF: IN6 IS ADDR TEREDO (x)+23 j
. t e x t :25262E0A pop ebp
. t e x t :25262E0B r e t n 4
. t e x t :25262E0B IN6 IS ADDR TEREDO@4 endp

SYMANTEC ADVANCED THREAT RESEARCH 66

C. Teredo Functions from IPHLPSVC.DLL

The following lists the 244 functions exported from IPHLPSVC.DL that contain the word “Teredo” as part of the name:

_TeredoAddressArrival@4
_TeredoAddressDeletion@4
_TeredoAlterForwarding@8
_TeredoAlterWeakHostReceive@8
_TeredoAlterWeakHostSend@8
_TeredoChangeOrigin@8
_TeredoChecksumDatagram@20
_TeredoCleanup@0
_TeredoCleanupClient@4
_TeredoCleanupDevice@4
_TeredoCleanupIo@4
_TeredoCleanupServer@0
_TeredoClientCalculateInterval@4
_TeredoClientCompletePacket@4
_TeredoClientCompleteRsPacket@4
_TeredoClientConstructEchoRequest@8
_TeredoClientConstructIndirectBubble@8
_TeredoClientConstructNeighborAdvertisement@8
_TeredoClientConstructNeighborSolicitation@8
_TeredoClientFreeQueuedPackets@4
_TeredoClientGenerateTeredoAddress@4
_TeredoClientIpv4AddressDeletionNotification@8
_TeredoClientLoadWscLibrary@0
_TeredoClientLocalReceiveIpv6@4
_TeredoClientLocalReceiveNeighborDiscovery@4
_TeredoClientLocalReceiveRouterSolicitation@4
_TeredoClientPrimaryReceive@8
_TeredoClientProbeRestrictedSecondary@8
_TeredoClientProcessPeerMulticast@4
_TeredoClientProcessPeerPacket@4
_TeredoClientProcessQueuedPackets@4
_TeredoClientProcessQueuedPacketsEx@8
_TeredoClientProcessServerPacket@8
_TeredoClientProcessWSCNotification@4
_TeredoClientQualified@8
_TeredoClientRefreshIntervalChangeNotification@4
_TeredoClientRegisterWSCNotifications@4
_TeredoClientSecondaryReceive@8
_TeredoClientStartTypeSpecificBehavior@4
_TeredoClientStopIoComplete@4
_TeredoClientStopTypeSpecificBehavior@4
_TeredoClientTimerCallback@12
_TeredoClientTimerCallbackUnderLock@4
_TeredoClientTimerCleanup@16
_TeredoClientTunnelReceive@8
_TeredoClientTunnelReceiveHelper@8
_TeredoClientUpdateStateInNsi@4
_TeredoCompartmentAddAdapterNotification@8
_TeredoCompartmentArrival@8
_TeredoCompartmentChangeNotification@8
_TeredoCompartmentConfigurationChangeNotification@8
_TeredoCompartmentDeleteAdapterNotification@8
_TeredoCompartmentDeletion@8
_TeredoCompartmentNetworkChangeNotification@8
_TeredoCompartmentQueryGlobals@8
_TeredoCompartmentRequirementChangeNotification@8
_TeredoCompartmentRouteChangeNotification@8
_TeredoCompartmentTeredoChangeNotification@8
_TeredoCompartmentTunnelChangeNotification@8
_TeredoConfigurationChangeNotification@4
_TeredoConstructRouterAdvertisement@28
_TeredoCreateAndSendDirectBubble@8
_TeredoCreateAuthContext@16
_TeredoCreateGatewayKey@8
_TeredoCreatePacket@16
_TeredoCreatePeer@8
_TeredoCreatePrimarySocket@4
_TeredoCreateRegKey@8
_TeredoCreateSecondarySocket@4
_TeredoCreateTunnel@4
_TeredoDeleteAndRecreatePreviousState@4
_TeredoDeleteGatewayKey@4

_TeredoDeletePeer@4
_TeredoDereferenceClientEx@12
_TeredoDereferenceIoEx@12
_TeredoDereferencePeer@4
_TeredoDereferenceServer@4
_TeredoDeregisterFirewallExceptions@8
_TeredoDeregisterPortMapping@0
_TeredoDeregisterWmiEventNotification@0
_TeredoDestroyPacket@4
_TeredoDestroyPeer@4
_TeredoDestroyPrimarySocket@4
_TeredoDestroySecondarySocket@4
_TeredoDestroyTunnel@4
_TeredoDisableForwardingBehavior@4
_TeredoDisableWeakHostBehavior@4
_TeredoEnableForwardingBehavior@4
_TeredoEnableWeakHostBehavior@4
_TeredoEnableWmiEvent@8
_TeredoEnumerateInterfaces@12
_TeredoExtractAdvertisedAddresses@12
_TeredoFillInAddressTrailer@12
_TeredoFillInAuthInfo@20
_TeredoFillInNonceTrailer@12
_TeredoFindOrCreatePeer@8
_TeredoFindPeer@8
_TeredoGetAuthInfoSize@4
_TeredoGetMaximumAddressLifetime@0
_TeredoGetMaximumPreviousState@0
_TeredoGetPreferredSource@12
_TeredoGetPreviousAddressState@8
_TeredoGetTime@0
_TeredoHash@4
_TeredoHibernateClient@4
_TeredoInitialize@0
_TeredoInitializeAddressComponents@4
_TeredoInitializeAuthProvider@0
_TeredoInitializeClient@4
_TeredoInitializeClientPortMappings@4
_TeredoInitializeDevice@8
_TeredoInitializeIo@24
_TeredoInitializePacket@16
_TeredoInitializePacketContext@4
_TeredoInitializePeer@8
_TeredoInitializeRsPacket@4
_TeredoInitializeServer@0
_TeredoInitializeSqmState@4
_TeredoInitializeTimer@4
_TeredoInstallDeviceInCompartment@4
_TeredoInterface@8
_TeredoInterfaceChange@4
_TeredoInterfaceDeletion@4
_TeredoIpv4GlobalAddress@4
_TeredoIpv4ValidAddress@4
_TeredoIpv6GlobalAddress@4
_TeredoIsMappingEqual@8
_TeredoManagedNetwork@4
_TeredoMappedIpAddressToLocation@8
_TeredoMatchServerAddresses@8
_TeredoNetworkChangeNotificationWorker@8
_TeredoOpenRegKey@8
_TeredoParseAddress@8
_TeredoParseIpv6Headers@8
_TeredoParseOrigin@8
_TeredoPeerCompleteDynamicPacket@4
_TeredoPeerCompletePacket@4
_TeredoPeerRecentlyRefreshed@4
_TeredoPrimaryIoComplete@24
_TeredoPrimaryPostReceive@8
_TeredoPrimaryReceiveNotification@16
_TeredoPrimaryTransmitPacket@8
_TeredoProcessBubbleTrailer@16
_TeredoProcessRouterAdvertisement@8

SYMANTEC ADVANCED THREAT RESEARCH 67

_TeredoQueryGlobals@8
_TeredoQueuePacketAndTriggerClient@12
_TeredoReferenceClientEx@12
_TeredoReferenceIoEx@12
_TeredoRefreshIo@4
_TeredoRefreshPortMapping@4
_TeredoRegisterFirewallExceptions@8
_TeredoRegisterPortMapping@4
_TeredoRegisterWmiEventNotification@0
_TeredoRelayConstructNeighborAdvertisement@36
_TeredoRelayProcessReadPacket@4
_TeredoRelayProcessReceive@4
_TeredoResolveDefaultGateway@8
_TeredoResolveInterval@8
_TeredoResolveServer@4
_TeredoResolveServerAndGetPreferredSource@4
_TeredoRestartClient@4
_TeredoReusablePeer@4
_TeredoReuseOrCreatePeer@12
_TeredoReusePeer@8
_TeredoRouteChangeNotification@0
_TeredoSecondaryIoComplete@24
_TeredoSecondaryPostReceive@8
_TeredoSecondaryTransmitPacket@8
_TeredoServerIpv4AddressDeletionNotification@4
_TeredoServerPrimaryReceive@8
_TeredoServerProcessBubble@4
_TeredoServerProcessEchoRequest@4
_TeredoServerProcessReceive@8
_TeredoServerProcessRouterSolicitation@12
_TeredoServerSecondaryReceive@8
_TeredoServerStopIoComplete@4
_TeredoServerTunnelReceive@8
_TeredoServerUnreachabilityError@4
_TeredoSetPreviousAddressState@4
_TeredoSetPreviousTeredoAddress@8
_TeredoSqmBackupFailure@4
_TeredoSqmPeriodicCallback@4
_TeredoSqmPrintDatapoints@4
_TeredoSqmProcessDataPacketReceive@8
_TeredoSqmProcessDataPacketSend@8
_TeredoSqmProcessExitDormant@4
_TeredoSqmProcessExitOffline@4
_TeredoSqmProcessFailure@4
_TeredoSqmProcessHibernate@4
_TeredoSqmProcessIndirectBubbleReceive@8
_TeredoSqmProcessIndirectBubbleSend@12
_TeredoSqmProcessOutgoingPktTrigger@4
_TeredoSqmProcessPeerConnection@8
_TeredoSqmProcessPeerReuse@8
_TeredoSqmProcessQualified@4

_TeredoSqmProcessRouterAdvertisementReceive@8
_TeredoSqmProcessRouterSolicitationSend@8
_TeredoSqmProcessWakeup@4
_TeredoSqmResetData@4
_TeredoStartClient@4
_TeredoStartCompartment@8
_TeredoStartDevice@4
_TeredoStartIo@4
_TeredoStartOrRefreshClient@12
_TeredoStartOrRefreshServer@4
_TeredoStartServer@0
_TeredoStopClient@4
_TeredoStopCompartment@8
_TeredoStopDevice@4
_TeredoStopDeviceComplete@4
_TeredoStopEventCallback@16
_TeredoStopIo@4
_TeredoStopServer@0
_TeredoTimerCallback@12
_TeredoTimerCleanup@16
_TeredoTraceAddress@16
_TeredoTransmitDirectBubble@12
_TeredoTransmitIndirectBubble@12
_TeredoTransmitMulticastBubble@8
_TeredoTransmitPacket@8
_TeredoTransmitRouterSolicitation@8
_TeredoTunnelIoComplete@24
_TeredoTunnelPostReceive@8
_TeredoTunnelTransmitPacket@8
_TeredoTypeClient@4
_TeredoTypeServer@4
_TeredoUninitialize@4
_TeredoUninitializeAuthProvider@0
_TeredoUninitializeClient@4
_TeredoUninitializePeerSet@4
_TeredoUninitializeServer@0
_TeredoUninitializeSqmState@4
_TeredoUninitializeTimer@4
_TeredoUninstallDeviceInCompartment@4
_TeredoUpdatePeer@12
_TeredoUpdatePendingSqmDatapoints@4
_TeredoUpnpSymmetricNatEnvironment@4
_TeredoValidAddress@4
_TeredoValidAdvertisedPrefix@12
_TeredoValidPreviousStateAddress@8
_TeredoVerifyAndAssignServerAddress@8
_TeredoVerifyAuthInfo@12
_TeredoVerifyPreviousStateAddress@16
_TeredoWakeupClient@4
_TeredoWmiEventNotification@8

SYMANTEC ADVANCED THREAT RESEARCH 68

APPENDIX XV
HISTORIC ATTACKS

We tested the Vista networking stack using a suite of historical network stack attack tools. These were all sent across a
100Mbps Ethernet link. While previous Vista beta builds hadbeen subject to some of these[49], we observed no abnormal
effect from these on the release build of Vista.

The only attacks that had noticeable effect were opentear, udp, and udp2. Udp and udp2, which are UDP flooders, flooded
the network and caused a reverse ping to begin failing.

Opentear sends a flood of improperly fragmented UDP packets,each from a different forged source address. A single instance
could generate 12,000 packets per second. When hpvista was the target, the Windows GUI became very sluggish. When hpvista
was running a reverse ping to the attacking machine, the pings were still generated promptly at one-second intervals andthe
GUI was sluggish, but we could only achieve 4000 pps in that situation. When acervista was targeted, a flood of 10–11,000
pps from a single instance of opentear caused the target to become unresponsive and reverse pings to cease. However, if the
user was moving the mouse pointer at the attack onset, it could continue to be moved until the user paused. Nevertheless, it
survived several copies of opentear running against it at the same time; in all cases, responsiveness resumed after thatattack
was stopped. The effects would be less pronounced on a slowerlink than 100Mbps.

While these attacks succeeded to an extent, it is apparentlyonly due to the sheer packet load going across a fast Ethernet
connection. We do not believe that a client workstation OS and its associated hardware should be expected to handle that
packet volume.

We also tried blat, boink, bonk, land, naptha, neptune, pingexpoit, syndrop, synk4, and teardrop but noticed no effect.When
there is no apparent impact, it is difficult to know with certainly that the exploit is functioning properly. The originalexploits
were used, except that SOCKRAW was replaced with a modified pcap (containing a pcapwrite() function). The changes
were necessary because the Linux kernel does not allow control of the fragment offset field of the IP header when using
SOCK RAW.

SYMANTEC ADVANCED THREAT RESEARCH 69

APPENDIX XVI
IPV6 OPTIONS

We explored Vista’s resilience to malformed IPv6 destination options by developing two scripts to send an IPv6 packet with
a Destination Options extension header[13] with malformedoptions encoded in it. Recall that the options in the Destination
Options extension header are similar to those in IPv4 in thatthey typically follow a type-length-value structure and are packed
together without alignment considerations; however in IPv6 the length is the length of value and not the length of the entire
option as it is in IPv4.

In this test, the Vista hosts were in their initial configuration, except that file sharing was enabled on vmvista2 and the “File
and Printer Sharing (Echo Request - ICMPv6-In)” firewall exception was enabled on the other three hosts (see Appendix XXI).

A. Random Option Sending

The first script, randip6opts.py, choses a destination options extension header length14 at random and fills the data portion
of that header with random octets (which makes the options field quite likely not well formed or not sensical). This is sent
to a specified target with No Next Header encoded as the next header. To aid in repeatability, the seed to the random number
generator is a command line argument (-s) and it is possible to skip the actual sending of a specified number of packets.

A -F option is available to cause a random-sized region of thedestination options to precede the totally random octets. That
region contains options that are well-formed in that their encoded length matches their actual length. The option type is a
randomly chosen value n which the highest two bits are unset;per RFC 2460[13], this means that the option is ignorable (can
be skipped) if the option type is not understood. The option type may not be understood by Vista (or even defined) and the
options data length and contents are probably abnormal.

We used this script with different options to send random options to each of our four Vista hosts in parallel:
• ./randip6opts.py $acerLL6%2 $acerMAC -s1 -w0
• ./randip6opts.py $hpLL6%2 $hpMAC -s2 -F -w0
• ./randip6opts.py $vmLL6%2 $vmMAC -s1 -l2100 -w0
• ./randip6opts.py $vm2LL6%2 $vm2MAC -s2 -F -l2100 -w0

The -l option changes the maximum packet length from the default 1500; to send packets over this 1500 octets, we split the
packet into multiple fragments and send those separately. -w 0 means that there should be no pause between sending packets.
The script can also send Hop-by-hop options, ping packets containing options, and include a region of well-formed options
with random option types, but we did not explore these on release Vista.

After sending 210 million packets, we have not noticed any persistent side-effects on the Vista systems. Our monitoringof
the Vista systems consists of periodic checks to ensure thatthe Windows GUI is still available and usable, and that a ping
from the host to our analysis machine succeeds. Thus, we are unlikely to notice any temporary effects.

B. Ordered Option Sending

Our second script, seqip6opts.py, takes a more orderly approach to finding Vista stack deficiencies from IPv6 options
processing. It always sends a single IPv6 destination option (other than possible no-ops), but varies three parameters: option
type, encoded option value length, and actual option value length. Option type and encoded option length form the first two
octets of the option. The actual option length varies between zero and the encoded option value length, thus there is a degree
of truncation. Due to the increasing search space as encodedlength increases, we vary that parameter most slowly. Within
an given encoded length, we vary option number more slowly than the actual length. The octets in the option are filled in
randomly. Since the Destination Options extension header is required to be a multiple of eight octets in length, we prefixour
test destination option with no-ops as needed to start our test option so that it can be truncated to the desired length. For a
required padding of one, we send option 0 (one octet pad). Fortwo to seven octet pads, we send option 1 (multi-octet pad).

To enhance repeatability, the seed to the random number generator is a command line argument (-s), and the -k option
specifies how many actual packet sends to skip. The -p option specifies that a short (4 octet) ping be included past the
Destination Options extension header (as opposed to the default, which is to include nothing (No Next Header) past that
header. -w specifies how long to pause after sending a packet.

We used -s1, -p, and one second pauses to test Vista. We divided up the sequence space across the four Vista hosts though
the use of the -k option. We also collected a traffic capture while doing this. We pinged slowly so that, in the future, we may
be able to use this traffic capture data to enumerate Vista’s supported IPv6 options and lengths, through inspection of ping
responses and any ICMP errors produced by the stack.

After sending the 8,421,376 packets in the defined sequence,we have not noticed any persistent effects on Vista. We are
probably more likely to successfully find a defect without the -p option, since it will be more common for options to span
past the end of the header.

14Extension headers are always multiples of eight octets in length. A one-octet length field indicates the options extension header length; to get the actual
length, add one to the encoded length and multiply by eight. Thus the maximum extension header length is 2048 octets. The first two octets of the extension
header are used to specify the next header and extension header length.

SYMANTEC ADVANCED THREAT RESEARCH 70

APPENDIX XVII
EPHEMERAL PORTS

We studied how ephemeral ports are used in Vista. First we used netsh to examine the default Vista ephemeral port setting:

netsh>interface ipv6 show dynamicport tcp

Protocol tcp Dynamic Port Range

Start Port : 49152
Number of Ports : 16384

netsh>interface ipv6 show dynamicport udp

Protocol udp Dynamic Port Range

Start Port : 49152
Number of Ports : 16384

netsh>interface ipv4 show dynamicport tcp

Protocol tcp Dynamic Port Range

Start Port : 49152
Number of Ports : 16384

netsh>interface ipv4 show dynamicport udp

Protocol udp Dynamic Port Range

Start Port : 49152
Number of Ports : 16384

As shown, the default range for TCP and UDP for IPv4 and IPv6 is49152–65535. This corresponds to what IANA refers to
as the “Dynamic and/or Private” range [25], and is in stark contrast to the Windows XP ephemeral port range of 1024–5000.

We experimented to see how ephemeral port settings are tied together:

netsh interface ipv6>set dynamicport protocol=tcp startp ort=49152 numberofports=16161
Ok.

netsh interface ipv6>show dynamicport tcp

Protocol tcp Dynamic Port Range

Start Port : 49152
Number of Ports : 16161

netsh interface ipv6>..

netsh interface>ipv4
netsh interface ipv4>show dynamicport tcp

Protocol tcp Dynamic Port Range

Start Port : 49152
Number of Ports : 16161

netsh interface ipv4>show dynamicport udp

Protocol udp Dynamic Port Range

Start Port : 49152
Number of Ports : 16384

netsh interface ipv4>set dynamicport protocol=tcp startp ort=49152 numberofports=16384
Ok.

SYMANTEC ADVANCED THREAT RESEARCH 71

The results show that there is a single setting for TCP which is applied to both IPv4 and IPv6, but which does not apply to UDP.
netsh interface ipv4>set dynamicport protocol=udp startp ort=49152 numberofports=16161
Ok.

netsh interface ipv4>show dynamicport udp

Protocol udp Dynamic Port Range

Start Port : 49152
Number of Ports : 16161

netsh interface ipv4>..

netsh interface>ipv6
netsh interface ipv6>show dynamicport udp

Protocol udp Dynamic Port Range

Start Port : 49152
Number of Ports : 16161

netsh interface ipv6>set dynamicport protocol=udp startp ort=49152 numberofports=16384
Ok.

The results show that the IPv4 and IPv6 UDP ephemeral port settings are similarly shared.
In our Vista testing, we have seen low-numbered ports in thisephemeral range used for both TCP and UDP, and Vista

seems to increment through the range. It also appears that, while the same port number can be used for both IPv4 and IPv6
(as is often seen for TCP—see Appendix XXII), this happens only when the same process is behind both. For UDP, we see
different port numbers being used for IPv4 and IPv6. This fact, and the way IPv4 and IPv6 are joined together for ephemeral
port range setting, suggests that the allocation of used ephemeral ports is associated with TCP or UDP, and not the underlying
transport protocol. However, TCP and UDP use different number-spaces.

SYMANTEC ADVANCED THREAT RESEARCH 72

APPENDIX XVIII
TCP INITIAL SEQUENCENUMBER GENERATION

We observed the initial sequence number (ISN) generation ofthe Windows Vista stack for the release build, by sending
SYN packets to an open port and observing the sequence numberin the returned SYN+ACK packet. A custom utility, isn.py,
was used for this testing. The utility sends SYN packets to port 5357 of the target, either over IPv4 or IPv6.

The source packet of each request was chosen sequentially, with either one or 100 repeated requests from the same port.
When sending a single request from each source port the sequence numbers appear to be evenly distributed across the entire
space:

linux# isn.py -c 1
src port 3340 1bd39480 (delta 466850944)
src port 3341 b19a5cfb (delta 2512832635)
src port 3342 579029a0 (delta 2784349349)
src port 3343 9d74b6e2 (delta 1172606274)
src port 3344 7dcfabcf (delta 3764057325)
src port 3345 db157fb9 (delta 1564857322)
src port 3346 1e02e871 (delta 1122855096)
src port 3347 2947f505 (delta 189074580)
src port 3348 6deb3fa3 (delta 1151552158)
src port 3349 f81f8add (delta 2318682938)
src port 3350 2f80d0f7 (delta 929121818)
src port 3351 c7037372 (delta 2541920891)
src port 3352 813cb224 (delta 3124313778)
src port 3353 03848cd5 (delta 2185747121)
src port 3354 5cbd160f (delta 1496877370)
src port 3355 aeace30c (delta 1374670077)
src port 3356 24b4ac77 (delta 1980221803)
...

However, when sending multiple requests using the same source port (which causes the TCP connection identifier to remain
unchanged across requests), we observe that the ISN is randomly incremented, based on an internal timer:

linux# isn.py -c 100
1c2a9fb2 (delta 472555442)
1c2b0339 (delta 25479)
1c2b255e (delta 8741)
1c2b50a0 (delta 11074)
1c2b50a0 (delta 0)
1c2b6fa0 (delta 7936)
1c2bab19 (delta 15225)
1c2c0033 (delta 21786)
1c2c3018 (delta 12261)
1c2c3018 (delta 0)
1c2c3018 (delta 0)
1c2c3018 (delta 0)
1c2c3018 (delta 0)
1c2c3018 (delta 0)
1c2c3018 (delta 0)
...
avg dseq 00001513

src port 3341
b1ef9ee0 (delta 2512181399)
b1efd3a6 (delta 13510)
no reply
no reply
b1eff5c9 (delta 8739)
b1f0327e (delta 15541)
b1f0639f (delta 12577)
no reply
b1f0ba72 (delta 22227)
b1f0f771 (delta 15615)
no reply
b1f12258 (delta 10983)
b1f15461 (delta 12809)
b1f16361 (delta 3840)
b1f19d97 (delta 14902)
b1f1f614 (delta 22653)
b1f21660 (delta 8268)
...
avg dseq 00001661

Repeating these results with an additional “6” argument causes the tests to be performed with IPv6 instead of IPv4. The
results are substantially the same as the results above, andare omitted.

The Vista stack appears to be utilizing random increments inits ISN generation while using the technique described in

SYMANTEC ADVANCED THREAT RESEARCH 73

Fig. 46. Plot of〈x[n] - x[n-1], x[n-1] - x[n-2], x[n-2] - x[n-3]〉 for each of 100,000 ISNs in response to IPv4 TCP SYNs with randomly generated source
ports. The view at an angle and head-on from three different non-parallel sides.

RFC 1948[3] to maintain a separation between the ISN generation of connections with different connection identifiers. This
is typically done by adding the value of a secret hash of the connection identifier to a global ISN counter. This is the same
behavior seen in the Windows XP stack, except that Windows XPseems to increment the ISN counter more often, or by larger
increments.

In order to collect a large number of data points for analysis, we ran isn.py so that it would randomly chose a source port
for each of 100,000 probes; choosing the source ports at random means that ideally there should be no predictable patternin
the ISN. We collected data this way for both IPv4 and IPv6.

A rough measure of the strength of the ISN generation can be taken by making a state-space plot of the ISN deltas[62]. The
values of〈x[n] - x[n-1], x[n-1] - x[n-2], x[n-2] - x[n-3]〉 from a sequence, x, of ISN values are plotted in three dimensions.
Patterns in this plot are often apparent for weaker generation schemes. We used gnuplot to examine these. Figure 46 showsfour
perspectives on the IPv4 plot. As in Windows XP, the plot appears uniformly distributed across the available space, indicating
the strength of the generator. The IPv6 plot is substantially the same and is not shown.

We also used a different method of creating plot points from the ISN sequence, which looks for patterns that may skip an
ISN or two. In this method,〈x[n]-x[n-1], x[n]-x[n-2], x[n]-x[n-3]〉 form the data points. Figure 47 shows four perspectives on
the IPv6 plot. This too appears uniform; the IPv4 plot is substantially the same.

Supporting our conclusion is the Nmap[18] stack fingerprinting output from verbose mode (see Appendix XX). In that
output, Nmap reports “TCP Sequence Prediction: Difficulty=261 (Good luck!)”.

SYMANTEC ADVANCED THREAT RESEARCH 74

Fig. 47. Plot of〈x[n]-x[n-1], x[n]-x[n-2], x[n]-x[n-3]〉 for each of 100,000 ISNs in response to IPv6 TCP SYNs with randomly generated source ports. The
view at an angle and head-on from three different non-parallel sides.

SYMANTEC ADVANCED THREAT RESEARCH 75

APPENDIX XIX
TCP SEGMENT REASSEMBLY

Vista’s networking stack behaves differently to earlier versions in Windows XP or Windows 2000, when reassembling TCP
segments. Vista uses a policy that prefers previously received data to more recently received data. This preference is enforced
on a byte-by-byte basis and not across entire segments.

We performed our testing by sending out several out-of-order segments in a TCP stream that contained conflicting data. We
then observed the stream data that were delivered to the application layer on the target machine. Tests were performed using
a tool that we wrote for the test, which listens for SYN packets sent to port 998 on the test machine. No proper socket is
opened on 998 though, so we used “iptables --protocol tcp -A OUTPUT --tcp-flags RST RST -j DRO P”
to suppress Linux’s natural response to the SYN. After the test script receives a SYN, it complete the three-way handshake
to establish a connection with the sender. At that point, theconflicting segments are sent, and then finally, an RST packet. To
test a host, netcat is used and the results received by netcatare recorded (i.e. “nc 192.168.0.102 999”).

A. Test Data
Seven segments containing ambiguous data were sent out with4-bytes of data each. Each segment overlapped at least one

other segment by two bytes. The following indicates how the segments data overlapped:

Segment #1 2222
Segment #2 5555
Segment #3 6666
Segment #4 4444
Segment #5 oooo
Segment #6 3333
Segment #7 1111

The following shows the resulting TCP stream after reassembly:

Linux Red Hat 8 11112233445566
Windows 2000 11112244445566
Windows XP 11112244445566
Windows Vista 11222244555566

Note that it was important that the last segment is the only one from the start of the range on which the testing is performed.
Otherwise, part of the segment space would be passed along tothe socket listener before the stack receives all the segments.
This is a stronger requirement than for IP fragmentation testing, which only requires that the last fragment be a missingpiece
of the fragment space.

B. Analysis

Windows Vista resolved all conflicts by preferring bytes from segments that were received earliest. This behavior differs
from the behavior of earlier versions (for example, Windows2000 and Windows XP) which seem to process segments in
the order they are received by first trimming any excess from the left, and then using the rest of the segment in its entirety,
overwriting any existing data.

SYMANTEC ADVANCED THREAT RESEARCH 76

APPENDIX XX
STACK FINGERPRINT

We ran the TCP-based Nmap with the -O option to gather a stack fingerprint for Vista. With the firewall on (the default)
and in the private profile, we obtained the following results:

linux# nmap -O -p 5357,999 $vm2IP4

Starting Nmap 4.10 (http://www.insecure.org/nmap/) at 20 06-12-04 09:16 PST
Warning: OS detection will be MUCH less reliable because we d id not find at least 1 open
and 1 closed TCP port
Interesting ports on 192.168.0.204:
PORT STATE SERVICE
999/tcp filtered garcon
5357/tcp open unknown
MAC Address: 00:0C:29:1B:50:AA (VMware)
Aggressive OS guesses: Compaq Inside Management Board (91%), Phillips ReplayTV 5000 DVR

(91%), Microsoft Windows XP Home Edition (German) SP2 (90%) , Microsoft Windows XP Pro SP2
(90%), NetScreen NS-204 Firewall (90%), Symantec Enterpri se Firewall 7.0 running on
Windows 2000 SP2 (90%), Enterasys XSR-1805 Security Route (90%), FreeBSD 4.6 (90%),
Microsoft Windows 2003 Server or XP SP2 (90%), Apple Mac OS X 1 0.3.6 or 10.3.7 (88%)

No exact OS matches for host (test conditions non-ideal).

Nmap finished: 1 IP address (1 host up) scanned in 36.559 seco nds

Nmap did not yield much information, since there were no closed ports.
With the firewall off, additional results were obtained. Nmap reported the following:

linux# nmap -O -p 5357,999 $vm2IP4

Starting Nmap 4.10 (http://www.insecure.org/nmap/) at 20 06-12-04 09:17 PST
Interesting ports on 192.168.0.204:
PORT STATE SERVICE
999/tcp closed garcon
5357/tcp open unknown
MAC Address: 00:0C:29:1B:50:AA (VMware)
No exact OS matches for host (If you know what OS is running on i t, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).
TCP/IP fingerprint:
SInfo(V=4.10%P=i686-pc-linux-gnu%D=12/4%Tm=45745856 %O=5357%C=999%M=000C29)
TSeq(Class=TR%IPID=I)
T1(Resp=Y%DF=N%W=2000%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=Y%DF=Y%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=0%ACK=O%Flags=AR%Ops=)
T4(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)
T5(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=Y%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=Y%DF=Y%W=0%ACK=S++%Flags=AR%Ops=)
PU(Resp=Y%DF=N%TOS=0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E%ULEN=134%DAT=E)

Nmap finished: 1 IP address (1 host up) scanned in 20.213 seco nds

Even without fully understanding how to read Nmap signatures, this result is noticeably different from that obtained with XP
SP2. The result obtained from XP SP2 has the following signature:

Fingerprint Microsoft Windows 2003 Server or XP SP2
Class Microsoft | Windows | 2003/.NET | general purpose
Class Microsoft | Windows | NT/2K/XP | general purpose
TSeq(Class=TR%gcd=<6%IPID=I)
T1(DF=Y%W=402E|FB8B%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)
T3(Resp=Y%DF=Y%W=402E|FB8B%ACK=S++%Flags=AS%Ops=MNWNNT)
T4(DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(DF=N%W=0%ACK=S++%Flags=AR%Ops=)
PU(DF=N%TOS=0%IPLEN=B0%RIPTL=148%RID=E%RIPCK=E|F%UCK=E|F%ULEN=134%DAT=E)

There is little difference between the release Vista signature and the Vista 5384 signature that we reported in [49]. Theonly
difference is that 5384 build had Ops=MWNNNT instead of Ops=MNWNNT for T1. Thus Microsoft switched one of the null

SYMANTEC ADVANCED THREAT RESEARCH 77

pads (‘N’) to the other side of the Window scale factor option(‘W’), which makes it match that part of the XP SP2 signature.
This option ordering gives more convenient word alignment to the scale option, avoiding the need to do an eight-bit shiftright
to access the field if the options are read into 32 or 64 bit words, since the MSS option (‘M’) is 4 octets long.

Using the newly released Nmap version 4.20, which incorporates a second generation OS fingerprinting engine, yielded two
different results with the firewall off. Run non-verbose yielded the following results:

linux# nmap -O -p 5357,999 $vmIP4

Starting Nmap 4.20 (http://insecure.org) at 2006-12-08 13 :50 PST
Interesting ports on 192.168.0.203:
PORT STATE SERVICE
999/tcp closed garcon
5357/tcp open unknown
MAC Address: 00:0C:29:72:E4:82 (VMware)
Device type: general purpose
Running: Microsoft Windows Vista
OS details: Microsoft Windows Vista Beta 2 (Build 5472)
Uptime: 0.889 days (since Thu Dec 7 16:30:16 2006)
Network Distance: 1 hop

OS detection performed. Please report any incorrect result s at
http://insecure.org/nmap/submit/ .
Nmap finished: 1 IP address (1 host up) scanned in 15.098 seco nds

When run non-verbose, Nmap did not venture a guess at the OS, but did print its signature. The output:

linux# nmap -O -p 5357,999 $vmIP4

Starting Nmap 4.20 (http://insecure.org) at 2006-12-08 13 :53 PST
Initiating ARP Ping Scan at 13:53
Scanning 192.168.0.203 [1 port]
Completed ARP Ping Scan at 13:53, 0.01s elapsed (1 total host s)
Initiating Parallel DNS resolution of 1 host. at 13:53
Completed Parallel DNS resolution of 1 host. at 13:53, 13.00 s elapsed
Initiating SYN Stealth Scan at 13:53
Scanning 192.168.0.203 [2 ports]
Discovered open port 5357/tcp on 192.168.0.203
Completed SYN Stealth Scan at 13:53, 1.11s elapsed (2 total p orts)
Initiating OS detection (try #1) against 192.168.0.203
Retrying OS detection (try #2) against 192.168.0.203
Retrying OS detection (try #3) against 192.168.0.203
Retrying OS detection (try #4) against 192.168.0.203
Retrying OS detection (try #5) against 192.168.0.203
Host 192.168.0.203 appears to be up ... good.
Interesting ports on 192.168.0.203:
PORT STATE SERVICE
999/tcp closed garcon
5357/tcp open unknown
MAC Address: 00:0C:29:72:E4:82 (VMware)
No exact OS matches for host (If you know what OS is running on i t, see
http://insecure.org/nmap/submit/).
TCP/IP fingerprint:
OS:SCAN(V=4.20%D=12/8%OT=5357%CT=999%CU=35902%PV=Y%DS=1%G=Y%M=000C29%TM=457
OS:9DEEA%P=i686-pc-linux-gnu)SEQ(SP=105%GCD=1%ISR=F F%TI=I%II=I%SS=S%TS=7)SE
OS:Q(SP=104%GCD=1%ISR=FF%TI=I%II=I%SS=S%TS=7)SEQ(SP=105%GCD=1%ISR=FF%TI=I%I
OS:I=I%SS=S%TS=7)OPS(O1=M5B4NW8ST11%O2=M5B4NW8ST11%O3=M5B4NW8NNT11%O4=M5B4N
OS:W8ST11%O5=M5B4NW8ST11%O6=M5B4ST11)WIN(W1=2000%W2=2000%W3=2000%W4=2000%W5
OS:=2000%W6=2000)ECN(R=Y%DF=Y%T=80%W=2000%O=M5B4NW8NNS%CC=N%Q=)T1(R=Y%DF=Y%
OS:T=80%S=O%A=S+%F=AS%RD=0%Q=)T2(R=Y%DF=Y%T=80%W=0%S=Z%A=S%F=AR%O=%RD=0%Q=)
OS:T3(R=Y%DF=Y%T=80%W=0%S=Z%A=O%F=AR%O=%RD=0%Q=)T4(R=Y%DF=Y%T=80%W=0%S=A%A=
OS:O%F=R%O=%RD=0%Q=)T5(R=Y%DF=Y%T=80%W=0%S=Z%A=S+%F=AR%O=%RD=0%Q=)T6(R=Y%DF
OS:=Y%T=80%W=0%S=A%A=O%F=R%O=%RD=0%Q=)T7(R=Y%DF=Y%T=80%W=0%S=Z%A=S+%F=AR%O=
OS:%RD=0%Q=)U1(R=Y%DF=N%T=80%TOS=0%IPL=164%UN=0%RIPL=G%RID=G%RIPCK=G%RUCK=G
OS:%RUL=G%RUD=G)IE(R=Y%DFI=N%T=80%TOSI=Z%CD=Z%SI=S%DLI=S)

Uptime: 0.558 days (since Fri Dec 8 00:30:56 2006)
Network Distance: 1 hop
TCP Sequence Prediction: Difficulty=261 (Good luck!)
IPID Sequence Generation: Incremental

SYMANTEC ADVANCED THREAT RESEARCH 78

OS detection performed. Please report any incorrect result s at
http://insecure.org/nmap/submit/ .
Nmap finished: 1 IP address (1 host up) scanned in 23.820 seco nds

Raw packets sent: 84 (7264B) | Rcvd: 84 (7010B)

SYMANTEC ADVANCED THREAT RESEARCH 79

APPENDIX XXI
WINDOWS FIREWALL CONFIGURATION

We measured Windows Firewall configuration on a clean Vista machine, and we noted the changes that occurred when
configuration changes were made to the Windows Vista system.We read the firewall settings from the inbound rules in an
application called Windows Firewall with Advanced Security. The table represents the live state of the firewall configuration
(as of the last refresh request), and the program can export this as text.

During testing, we went through a series of states. At each state, we refreshed the table and exported that state. We also
ran netstat -a -b -n -o as Administrator to get a full list of network sockets and their owners. In this appendix, we
report on the initial state (Appendix XXI-B) and on changes in the data in between states (Appendix XXI-C and XXI-D).

When a user makes a configuration change that alters Windows Firewall configuration, Windows Vista typically asks for
the users permission before making the change using the consent mechanism. Opening up Windows Firewall with Advanced
Security also requires the consent prompt to be accepted.

A. Firewall ruleset

The initial firewall ruleset consists of 166 entries. Each entry consists of a number of parameters:

• Name
• Group
• Profile
• Enabled
• Action
• Override
• Program
• Local Address
• Remote Address
• Protocol
• Local Port
• Remote Port

There are three profiles to which firewall rules can apply: private, domain, and public. A given network connection is in
one of those profiles at a time, representing the level of trust in the network, as described in [12]. The firewall ruleset could
be regarded as three different rulesets. Some rules are listed as applying to multiple profiles, but when comparing rulesets, our
analysis script considers those in a split-out manner.

Since we only saw Action=Allow, Enabled=Yes means that an exception is created for the combination (union) of program,
protocol, addresses, and ports in the rule, and Enabled=No means the exception is not in place. We observed that the automatic
enabling or disabling of rules took place for an entire groupand profile together (for convenience, the logical combination of
the rules in a profile within a group is termed a “group-profile”). The group name is also displayed on the Windows Firewall
control panel.

B. Initial State
The following table lists the initial inbound firewall state, as exported from Windows Firewall with Advanced Security.In

the table, certain columns are omitted since they have a uniform value (Action=Allow, Override=No, Local Address=Any).
Remote Port was set to Any except for a Core Networking - Dynamic Host Configuration Protocol (DHCP-In), which is bound
to remote port 67. The name of the rule always begins with the name of the group it is in, so we omit group name; the group
name is the part before the first dash or open parenthesis. Originally the ports were all separated by commas, but we condensed
the Local Port specification for a couple rules into a range.

TABLE I: The initial firewall ruleset state

Name Profile Enabled Program Remote Ad-
dress

Protocol Local Port

BITS Peercaching (Content-In) Domain,
Private, Public

No System Local subnet TCP 2178

BITS Peercaching (RPC-EPMAP) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint
Mapper

BITS Peercaching (RPC) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet TCP Dynamic RPC

BITS Peercaching (WSD-In) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 3702

Connect to a Network Projector (TCP-In) Domain No %SystemRoot%\ system32\ netproj.exe Any TCP Any
Connect to a Network Projector (TCP-In) Private, Public No %SystemRoot%\ system32\ netproj.exe Local subnet TCP Any
Connect to a Network Projector (WSD
Events-In)

Domain No System Any TCP 5357

(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 80

Name Profile Enabled Program Remote Ad-
dress

Protocol Local Port

Connect to a Network Projector (WSD
Events-In)

Private, Public No System Local subnet TCP 5357

Connect to a Network Projector (WSD
EventsSecure-In)

Domain No System Any TCP 5358

Connect to a Network Projector (WSD
EventsSecure-In)

Private, Public No System Local subnet TCP 5358

Connect to a Network Projector (WSD-In) Domain,
Private, Public

No %SystemRoot%\ system32\ netproj.exe Local subnet UDP 3702

Core Networking - Destination Unreachable
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Destination Unreachable
Fragmentation Needed (ICMPv4-In)

Domain,
Private, Public

Yes System Any ICMPv4 Any

Core Networking - Dynamic Host
Configuration Protocol (DHCP-In)

Domain,
Private, Public

Yes %SystemRoot%\ system32\ svchost.exe Any UDP 68

Core Networking - Internet Group
Management Protocol (IGMP-In)

Domain,
Private, Public

Yes System Any IGMP Any

Core Networking - IPv6 (IPv6-In) Domain,
Private, Public

Yes System Any IPv6 Any

Core Networking - Multicast Listener Done
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Multicast Listener Query
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Multicast Listener Report
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Multicast Listener Report
v2 (ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Neighbor Discovery
Advertisement (ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Neighbor Discovery
Solicitation (ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Packet Too Big
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Parameter Problem
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Router Advertisement
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Core Networking - Teredo (UDP-In) Domain,
Private, Public

Yes %SystemRoot%\ system32\ svchost.exe Any UDP Edge Traver-
sal

Core Networking - Time Exceeded
(ICMPv6-In)

Domain,
Private, Public

Yes System Any ICMPv6 Any

Distributed Transaction Coordinator
(RPC-EPMAP)

Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint
Mapper

Distributed Transaction Coordinator
(RPC-EPMAP)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint
Mapper

Distributed Transaction Coordinator (RPC) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP Dynamic RPC
Distributed Transaction Coordinator (RPC) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP Dynamic RPC
Distributed Transaction Coordinator (TCP-In) Domain No %SystemRoot%\ system32\ msdtc.exe Any TCP Any
Distributed Transaction Coordinator (TCP-In) Private, Public No %SystemRoot%\ system32\ msdtc.exe Local subnet TCP Any

File and Printer Sharing (Echo Request -
ICMPv4-In)

Domain,
Private, Public

No Any Any ICMPv4 Any

File and Printer Sharing (Echo Request -
ICMPv6-In)

Domain,
Private, Public

No Any Any ICMPv6 Any

File and Printer Sharing (NB-Datagram-In) Domain No System Any UDP 138
File and Printer Sharing (NB-Datagram-In) Private, Public No System Local subnet UDP 138
File and Printer Sharing (NB-Name-In) Domain No System Any UDP 137
File and Printer Sharing (NB-Name-In) Private, Public No System Local subnet UDP 137
File and Printer Sharing (NB-Session-In) Domain No System Any TCP 139
File and Printer Sharing (NB-Session-In) Private, Public No System Local subnet TCP 139
File and Printer Sharing (SMB-In) Domain No System Any TCP 445
File and Printer Sharing (SMB-In) Private, Public No System Local subnet TCP 445
File and Printer Sharing (Spooler Service -
RPC-EPMAP)

Domain No Any Any TCP RPC Endpoint
Mapper

File and Printer Sharing (Spooler Service -
RPC-EPMAP)

Private, Public No Any Local subnet TCP RPC Endpoint
Mapper

File and Printer Sharing (Spooler Service -
RPC)

Domain No %SystemRoot%\ system32\ spoolsv.exe Any TCP Dynamic RPC

File and Printer Sharing (Spooler Service -
RPC)

Private, Public No %SystemRoot%\ system32\ spoolsv.exe Local subnet TCP Dynamic RPC

iSCSI Service (TCP-In) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP Any
iSCSI Service (TCP-In) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP Any

Media Center Extenders (HTTP-Streaming-In) Domain,
Private, Public

No System Local subnet TCP 10244

(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 81

Name Profile Enabled Program Remote Ad-
dress

Protocol Local Port

Media Center Extenders (qWave-TCP-In) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet TCP 2177

Media Center Extenders (qWave-UDP-In) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 2177

Media Center Extenders (RDP-In) Domain,
Private, Public

No System Local subnet TCP 3390

Media Center Extenders (RTSP-In) Domain,
Private, Public

No %SystemRoot%\ ehome\ ehshell.exe Local subnet TCP 554, 8554–
8558

Media Center Extenders (SSDP-In) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900

Media Center Extenders
(WMDRM-ND/RTP/RTCP-In)

Domain,
Private, Public

No %SystemRoot%\ ehome\ ehshell.exe Local subnet UDP 7777–7780,
7781, 5004,
5005, 50004–
50013

Network Discovery (LLMNR-UDP-In) Domain No %SystemRoot%\ system32\ svchost.exe Any UDP 5355
Network Discovery (LLMNR-UDP-In) Private Yes %SystemRoot%\ system32\ svchost.exe Local subnet UDP 5355
Network Discovery (LLMNR-UDP-In) Public No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 5355
Network Discovery (NB-Datagram-In) Domain No System Any UDP 138
Network Discovery (NB-Datagram-In) Private Yes System Local subnet UDP 138
Network Discovery (NB-Datagram-In) Public No System Localsubnet UDP 138
Network Discovery (NB-Name-In) Domain No System Any UDP 137
Network Discovery (NB-Name-In) Private Yes System Local subnet UDP 137
Network Discovery (NB-Name-In) Public No System Local subnet UDP 137
Network Discovery (Pub-WSD-In) Domain, Public No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 3702
Network Discovery (Pub-WSD-In) Private Yes %SystemRoot%\ system32\ svchost.exe Local subnet UDP 3702
Network Discovery (SSDP-In) Domain, Public No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900
Network Discovery (SSDP-In) Private Yes %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900
Network Discovery (UPnP-In) Domain No System Any TCP 2869
Network Discovery (UPnP-In) Private Yes System Local subnet TCP 2869
Network Discovery (UPnP-In) Public No System Local subnet TCP 2869
Network Discovery (WSD Events-In) Domain No System Any TCP 5357
Network Discovery (WSD Events-In) Private Yes System Localsubnet TCP 5357
Network Discovery (WSD Events-In) Public No System Local subnet TCP 5357
Network Discovery (WSD EventsSecure-In) Domain No System Any TCP 5358
Network Discovery (WSD EventsSecure-In) Private Yes System Local subnet TCP 5358
Network Discovery (WSD EventsSecure-In) Public No System Local subnet TCP 5358
Network Discovery (WSD-In) Domain No %SystemRoot%\ system32\ svchost.exe Any UDP 3702
Network Discovery (WSD-In) Private Yes %SystemRoot%\ system32\ svchost.exe Local subnet UDP 3702
Network Discovery (WSD-In) Public No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 3702

Performance Logs and Alerts (DCOM-In) Domain No %systemroot%\ system32\ svchost.exe Any TCP 135
Performance Logs and Alerts (DCOM-In) Private, Public No %systemroot%\ system32\ svchost.exe Local subnet TCP 135
Performance Logs and Alerts (TCP-In) Domain No %systemroot%\ system32\ plasrv.exe Any TCP Any
Performance Logs and Alerts (TCP-In) Private, Public No %systemroot%\ system32\ plasrv.exe Local subnet TCP Any

Remote Administration (NP-In) Domain No System Any TCP 445
Remote Administration (NP-In) Private, Public No System Local subnet TCP 445
Remote Administration (RPC-EPMAP) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint

Mapper
Remote Administration (RPC-EPMAP) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint

Mapper
Remote Administration (RPC) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP Dynamic RPC
Remote Administration (RPC) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP Dynamic RPC

Remote Assistance (DCOM-In) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint
Mapper

Remote Assistance (RA Server TCP-In) Domain No %SystemRoot%\ system32\ -
raserver.exe

Any TCP Any

Remote Assistance (SSDP-In) Domain No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900
Remote Assistance (SSDP-In) Private Yes %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900
Remote Assistance (TCP-In) Domain, Public No %SystemRoot%\ system32\ msra.exe Any TCP Any
Remote Assistance (TCP-In) Private Yes %SystemRoot%\ system32\ msra.exe Any TCP Any
Remote Assistance (UPnP-In) Domain No System Local subnet TCP 2869
Remote Assistance (UPnP-In) Private Yes System Local subnet TCP 2869

Remote Desktop (TCP-In) Domain,
Private, Public

No System Any TCP 3389

Remote Event Log Management (NP-In) Domain No System Any TCP445
Remote Event Log Management (NP-In) Private, Public No System Local subnet TCP 445
Remote Event Log Management
(RPC-EPMAP)

Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint
Mapper

Remote Event Log Management
(RPC-EPMAP)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint
Mapper

Remote Event Log Management (RPC) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP Dynamic RPC
Remote Event Log Management (RPC) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP Dynamic RPC

(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 82

Name Profile Enabled Program Remote Ad-
dress

Protocol Local Port

Remote Scheduled Tasks Management
(RPC-EPMAP)

Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint
Mapper

Remote Scheduled Tasks Management
(RPC-EPMAP)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint
Mapper

Remote Scheduled Tasks Management (RPC) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP Dynamic RPC
Remote Scheduled Tasks Management (RPC) Private, Public No%SystemRoot%\ system32\ svchost.exe Local subnet TCP Dynamic RPC

Remote Service Management (NP-In) Domain No System Any TCP 445
Remote Service Management (NP-In) Private, Public No System Local subnet TCP 445
Remote Service Management (RPC-EPMAP) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint

Mapper
Remote Service Management (RPC-EPMAP) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint

Mapper
Remote Service Management (RPC) Domain No %SystemRoot%\ system32\ -

services.exe
Any TCP Dynamic RPC

Remote Service Management (RPC) Private, Public No %SystemRoot%\ system32\ -
services.exe

Local subnet TCP Dynamic RPC

Remote Volume Management - Virtual Disk
Service (RPC)

Domain No %SystemRoot%\ system32\ vds.exe Any TCP Dynamic RPC

Remote Volume Management - Virtual Disk
Service (RPC)

Private, Public No %SystemRoot%\ system32\ vds.exe Local subnet TCP Dynamic RPC

Remote Volume Management - Virtual Disk
Service Loader (RPC)

Domain No %SystemRoot%\ system32\ vdsldr.exe Any TCP Dynamic RPC

Remote Volume Management - Virtual Disk
Service Loader (RPC)

Private, Public No %SystemRoot%\ system32\ vdsldr.exe Local subnet TCP Dynamic RPC

Remote Volume Management (RPC-EPMAP) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint
Mapper

Remote Volume Management (RPC-EPMAP) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint
Mapper

Routing and Remote Access (L2TP-In) Domain,
Private, Public

No System Any UDP 1701

Routing and Remote Access (PPTP-In) Domain,
Private, Public

No System Any TCP 1723

SNMP Trap Service (UDP In) Domain No %SystemRoot%\ system32\ -
snmptrap.exe

Any UDP 162

SNMP Trap Service (UDP In) Domain,
Private, Public

No %SystemRoot%\ system32\ -
snmptrap.exe

Any UDP 162

Windows Collaboration Computer Name
Registration Service (PNRP-In)

Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Any UDP 3540

Windows Collaboration Computer Name
Registration Service (SSDP-In)

Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900

Windows Firewall Remote Management
(RPC-EPMAP)

Domain No %SystemRoot%\ system32\ svchost.exe Any TCP RPC Endpoint
Mapper

Windows Firewall Remote Management
(RPC-EPMAP)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP RPC Endpoint
Mapper

Windows Firewall Remote Management (RPC) Domain No %SystemRoot%\ system32\ svchost.exe Any TCP Dynamic RPC
Windows Firewall Remote Management (RPC) Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP Dynamic RPC

Windows Management Instrumentation
(ASync-In)

Domain No %systemroot%\ system32\ wbem\ -
unsecapp.exe

Any TCP Any

Windows Management Instrumentation
(ASync-In)

Private, Public No %systemroot%\ system32\ wbem\ -
unsecapp.exe

Local subnet TCP Any

Windows Management Instrumentation
(DCOM-In)

Domain No %SystemRoot%\ system32\ svchost.exe Any TCP 135

Windows Management Instrumentation
(DCOM-In)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP 135

Windows Management Instrumentation
(WMI-In)

Domain No %SystemRoot%\ system32\ svchost.exe Any TCP Any

Windows Management Instrumentation
(WMI-In)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP Any

Windows Media Player (UDP-In) Domain,
Private, Public

No %ProgramFiles%\ Windows Media
Player\ wmplayer.exe

Any UDP Any

Windows Media Player Network Sharing
Service (HTTP-Streaming-In)

Domain No System Any TCP 10243

Windows Media Player Network Sharing
Service (HTTP-Streaming-In)

Private, Public No System Local subnet TCP 10243

Windows Media Player Network Sharing
Service (qWave-TCP-In)

Domain No %SystemRoot%\ system32\ svchost.exe Any TCP 2177

Windows Media Player Network Sharing
Service (qWave-TCP-In)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet TCP 2177

Windows Media Player Network Sharing
Service (qWave-UDP-In)

Domain No %SystemRoot%\ system32\ svchost.exe Any UDP 2177

(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 83

Name Profile Enabled Program Remote Ad-
dress

Protocol Local Port

Windows Media Player Network Sharing
Service (qWave-UDP-In)

Private, Public No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 2177

Windows Media Player Network Sharing
Service (SSDP-In)

Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900

Windows Media Player Network Sharing
Service (Streaming-UDP-In)

Domain No %ProgramFiles%\ Windows Media
Player\ wmplayer.exe

Any UDP Any

Windows Media Player Network Sharing
Service (Streaming-UDP-In)

Private, Public No %ProgramFiles%\ Windows Media
Player\ wmplayer.exe

Local subnet UDP Any

Windows Media Player Network Sharing
Service (TCP-In)

Domain No %ProgramFiles%\ Windows Media
Player\ wmpnetwk.exe

Any TCP Any

Windows Media Player Network Sharing
Service (TCP-In)

Private, Public No %ProgramFiles%\ Windows Media
Player\ wmpnetwk.exe

Local subnet TCP Any

Windows Media Player Network Sharing
Service (UDP-In)

Domain No %ProgramFiles%\ Windows Media
Player\ wmpnetwk.exe

Any UDP Any

Windows Media Player Network Sharing
Service (UDP-In)

Private, Public No %ProgramFiles%\ Windows Media
Player\ wmpnetwk.exe

Local subnet UDP Any

Windows Media Player Network Sharing
Service (UPnP-In)

Domain,
Private, Public

No System Local subnet TCP 2869

Windows Meeting Space (DFSR-In) Domain,
Private, Public

No %SystemRoot%\ system32\ dfsr.exe Any TCP 5722

Windows Meeting Space (P2P-In) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Any TCP 3587

Windows Meeting Space (TCP-In) Domain,
Private, Public

No %ProgramFiles%\ Windows
Collaboration\ WinCollab.exe

Any TCP Any

Windows Meeting Space (UDP-In) Domain,
Private, Public

No %ProgramFiles%\ Windows
Collaboration\ WinCollab.exe

Any UDP Any

Windows Peer to Peer Collaboration
Foundation (PNRP-In)

Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Any UDP 3540

Windows Peer to Peer Collaboration
Foundation (SSDP-In)

Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900

Windows Peer to Peer Collaboration
Foundation (TCP-In)

Domain,
Private, Public

No %SystemRoot%\ system32\ -
p2phost.exe

Any TCP Any

Windows Peer to Peer Collaboration
Foundation (WSD-In)

Domain,
Private, Public

No %SystemRoot%\ system32\ -
p2phost.exe

Local subnet UDP 3702

Windows Remote Management (HTTP-In) Domain No System Any TCP 80
Windows Remote Management (HTTP-In) Private, Public No System Local subnet TCP 80

Wireless Portable Devices (SSDP-In) Domain,
Private, Public

No %SystemRoot%\ system32\ svchost.exe Local subnet UDP 1900

Wireless Portable Devices (UPnP-In) Domain,
Private, Public

No System Local subnet TCP 2869

The group-profiles that are initially enabled are the following: Core Networking group (all profiles), Network Discovery
group (private profile only), and Remote Assistance (private profile only). Core networking includes Teredo (allowed for local
port=Edge Traversal), so it is enabled by default.

We observe that all TCP and UDP firewall rules that have the remote port Any have a specific program to which they
are bound, thus apparently limiting exposure. The other listed protocols (ICMPv4, ICMPv6, IPv6, and IGMP) rules have
Program=System except for two ping-related rules, which have Program=Any. Many—but not all—rules with a given name
are represented in all three profiles. Specific Remote Assistance rules are only present for domain or for domain and private.
There is one group-profile that is duplicated in the ruleset:SNMP Trap Service for private; this seems to be a bug.

There are several named rules that are bound to Remote Address=Local subnet for private and public, but which are bound
to Remote Address=Any for domain. Thus in a domain, for thesecases, the host is exposed to packets from outside the subnet
(potentially including the Internet).

The initial netstat output is shown in Figure 48. Except for IP addresses and PIDs, this was the same as a netstat list on a
different Vista that was taken first thing after an installation. That output remained unchanged when we checked back later,
after we turned off the firewall, and after we turned the firewall back on.

C. Firewall Changes with Configuration Changes

We studied how the firewall inbound ruleset changed when we made different changes to the system. We were in the private
profile when doing these tests. Our results are summarized inFigure 3 on page 12.

One surprising result, noted in many cases, is that firewall rules are not disabled upon turning off the Vista function that
caused them to be enabled. The exceptions even persist across a system restart; thus, until they are manually disabled, alegacy
of firewall exceptions accumulates on a system. The following describes the possible negative effects:

• A malicious application could communicate through the exception without a consent prompt

SYMANTEC ADVANCED THREAT RESEARCH 84

Proto Local Address Local
Port

Foreign
Address

For.
Port

State PID Components Owning Process

TCP 0.0.0.0 135 0.0.0.0 0 LISTENING 796 RpcSs [svchost.exe]
TCP 0.0.0.0 49152 0.0.0.0 0 LISTENING 476 [wininit.exe]
TCP 0.0.0.0 49153 0.0.0.0 0 LISTENING 952 Eventlog [svchost.exe]
TCP 0.0.0.0 49154 0.0.0.0 0 LISTENING 1192 nsi [svchost.exe]
TCP 0.0.0.0 49155 0.0.0.0 0 LISTENING 1008 Schedule [svchost.exe]
TCP 0.0.0.0 49156 0.0.0.0 0 LISTENING 564 [lsass.exe]
TCP 0.0.0.0 49157 0.0.0.0 0 LISTENING 544 [services.exe]
TCP 192.168.0.204 139 0.0.0.0 0 LISTENING 4 Can not obtain ownership information
TCP [::] 135 [::] 0 LISTENING 796 RpcSs [svchost.exe]
TCP [::] 445 [::] 0 LISTENING 4 Can not obtain ownership information
TCP [::] 5357 [::] 0 LISTENING 4 Can not obtain ownership information
TCP [::] 49152 [::] 0 LISTENING 476 [wininit.exe]
TCP [::] 49153 [::] 0 LISTENING 952 Eventlog [svchost.exe]
TCP [::] 49154 [::] 0 LISTENING 1192 nsi [svchost.exe]
TCP [::] 49155 [::] 0 LISTENING 1008 Schedule [svchost.exe]
TCP [::] 49156 [::] 0 LISTENING 564 [lsass.exe]
TCP [::] 49157 [::] 0 LISTENING 544 [services.exe]
UDP 0.0.0.0 123 * * 1192 W32Time [svchost.exe]
UDP 0.0.0.0 500 * * 1008 IKEEXT [svchost.exe]
UDP 0.0.0.0 3702 * * 1192 FDResPub [svchost.exe]
UDP 0.0.0.0 3702 * * 1192 EventSystem [svchost.exe]
UDP 0.0.0.0 3702 * * 1192 FDResPub [svchost.exe]
UDP 0.0.0.0 3702 * * 1192 EventSystem [svchost.exe]
UDP 0.0.0.0 4500 * * 1008 IKEEXT [svchost.exe]
UDP 0.0.0.0 5355 * * 1292 Dnscache [svchost.exe]
UDP 0.0.0.0 49181 * * 1192 FDResPub [svchost.exe]
UDP 0.0.0.0 49187 * * 1192 EventSystem [svchost.exe]
UDP 127.0.0.1 1900 * * 1192 SSDPSRV [svchost.exe]
UDP 127.0.0.1 49180 * * 1192 SSDPSRV [svchost.exe]
UDP 192.168.0.204 137 * * 4 Can not obtain ownership information
UDP 192.168.0.204 138 * * 4 Can not obtain ownership information
UDP 192.168.0.204 1900 * * 1192 SSDPSRV [svchost.exe]
UDP 192.168.0.204 49179 * * 1192 SSDPSRV [svchost.exe]
UDP [::] 123 * * 1192 W32Time [svchost.exe]
UDP [::] 500 * * 1008 IKEEXT [svchost.exe]
UDP [::] 3702 * * 1192 EventSystem [svchost.exe]
UDP [::] 3702 * * 1192 FDResPub [svchost.exe]
UDP [::] 3702 * * 1192 EventSystem [svchost.exe]
UDP [::] 3702 * * 1192 FDResPub [svchost.exe]
UDP [::] 5355 * * 1292 Dnscache [svchost.exe]
UDP [::] 49182 * * 1192 FDResPub [svchost.exe]
UDP [::] 49188 * * 1192 EventSystem [svchost.exe]
UDP [::1] 1900 * * 1192 SSDPSRV [svchost.exe]
UDP [::1] 49177 * * 1192 SSDPSRV [svchost.exe]
UDP [fe80::100:7f:fffe%9] 1900 * * 1192 SSDPSRV [svchost.exe]
UDP [fe80::100:7f:fffe%9] 49178 * * 1192 SSDPSRV [svchost.exe]
UDP [fe80::f426:13fe:e8e7:720c%8] 1900 * * 1192 SSDPSRV [svchost.exe]
UDP [fe80::f426:13fe:e8e7:720c%8] 49176 * * 1192 SSDPSRV [svchost.exe]

Fig. 48. Initial netstat -a -b -n -o output, converted into a table. IPv6 addresses are listed inside square brackets. “[::]” represents the IPv6 unassigned address,
analogous to 0.0.0.0 in IPv4 and “[::1]” is the IPv6 loopbackaddress. 192.168.0.204 and ffe80::f426:13fe:e8e7:720c are addresses assigned to the host the
testing was done on (vmvista2). Although netstat did not report it, PID 4 is System.

• If a legitimate program that was using the exception remained active (or if another legitimate program that could use the
same exception was running), then that program could be reached

• If the stack itself were providing the service for the exception, then the stack could be reached (e.g. echo replies could
continue to be sent)

We refer to this phenomenon as “sticky” rules.

1) Sharing and Discovery Controls:We explored making changes to settings in the “Sharing and Discovery” section of the
“Network and Sharing Center” control panel. This control panel is shown in Figure 15 on page 25.

We found that turning on File Sharing or Public Folder Sharing caused all private profile in the File and Printer Sharing
group to become enabled. The exceptions associated with this are the following:

SYMANTEC ADVANCED THREAT RESEARCH 85

+

File and Printer Sharing (Spooler Service - RPC-EPMAP) TCP RPC Endpoint Mapper
File and Printer Sharing (Spooler Service - RPC) TCP DynamicRPC spoolsv.exe
File and Printer Sharing (SMB-In) TCP 445
File and Printer Sharing (NB-Session-In) TCP 139
File and Printer Sharing (NB-Name-In) UDP 137
File and Printer Sharing (NB-Datagram-In) UDP 138
File and Printer Sharing (Echo Request - ICMPv6-In) ICMPv6
File and Printer Sharing (Echo Request - ICMPv4-In) ICMPv4

These were turned off when file sharing was turned off. However, if media sharing was also active, they were turned
off when media sharing was turned off.

Activating Media Sharing with File Sharing already active caused domain and private rules for the Windows Media Player
Network Sharing Service and Windows Media Player groups to become active. Those are the following:

+

Windows Media Player Network Sharing Service (UPnP-In) TCP2869
Windows Media Player Network Sharing Service (UDP-In) UDP Any wmpnetwk.exe
Windows Media Player Network Sharing Service (TCP-In) TCP Any wmpnetwk.exe
Windows Media Player Network Sharing Service (Streaming-UDP-In) UDP Any wmplayer.exe
Windows Media Player Network Sharing Service (SSDP-In) UDP1900
Windows Media Player Network Sharing Service (qWave-UDP-In) UDP 2177
Windows Media Player Network Sharing Service (qWave-TCP-In) TCP 2177
Windows Media Player Network Sharing Service (HTTP-Streaming-In) TCP 10243
Windows Media Player (UDP-In) UDP Any wmplayer.exe

Presumably Media Sharing would also turn on the File and Printer Sharing group as well. The group Windows Media Player
Network Sharing Service was turned off when Media Sharing was disabled, however we never saw the Windows Media
Player group become disabled (i.e. it was sticky).

The private rules for Network Discovery group are enabled out-of-the-box. We found they could be turned off by disabling
Network Discovery in this control panel:

−

Network Discovery (WSD-In) UDP 3702 svchost.exe
Network Discovery (WSD EventsSecure-In) TCP 5358 System
Network Discovery (WSD Events-In) TCP 5357 System
Network Discovery (UPnP-In) TCP 2869 System
Network Discovery (SSDP-In) UDP 1900 svchost.exe
Network Discovery (Pub-WSD-In) UDP 3702 svchost.exe
Network Discovery (NB-Name-In) UDP 137 System
Network Discovery (NB-Datagram-In) UDP 138 System
Network Discovery (LLMNR-UDP-In) UDP 5355 svchost.exe

2) People Near Me:Setting up a People Near Me (PNM) profile (e.g., establishinga username and preferences) did not
cause any firewall changes. However, signing in caused the Windows Peer to Peer Collaboration Foundation group to become
enabled for all profiles:

+

Windows Peer to Peer Collaboration Foundation (WSD-In) UDP3702 p2phost.exe
Windows Peer to Peer Collaboration Foundation (TCP-In) TCPAny p2phost.exe
Windows Peer to Peer Collaboration Foundation (SSDP-In) UDP 1900 svchost.exe
Windows Peer to Peer Collaboration Foundation (PNRP-In) UDP 3540 svchost.exe

We never saw this group become disabled, even after signing out of PNM and closing the window.
3) Windows Meeting Space:Windows Meeting Space (WMS), referred to as Windows Collaboration in beta builds, requires

PNM to be active so the above firewall changes apply to WMS as well. In addition, setting up WMS caused the Windows
Meeting Space and Connect to a Network Projector groups to become enabled for all profiles:

+

Windows Meeting Space (UDP-In) UDP Any WinCollab.exe
Windows Meeting Space (TCP-In) TCP Any WinCollab.exe
Windows Meeting Space (P2P-In) TCP 3587 svchost.exe
Windows Meeting Space (DFSR-In) TCP 5722 dfsr.exe
Connect to a Network Projector (WSD-In) UDP 3702 netproj.exe
Connect to a Network Projector (WSD EventsSecure-In) TCP 5358
Connect to a Network Projector (WSD Events-In) TCP 5357
Connect to a Network Projector (TCP-In) TCP Any netproj.exe

We never saw these groups become disabled, even after endingWMS, signing out of PNM, and rebooting. Creating
and later leaving a WMS meeting had no effect on the firewall.

SYMANTEC ADVANCED THREAT RESEARCH 86

D. Active Socket Changes with Configuration Changes

We examined the effect on active sockets (specifically, the netstat report on active sockets) as a result of various configuration
changes. We ignored differences in netstat’s ordering of the output, but considered any differences between compared lines
significant. Since the observations are made at a single point in time (usually soon after making the configuration change),
we sometimes catch transient connections. We include thosehere, but there are likely others we did not see; this testingwas
focused on persistent changes.

The sequences of changes described in each of the subsections below have essentially the same initial state. This was
achieved through the use of VMware snapshots—each sequencebegan by reverting back to a snapshot representing the initial
state. The netstat output has been reformatted for readability.

UDP port 3702 is seen frequently; this corresponds to UPnPv2and web services discovery (see [9]).

1) File Sharing: We turned on File Sharing. Since most of the associated processes are running already (see PID 4 in
Figure 48), the only netstat addition is as follows:

+ TCP 192.168.0.204:49164→ 192.168.0.203:139 SYNSENT PID=4 [System]

This was later replaced with the following:

./ TCP 192.168.0.204:49165→ 192.168.0.203:139 SYNSENT PID=4 [System]

Hence this host is attempting to establish a NetBIOS sessionconnection to another Vista host on the network
(vmvista=192.168.0.203).

The entry disappeared after turning off file sharing. Thus turning on file sharing had no side-effects.

2) Sharing and Discovery Controls:For this sequence, we further explored changing the settings in the Sharing and Discovery
section of the Network and Sharing Center control panel (seeFigure 15, page 25).

After turning on Public Folder Sharing with public write access, the following new entries were observed in netstat:

+

TCP 192.168.0.204:5357→ 192.168.0.203:49176 ESTABLISHED PID=4 [System]
TCP 192.168.0.204:49163→ 192.168.0.203:5357 ESTABLISHED PID=1192 [svchost.exe:EventSystem]
UDP 0.0.0.0:49251 → *:* PID=1192 [svchost.exe:EventSystem]
UDP [::]:49252 → *:* PID=1192 [svchost.exe:EventSystem]

After turning on media sharing, two of the above were gone:

−
TCP 192.168.0.204:5357→ 192.168.0.203:49176 ESTABLISHED PID=4 [System]
TCP 192.168.0.204:49163→ 192.168.0.203:5357 ESTABLISHED PID=1192 [svchost.exe:EventSystem]

We believe these were transient connections that had completed by that point in time. Several new additions appeared
from media sharing:

+

TCP 0.0.0.0:554 → 0.0.0.0:0 LISTENING PID=2824 [wmpnetwk.exe]
TCP [::]:554 → [::]:0 LISTENING PID=2824 [wmpnetwk.exe]
UDP 0.0.0.0:5004 → *:* PID=2824 [wmpnetwk.exe]
UDP 0.0.0.0:5005 → *:* PID=2824 [wmpnetwk.exe]
UDP 127.0.0.1:49268 → *:* PID=2824 [wmpnetwk.exe]
UDP [::]:5004 → *:* PID=2824 [wmpnetwk.exe]
UDP [::]:5005 → *:* PID=2824 [wmpnetwk.exe]
TCP 127.0.0.1:49168 → 127.0.0.1:2869 ESTABLISHED PID=1192 [svchost.exe:EventSystem]
TCP 127.0.0.1:2869 → 127.0.0.1:49168 ESTABLISHED PID=4 [System]
TCP 192.168.0.204:2869→ 192.168.0.203:49178 ESTABLISHED PID=4 [System]
TCP [::]:2869 → [::]:0 LISTENING PID=4 [System]
TCP [::]:10243 → [::]:0 LISTENING PID=4 [System]

File Sharing had become enabled as a result of one of the above. We turned that off. The only changes seen from this are
apparently coincidental removals:

−
TCP 127.0.0.1:2869 → 127.0.0.1:49168 ESTABLISHED PID=4 [System]
TCP 192.168.0.204:2869→ 192.168.0.203:49178 ESTABLISHED PID=4 [System]
TCP 127.0.0.1:49168 → 127.0.0.1:2869 ESTABLISHED PID=1192 [svchost.exe:EventSystem]

We then turned off media sharing and many of the additions caused by turning it on disappeared:

SYMANTEC ADVANCED THREAT RESEARCH 87

−

TCP 0.0.0.0:554 → 0.0.0.0:0 LISTENING PID=2824 [wmpnetwk.exe]
TCP [::]:554 → [::]:0 LISTENING PID=2824 [wmpnetwk.exe]
UDP 0.0.0.0:5004 → *:* PID=2824 [wmpnetwk.exe]
UDP 0.0.0.0:5005 → *:* PID=2824 [wmpnetwk.exe]
UDP 127.0.0.1:49268→ *:* PID=2824 [wmpnetwk.exe]
UDP [::]:5004 → *:* PID=2824 [wmpnetwk.exe]
UDP [::]:5005 → *:* PID=2824 [wmpnetwk.exe]
TCP [::]:2869 → [::]:0 LISTENING PID=4 [System]
TCP [::]:10243 → [::]:0 LISTENING PID=4 [System]

Only two entries remained that were not in the initial state.These entries came as a result of enabling public folder
sharing.

∆
UDP 0.0.0.0:49251→ *:* PID=1192 [svchost.exe:EventSystem]
UDP [::]:49252 → *:* PID=1192 [svchost.exe:EventSystem]

Turning off password-protected sharing and network discovery from the control panel had no effect on the netstat listing.
However, from Appendix III-B we know that disabling networkdiscovery causes LLTD to be disabled.

3) People Near Me:Opening up the People Near Me (PNM) application and setting up a username, etc, did not have any
effect on the netstat listing. However, signing into it did,adding the following IPv6 entries:

+

TCP [::]:49163→ [::]:0 LISTENING PID=3564 [p2phost.exe]
UDP [::]:3702 → *:* PID=3564 [p2phost.exe]
UDP [::]:3702 → *:* PID=3564 [p2phost.exe]
UDP [::]:3702 → *:* PID=3564 [p2phost.exe]
UDP [::]:3702 → *:* PID=3564 [p2phost.exe]
UDP [::]:49251→ *:* PID=3564 [p2phost.exe]
UDP [::]:49252→ *:* PID=3564 [p2phost.exe]

Signing out of PNM caused those entries to disappear though (even though the firewall rules remained enabled).
4) Windows Meeting Space:Opening and running Windows Meeting Space (WMS) requires PNM to be set up and signed

in to. As a result of turning on WMS and PNM, the following additions were seen in netstat:

+

TCP 127.0.0.1:49164→ 127.0.0.1:* PID=2616 [WinCollab.exe]
UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
TCP [::]:49163 → [::]:0 LISTENING PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:49251 → *:* PID=3520 [p2phost.exe]
UDP [::]:49252 → *:* PID=3520 [p2phost.exe]

Aside from a difference in the process ID, the p2phost.exe entries exactly match the result from the above sequence,
in which PNM was enabled by itself. The WinCollab.exe entries correspond to Windows Meeting Space.

Creating a meeting in WMS caused a variety of additions to theactive ports:

+

TCP 127.0.0.1:49165→ 127.0.0.1:49156 ESTABLISHED PID=2616 [WinCollab.exe]
TCP 127.0.0.1:49156→ 127.0.0.1:49165 ESTABLISHED PID=564 [lsass.exe]
TCP 127.0.0.1:49164→ 127.0.0.1:135 ESTABLISHED PID=2616 [WinCollab.exe]
TCP 127.0.0.1:135 → 127.0.0.1:49164 ESTABLISHED PID=796 [svchost.exe:RpcSs]
UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
UDP [::]:49254 → *:* PID=2616 [WinCollab.exe]
TCP [::]:3587 → [::]:0 LISTENING PID=952 [svchost.exe]
UDP [::]:3540 → *:* PID=952 [svchost.exe]
TCP 0.0.0.0:5722 → 0.0.0.0:0 LISTENING PID=2840 [DFSR.exe]
TCP [::]:5722 → [::]:0 LISTENING PID=2840 [DFSR.exe]

The top four entries correspond to two connections from WMS to services on the same host. The DFSR.exe entries
correspond to Distributed File System Replication (keeping files and folders synced among different hosts) for IPv4 andIPv6.

On departing that one-participant meeting, several entries were removed. These include the four localhost entries, though
they were represented in the TIMEWAIT state by two entries:

SYMANTEC ADVANCED THREAT RESEARCH 88

./
TCP 127.0.0.1:49164→ 127.0.0.1:135 TIMEWAIT PID=0
TCP 127.0.0.1:49165→ 127.0.0.1:49156 TIMEWAIT PID=0

The following entries were also removed:

−

UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
UDP [::]:49254→ *:* PID=2616 [WinCollab.exe]
TCP [::]:3587 → [::]:0 LISTENING PID=952 [svchost.exe]

We closed WMS and ran netstat again. The TIMEWAIT entries were gone by that point, as were the remaining WinCollab
entries:

−
UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
UDP [::]:3702 → *:* PID=2616 [WinCollab.exe]
UDP [::]:49253→ *:* PID=2616 [WinCollab.exe]

Although PNM was still running at this point, we expected allthe sockets associated with WMS to be closed. However, the
following shows the difference from the initial state:

∆

UDP [::]:3540 → *:* PID=952 [svchost.exe]
TCP 0.0.0.0:5722→ 0.0.0.0:0 LISTENING PID=2840 [DFSR.exe]
TCP [::]:5722 → [::]:0 LISTENING PID=2840 [DFSR.exe]
TCP [::]:49163 → [::]:0 LISTENING PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:3702 → *:* PID=3520 [p2phost.exe]
UDP [::]:49251 → *:* PID=3520 [p2phost.exe]
UDP [::]:49252 → *:* PID=3520 [p2phost.exe]

The first three entries appear to be leftovers. However, these three sockets were not restarted after a reboot. The
continued external exposure of the three depends on the firewall state. The firewall entries for UDP port 3540 (PNRP-In
for either Windows Peer to Peer Collaboration Foundation orWindows Collaboration Computer Name Registration Service)
were not enabled, so this port is not exposed. On the other hand, the firewall entry for DFSR (“Windows Meeting Space
(DFSR-In)”) was sticky (remained enabled), so the process was still remotely accessible over IPv4 and IPv6. However, this
extra TCP port 5722 exposure was short lived. The sockets went away in a couple minutes. The socket for UDP 3540 also
went away by itself, though it took longer.

Signing out of PNM, disabling auto-login, and closing the window caused all the p2phost.exe entries to disappear, which
matched our result from the previous sequence. With this, all the netstat additions that were due to this sequence have been
removed.

SYMANTEC ADVANCED THREAT RESEARCH 89

APPENDIX XXII
EXPOSEDTCP SERVICES

We used traditional port scanning techniques to identify exposed TCP services running on a default Windows Vista installation
and with the network set to the private profile, both over IPv4and over IPv6. This was done from the same subnet as the
scanned host.

For IPv4, we employed Nmap[18] to scan Vista with the firewallenabled (the default) and with the network set as a private
network:

linux# nmap -P0 -r -sS -p0-65535 $acerIP4

Starting Nmap 4.10 (http://www.insecure.org/nmap/) at 20 06-11-10 14:07 PST
Interesting ports on 192.168.0.200:
Not shown: 65535 filtered ports
PORT STATE SERVICE
5357/tcp open unknown
MAC Address: 00:C0:9F:D2:0C:F8 (Quanta Computer)

Nmap finished: 1 IP address (1 host up) scanned in 382.610 sec onds

Thus almost all ports are filtered (produce no response), butone port is open (5357).
Port 5357 corresponds to Web Services for Devices (WSD):

wsdapi 5357/tcp Web Services for Devices
wsdapi 5357/udp Web Services for Devices

WSD[39] is a solution from Microsoft which forms part of the Windows Rally set of technologies, which includes LLTD
(Appendix II). The open port is owned by the kernel driver HTTP.SYS.

To avoid filtering, we ran Nmap again on a host which had the firewall disabled.

linux# nmap -P0 -r -sS -p0-65535 $hpIP4

Starting Nmap 4.10 (http://www.insecure.org/nmap/) at 20 06-11-10 14:34 PST
Interesting ports on 192.168.0.201:
Not shown: 65526 closed ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
5357/tcp open unknown
49152/tcp open unknown
49153/tcp open unknown
49154/tcp open unknown
49155/tcp open unknown
49156/tcp open unknown
49157/tcp open unknown
MAC Address: 00:14:C2:D5:7E:96 (Hewlett Packard)

Nmap finished: 1 IP address (1 host up) scanned in 91.708 seco nds

In this case, a RST is produced for closed ports. From Appendix XXIV we know that port 135 and the six ephemeral ports
are used by RPC; that is also what nmap -sV reports. This is consistent with netstat reports on a similarly unmodified Vista
host (Figure 48), except that port 5357 is not listed there for IPv4.

Similar results are observed when using IPv6. This test was performed using a custom-written tcpscan utility, which works
with both IPv4 and IPv6 addresses. (Using it for IPv4 produced results that match the above.) The following results are
observed with the firewall on:

linux# ../tcpscan -p 0-65535 $acerLL6%2
0 Connection timed out
1 Connection timed out
...
5356 Connection timed out
5357 open
5358 Connection timed out
...
65535 Connection timed out

The results show that most ports are filtered (i.e. the connection timed out) and port 5357 is the only open port.
The following results are observed on a host with the firewalloff (excluding timeouts):

SYMANTEC ADVANCED THREAT RESEARCH 90

linux# ../tcpscan -p 0-65535 $hpLL6%2
135 open
445 open
5357 open
49152 open
49153 open
49154 open
49155 open
49156 open
49157 open

The same results are obtained as with IPv4, but port 139 is absent. These results match the netstat results for TCP over IPv6
(Figure 48).

Figure 4 (page 13) summarizes the findings.

SYMANTEC ADVANCED THREAT RESEARCH 91

APPENDIX XXIII
EXPOSEDUDP SERVICES

We used traditional port scanning techniques to identify exposed UDP services running on a default Windows Vista installation
(with the network profile set to private), using both IPv4 andIPv6 as transport. This was done from the same subnet as the
scanned host.

We used a custom script to scan UDP ports when the firewall was on. Using this for both IPv4 and IPv6, the script reported
“open or filtered” for all ports. Clearly, the firewall is filtering all closed (unused) ports rather than allowing an ICMP port
unreachable message to be sent out. Access to ports that are active on the system may also be filtered by the firewall. Thus,
the effect of the firewall is disallow mapping of UDP ports, atleast in a protocol-independent manner.

However we note that in order to have a port open through the firewall, there must be both an active socket on that port
and a firewall exception covering the port. Using the initialnetstat output and initial firewall rule settings in Appendix XXI-B,
it would seem that the only ports that could be opened throughthe firewall are:

• 137 (NetBIOS name service, IPv4 only)
• 138 (NetBIOS datagram)
• 3702 (Web Services Discovery)
• 5355 (LLMNR)

Significant caveats with this conclusion are the assumptions that:

• Vista works as it apparently should.
• The data that is being reported by netstat is representative, accurate, and complete.
• The data reported for the Windows Firewall settings is accurate and complete.

Based on firewall exceptions that are initially in place, if aprocess for DHCP, SSDP, or Teredo were to open its corresponding
port (68, 1900, and ephemeral, respectively), these ports could be open through the firewall, as well.

The following results were obtained for IPv4, with the firewall off:

linux# ../udpscan -p 0-65535 $hpIP4
123 opened or filtered
137 opened or filtered
138 opened or filtered
500 opened or filtered
1900 opened or filtered
3702 opened or filtered
4500 opened or filtered
5355 opened or filtered
49191 opened or filtered
49193 opened or filtered
49195 opened or filtered
49199 opened or filtered

Thus, the majority of ports produced an ICMP port unreachable message. The above listed ports produced no port unreachable
message; since there is no firewall to do filtering, these are likely open. These ports represent both client and server useof
ports. We noticed that the ephemeral ports varied in quantities and location between runs; these likely represent clients. The
following results were obtained for IPv6, with the firewall off:

linux# ../udpscan -p 0-65535 $hpLL6
123 opened or filtered
500 opened or filtered
1900 opened or filtered
3702 opened or filtered
5355 opened or filtered
49189 opened or filtered
49194 opened or filtered
49196 opened or filtered
49200 opened or filtered

Many of the port numbers are the same, but the well-known ports are a subset of those from IPv4. As with TCP, the results
show corresponding IPv4 and IPv6 use of a port, although the same ephemeral port number is not used for both. (The above
scans were of the same host and relatively close together in time.)

Aside from the specific ephemeral ports used, these results correspond exactly to the initial netstat output shown in Figure 48
(page 84).

Figure 5 (page 13) summarizes the findings.

SYMANTEC ADVANCED THREAT RESEARCH 92

APPENDIX XXIV
RPC ENDPOINT MAPPERENUMERATION

The RPC endpoint mapper service is not available by default in Vista installations. However, it is available if file sharing is
turned on. We walked through the information made availableby endpoint mapper, using a script. We obtained the following
results:

linux$ epdump.py -T -p 135 $vmvista
06bba54a-be05-49f9-b0a0-30f790261023 1.0: Security Cen ter

LPC: AudioClientRpc
LPC: Audiosrv
LPC: OLE24E5DF29D091443BA08029561147
LPC: dhcpcsvc
LPC: dhcpcsvc6
LPC: eventlog
path: \pipe\eventlog
tcp 49153

0767a036-0d22-48aa-ba69-b619480f38cb 1.0: PcaSvc
LPC: LRPC-8c22bd6a4265c55669
LPC: OLEBBDBE02F4D97481B8CC9D12DD894

0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53 1.0:
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: senssvc

0b6edbfa-4a24-4fc6-8a23-942b1eca65d1 1.0: Spooler func tion endpoint
LPC: spoolss

12345678-1234-abcd-ef00-0123456789ab 1.0: IPSec Policy agent endpoint
LPC: LRPC-d509414700694d948e

12345778-1234-abcd-ef00-0123456789ac 1.0:
LPC: LRPC-44cba3e606f899328a
LPC: audit
LPC: protected_storage
LPC: samss lpc
LPC: securityevent
path: \PIPE\protected_storage
path: \pipe\lsass
tcp 49154

12e65dd8-887f-41ef-91bf-8d816c42c2e7 1.0: Secure Deskt op LRPC interface
LPC: WMsgKRpc090901

1ff70682-0a51-30e8-076d-740be8cee98b 1.0:
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: senssvc
path: \PIPE\atsvc

201ef99a-7fa0-444c-9399-19ba84f12a1a 1.0: AppInfo
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: RasmanRpc
LPC: SECLOGON
LPC: senssvc
path: \PIPE\ROUTER
path: \PIPE\atsvc
path: \PIPE\srvsvc
tcp 49156

2eb08e3e-639f-4fba-97b1-14f878961076 1.0:
LPC: IUserProfile2

2f5f6521-cb55-1059-b446-00df0bce31db 1.0: Unimodem LRP C Endpoint
LPC: DNSResolver
LPC: OLEADBE270CE7AB49E78322DD993A07
LPC: keysvc

SYMANTEC ADVANCED THREAT RESEARCH 93

LPC: keysvc2
LPC: nlaapi
LPC: nlaplg
LPC: tapsrvlpc
LPC: unimdmsvc
path: \pipe\keysvc
path: \pipe\tapsrv

2fb92682-6599-42dc-ae13-bd2ca89bd11c 1.0: Fw APIs
LPC: LRPC-a7d7a7c48531b65290

3473dd4d-2e88-4006-9cba-22570909dd10 5.0: WinHttp Auto -Proxy Service
LPC: LRPC-ba6a873927fc322d90
LPC: OLE2C02BDEDDF2B45CFBB2DCAA76F31
LPC: W32TIME_ALT
path: \PIPE\DAV RPC SERVICE
path: \PIPE\W32TIME_ALT
path: \PIPE\wkssvc
tcp 49155

367abb81-9844-35f1-ad32-98f038001003 2.0:
tcp 49157

378e52b0-c0a9-11cf-822d-00aa0051e40f 1.0:
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: senssvc
path: \PIPE\atsvc

3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5 1.0: DHCP Client L RPC Endpoint
LPC: AudioClientRpc
LPC: Audiosrv
LPC: OLE24E5DF29D091443BA08029561147
LPC: dhcpcsvc
LPC: dhcpcsvc6
LPC: eventlog
path: \pipe\eventlog
tcp 49153

3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6 1.0: DHCPv6 Clien t LRPC Endpoint
LPC: AudioClientRpc
LPC: Audiosrv
LPC: OLE24E5DF29D091443BA08029561147
LPC: dhcpcsvc6
LPC: eventlog
path: \pipe\eventlog
tcp 49153

4a452661-8290-4b36-8fbe-7f4093a94978 1.0: Spooler func tion endpoint
LPC: spoolss

4b112204-0e19-11d3-b42b-0000f81feb9f 1.0:
LPC: LRPC-ba6a873927fc322d90
LPC: OLE2C02BDEDDF2B45CFBB2DCAA76F31
path: \PIPE\DAV RPC SERVICE
path: \PIPE\wkssvc
tcp 49155

5f54ce7d-5b79-4175-8584-cb65313a0e98 1.0: AppInfo
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: RasmanRpc
LPC: SECLOGON
LPC: senssvc
path: \PIPE\ROUTER
path: \PIPE\atsvc
path: \PIPE\srvsvc
tcp 49156

SYMANTEC ADVANCED THREAT RESEARCH 94

654976df-1498-4056-a15e-cb4e87584bd8 1.0:
LPC: LRPC-8c22bd6a4265c55669
LPC: OLEBBDBE02F4D97481B8CC9D12DD894
LPC: trkwks
path: \pipe\trkwks

76f226c3-ec14-4325-8a99-6a46348418af 1.0:
LPC: WMsgKRpc090170
LPC: WMsgKRpc090901
LPC: WindowsShutdown
path: \PIPE\InitShutdown

7ea70bcf-48af-4f6a-8968-6a440754d5fa 1.0: NSI server en dpoint
LPC: LRPC-ba6a873927fc322d90
LPC: OLE2C02BDEDDF2B45CFBB2DCAA76F31
tcp 49155

7f9d11bf-7fb9-436b-a812-b2d50c5d4c03 1.0: Fw APIs
LPC: LRPC-a7d7a7c48531b65290

86d35949-83c9-4044-b424-db363231fd0c 1.0:
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: senssvc
path: \PIPE\atsvc
tcp 49156

a398e520-d59a-4bdd-aa7a-3c1e0303a511 1.0: IKE/Authip A PI
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: senssvc
path: \PIPE\atsvc
path: \PIPE\srvsvc
tcp 49156

ae33069b-a2a8-46ee-a235-ddfd339be281 1.0: Spooler base remote object endpoint
LPC: spoolss

b58aa02e-2884-4e97-8176-4ee06d794184 1.0:
LPC: LRPC-8c22bd6a4265c55669
LPC: OLEBBDBE02F4D97481B8CC9D12DD894
LPC: trkwks
path: \pipe\trkwks

c9ac6db5-82b7-4e55-ae8a-e464ed7b4277 1.0: Impl friendl y name
LPC: IUserProfile2
LPC: IUserProfile2
LPC: IUserProfile2
LPC: LRPC-00ee2fc62c1c1f0e4b
LPC: LRPC-44cba3e606f899328a
LPC: audit
LPC: protected_storage
LPC: samss lpc
LPC: securityevent
LPC: senssvc
path: \PIPE\protected_storage
path: \pipe\lsass

d95afe70-a6d5-4259-822e-2c84da1ddb0d 1.0:
LPC: WMsgKRpc090170
LPC: WindowsShutdown
path: \PIPE\InitShutdown
tcp 49152

dd490425-5325-4565-b774-7e27d6c09c24 1.0: Base Firewal l Engine API
LPC: LRPC-a7d7a7c48531b65290

f6beaff7-1e19-4fbb-9f8f-b89e2018337c 1.0: Event log TCP IP
LPC: eventlog

SYMANTEC ADVANCED THREAT RESEARCH 95

path: \pipe\eventlog
tcp 49153

fd7a0523-dc70-43dd-9b2e-9c5ed48225b1 1.0: AppInfo
LPC: IUserProfile2
LPC: OLE07A55C606630488F9A1CE31ACF85
LPC: RasmanRpc
LPC: SECLOGON
LPC: senssvc
path: \PIPE\ROUTER
path: \PIPE\atsvc
path: \PIPE\srvsvc
tcp 49156

In the above, “path” refers to named pipes.
When several RPC services share the same process, they also share the same endpoints[30]. As a result there may be

interfaces bound to a network port that are not registered with the endpoint mapper.

SYMANTEC ADVANCED THREAT RESEARCH 96

APPENDIX XXV
ANONYMOUS AND AUTHENTICATED ACCESS TONAMED PIPES

We determined which named pipes are remotely accessible, with and without authentication. To do this, we needed to turn
on file sharing on the target machine. We conducted this test from both a Windows XP client and from a Windows Vista client.
XP was observed to use SMB for access whereas Vista used SMB2 following a brief protocol negotiation; both use TCP port
445. We show the accessible named pipes in this appendix, andalso show the results of RPC enumeration on those in the
following appendix.

To identify the pipes that might be accessible remotely, we first locally enumerated all of the named pipes using the
pipelist.exe tool15. The following is the result:

vista> pipelist > pipes.txt
vista> type pipes.txt

PipeList v1.01
by Mark Russinovich
http://www.sysinternals.com

Pipe Name Instances Max Instances
--------- --------- -------------
InitShutdown 3 -1
lsass 4 -1
protected_storage 3 -1
ntsvcs 3 -1
scerpc 3 -1
net\NtControlPipe1 1 1
plugplay 3 -1
net\NtControlPipe2 1 1
Winsock2\CatalogChangeListener-32c-0 1 1
net\NtControlPipe3 1 1
epmapper 3 -1
Winsock2\CatalogChangeListener-1ec-0 1 1
LSM_API_service 3 -1
net\NtControlPipe4 1 1
eventlog 3 -1
net\NtControlPipe5 1 1
Winsock2\CatalogChangeListener-3cc-0 1 1
net\NtControlPipe6 1 1
net\NtControlPipe7 1 1
net\NtControlPipe8 1 1
Winsock2\CatalogChangeListener-24c-0 1 1
net\NtControlPipe0 1 1
net\NtControlPipe9 1 1
Winsock2\CatalogChangeListener-4dc-0 1 1
atsvc 3 -1
Winsock2\CatalogChangeListener-404-0 1 1
net\NtControlPipe10 1 1
net\NtControlPipe11 1 1
DAV RPC SERVICE 3 -1
srvsvc 4 -1
wkssvc 4 -1
net\NtControlPipe12 1 1
keysvc 3 -1
net\NtControlPipe13 1 1
trkwks 3 -1
net\NtControlPipe14 1 1
net\NtControlPipe15 1 1
W32TIME_ALT 3 -1
Winsock2\CatalogChangeListener-238-0 1 1
PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER 2 -1
MsFteWds 2 -1
tapsrv 3 -1
ROUTER 3 -1
browser 3 -1

As additional information, we also enumerated the pipes in the HKEY LOCAL MACHINE\ System\ CurrentControlSet-
\ Services\ LanmanServer\ Parameters\ NullSessionPipes registry key using regedit:

15Pipelist.exe was previously released online at www.sysinternals.com, but appears to no longer be available

SYMANTEC ADVANCED THREAT RESEARCH 97

• netlogon
• lsarpc
• samr
• browser

Items on this list are defined to be accessible via a null (anonymous) session.
We also located the HKEYLOCAL MACHINE\ System\ CurrentControlSet\ Services\ Npfs\ Aliases\ lsass key, which in-

dicates that the following pipes are aliases of lsass:

• netlogon
• lsarpc
• samr
• protectedstorage

A. Null Session Access to Named Pipes

To establish an anonymous connection to access the IPC$ share of the target machine, we used the following command:

xp> net use \\192.168.0.203\ipc$ /u:"" ""

We then ran a script, which was developed to establish connections to each of these named pipes, to determine which ones
could be opened for read and write access. When run from a Windows XP machine we observed the following results:

xp> c:\python24\python trypipes.py -m 192.168.0.203 pipe s.txt
\\192.168.0.203\PIPE\netlogon
\\192.168.0.203\PIPE\lsarpc
\\192.168.0.203\PIPE\samr

These results are consistent with the values in the NullSessionPipes registry key. However, the browser pipe was not accessible;
perhaps different circumstances such as a local connectionare required for a null session to be allowed to do that. Theseare
all aliased to the lsass pipe.

We performed the same tests on a Windows Vista machine and achieved identical results.

B. Authenticated Session Access to Named Pipes

We repeated this test with an authenticated session, using the first account created during Vista install. We set that up using

xp> net use \\192.168.0.203\ipc$ /u:"jim"

and typing the password. We did not need to do this from the Vista client since the current user and associated password are
identical to the target account.

From XP, trypipes.py yielded the following16:

xp> c:\python24\python trypipes.py -m 192.168.0.203 pipe s.txt
\\192.168.0.203\PIPE\InitShutdown
\\192.168.0.203\PIPE\lsass
\\192.168.0.203\PIPE\protected_storage
\\192.168.0.203\PIPE\ntsvcs
\\192.168.0.203\PIPE\scerpc
\\192.168.0.203\PIPE\plugplay
\\192.168.0.203\PIPE\epmapper
\\192.168.0.203\PIPE\LSM_API_service
\\192.168.0.203\PIPE\eventlog
\\192.168.0.203\PIPE\atsvc
\\192.168.0.203\PIPE\srvsvc
\\192.168.0.203\PIPE\wkssvc
\\192.168.0.203\PIPE\keysvc
\\192.168.0.203\PIPE\trkwks
\\192.168.0.203\PIPE\W32TIME_ALT
\\192.168.0.203\PIPE\MsFteWds
\\192.168.0.203\PIPE\tapsrv
\\192.168.0.203\PIPE\ROUTER
\\192.168.0.203\PIPE\browser
\\192.168.0.203\PIPE\netlogon
\\192.168.0.203\PIPE\lsarpc
\\192.168.0.203\PIPE\samr

16We note that pipe named “DAV RPC SERVICE” was present in both the portmap enumeration and in pipes.txt. However due to the spaces in its name,
it may not have been correctly tested by trypipes.py; it may belong on this list too.

SYMANTEC ADVANCED THREAT RESEARCH 98

These results include the three pipes that were available toa null session, and 19 additional pipes. We could find no
documentation for, or public mention of, the LSMAPI service or MsFteWds pipes.

Once again, Vista yielded identical results (though in Appendix XXVI-D we show the RPC access available is not identical).

SYMANTEC ADVANCED THREAT RESEARCH 99

APPENDIX XXVI
RPC PROCEDUREACCESS

In this appendix we show which RPC interfaces and proceduresare remotely available with file sharing turned on. (There
does not appear to be any RPC interfaces available on a freshly installed Vista host.) We tested using direct TCP-based access
and via named pipes (for which we tried both anonymous and authenticated access, and from XP and Vista).

A. Tools

We wrote two scripts to help us with the testing. Identify2.py attempts to brute force the interfaces and procedures actually
available over a network port or over a named pipe. The tool attempts to call each procedure between 0 and 99 to each
interface in an large list of known UUIDs. By using this tool,we are able to enumerate most RPC services. If it receives
an UNKNOWN INTERFACE (0x1c010003), no output is produced. Otherwise the result is reported. From this, whether or
not the interface is truly accessible can be inferred. “Success” indicates that the call reportedly succeeded. The callis made
without knowledge of the correct arguments, so an ERRBAD STUB DATA (1783) strongly suggests it could succeed if given
the correct arguments. RANGEERROR (0x1c010002) is the result that is expected when calling a procedure that does not
exist.

Not all interfaces available on a network port are usable; RPC mechanisms exist for blocking requests arriving over the
network ([30], [28]). This is useful for services that do notwish to be available over the network, but share a process with
another service that uses a network transport. This could explain some of the ACCESSDENIED (5) errors received when
calling certain procedures.

The second tool, identify.py, is similar to identify2.py. However, it only calls procedure 9999: a procedure number presumed
to be higher than is actually accessible. The results from this tool are identical to the results from procedure 99, underthe
same circumstances, and in almost all cases; so we do not report these results separately.

The long list of UUIDs that we cycle over consists of the UUID,the version number, and human-readable informational
text (to the extent we happened to know what the UUID is about). Some of the UUIDs on the list are included, based on their
association with the release build of Vista. The interfaceswe saw from the endpoint mapper (Appendix XXIV) are included.
In addition, we attempted to extract client and server uses of UUIDs though static analysis of system executables found in a
Vista RTM install. From rpcdecp.h, servers have the interface structure shown in Figure 49. Clients have an almost identical
interface structure. In our observation, servers consistently have a InterpreterInfo value, while clients do not seemto have this
value. From this, we can identify client instances versus server instances. Including all the unique UUIDs on the long list
resulted in 64 additions, though some of those were only seenfor clients (and hence would not be callable). We have 214
UUIDs on our list, but there could be other unknown ones.

B. Direct TCP Access

The endpoint mapper results we listed in Appendix XXIV referred to TCP port numbers 49152 to 49157. These, plus port
135 (the well-known endpoint mapper port) are potential ways to access RPC directly over TCP. However, we found that, per
Nmap, only port 135 was open for remote access; the others arefiltered by the firewall. This following is what Nmap reported:
linux# nmap -p 135,49152-49157 -sS $vmIP4

Starting Nmap 4.20 (http://insecure.org) at 2006-12-25 01 :53 PST
Interesting ports on 192.168.0.203:
PORT STATE SERVICE
135/tcp open msrpc
49152/tcp filtered unknown
49153/tcp filtered unknown
49154/tcp filtered unknown
49155/tcp filtered unknown
49156/tcp filtered unknown
49157/tcp filtered unknown
MAC Address: 00:0C:29:72:E4:82 (VMware)

Nmap finished: 1 IP address (1 host up) scanned in 14.498 seco nds

We ran identify2.py against port 135 to see the results of an attempt to call the first 100 procedures in each of the long list
of UUIDs. The following is an excerpt:

vista> identify2.py -p 135 -T 192.168.0.203
00000136-0000-0000-c000-000000000046[v0.0] (ISCMLoca lActivator), proc0: ACCESS_DENIED (5)
00000136-0000-0000-c000-000000000046[v0.0] (ISCMLoca lActivator), proc1: ACCESS_DENIED (5)
00000136-0000-0000-c000-000000000046[v0.0] (ISCMLoca lActivator), proc2: ACCESS_DENIED (5)
...
00000136-0000-0000-c000-000000000046[v0.0] (ISCMLoca lActivator), proc99: ACCESS_DENIED (5)
000001a0-0000-0000-c000-000000000046[v0.0] (ISystemA ctivator), proc0: ACCESS_DENIED (5)

SYMANTEC ADVANCED THREAT RESEARCH 100

struct _RPC_SERVER_INTERFACE
{

unsigned int Length;
RPC_SYNTAX_IDENTIFIER InterfaceId;
RPC_SYNTAX_IDENTIFIER TransferSyntax;
PRPC_DISPATCH_TABLE DispatchTable;
unsigned int RpcProtseqEndpointCount;
PRPC_PROTSEQ_ENDPOINT RpcProtseqEndpoint;
RPC_MGR_EPV __RPC_FAR *DefaultManagerEpv;
void const __RPC_FAR *InterpreterInfo;
unsigned int Flags;

}

Fig. 49. The RPC server interface structure

000001a0-0000-0000-c000-000000000046[v0.0] (ISystemA ctivator), proc1: ACCESS_DENIED (5)
...
64fe0b7f-9ef5-4553-a7db-9a1975777554[v1.0] (???), pro c98: ACCESS_DENIED (5)
64fe0b7f-9ef5-4553-a7db-9a1975777554[v1.0] (???), pro c99: ACCESS_DENIED (5)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc0: BAD_STUB_DATA (1783)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc1: BAD_STUB_DATA (1783)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc2: BAD_STUB_DATA (1783)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc3: success
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc4: BAD_STUB_DATA (1783)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc5: success
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc6: RANGE_ERROR (469827586)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc7: RANGE_ERROR (469827586)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc8: RANGE_ERROR (469827586)
...
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc99: RANGE_ERROR (469827586)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc0: ACCESS_DENIED (5)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc1: ACCESS_DENIED (5)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc2: ACCESS_DENIED (5)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc3: ACCESS_DENIED (5)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc4: BAD_STUB_DATA (1783)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc5: ACCESS_DENIED (5)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc6: ACCESS_DENIED (5)
...
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc98: ACCESS_DENIED (5)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc99: ACCESS_DENIED (5)

We noticed that sometimes we would encounter a -1 result in unexpected locations (where they contradict the apparent
pattern). Based on the results of multiple runs, we concluded that there is a limitation in the script, that sometimes yields
error -1 as the result; perhaps it is making requests too fast. The -1 result could appear in place of UNKNOWNINTERFACE,
ACCESSDENIED, or BAD STUB DATA. By combining the results of multiple runs, we were ableto get a result other than
-1 for all procedure calls for all interfaces.

The results can be summarized as follows:

00000136-0000-0000-c000-000000000046[v0.0] (ISCMLoca lActivator), proc0-99: ACCESS_DENIED (5)

000001a0-0000-0000-c000-000000000046[v0.0] (ISystemA ctivator), proc0-99: ACCESS_DENIED (5)

0b0a6584-9e0f-11cf-a3cf-00805f68cb1b[v1.1] (localpmp), proc0-99: ACCESS_DENIED (5)

1d55b526-c137-46c5-ab79-638f2a68e869[v1.0] (???), pro c0-99: ACCESS_DENIED (5)

412f241e-c12a-11ce-abff-0020af6e7a17[v0.2] (ISCM), pr oc0-99: ACCESS_DENIED (5)

4d9f4ab8-7d1c-11cf-861e-0020af6e7c57[v0.0] (from rpcs s.dll), proc0-99: ACCESS_DENIED (5)

64fe0b7f-9ef5-4553-a7db-9a1975777554[v1.0] (???), pro c0-99: ACCESS_DENIED (5)

99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc0-2: BAD_STUB_DATA (1783)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc3: success
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc4: BAD_STUB_DATA (1783)
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc5: success
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0] (IOXIDRes olver), proc6-99: RANGE_ERROR (469827586)

afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc0-3: ACCESS_DENIED (5)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc4: BAD_STUB_DATA (1783)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc5-99: ACCESS_DENIED (5)

SYMANTEC ADVANCED THREAT RESEARCH 101

Two interfaces existed that allowed us to successfully callsome procedures—at least, this would be true with the correct
arguments. In the IOXIDResolver interface, the first five procedures (ResolveOxid, SimplePing, ComplexPing, ServerAlive,
ResolveOxid2, ServerAlive2) were accessible; apparently, only five procedures exist. In the RPC remote management interface,
only the fourth procedure (rpcmgmt inq princ name) was callable.

We see ACCESSDENIED appearing at the procedure level, suggesting accesscontrol is employed. We also see
ACCESSDENIED for all procedures from several other interfaces that we could detect (UNKNOWNINTERFACE was
not returned). The exposure of shared-process servers gives some insight into what other services are running on the machine.
This information can be used for fingerprinting purposes[56]. It also seems within the realm of possibility that, even though
ACCESSDENIED is the normal result, there could be a way to attack theprocedure call.

We present this, along with the additional results from thisappendix, in Table II. The table contains the results of our
attempts to call the first 100 procedures in a long list of UUIDs in each of five configurations: TCP 135, using named pipes
over a null session from XP (Section XXVI-C), using named pipes over a null session from Vista (Section XXVI-C), using
named pipes over a authenticated session from XP (Section XXVI-D), and using named pipes over a authenticated session
from Vista (Section XXVI-D). Results from named pipes that produced the same error for all interfaces and procedures are
omitted. Empty spaces indicate a UNKNOWNINTERFACE; UUIDs that would be entirely blank (i.e. that were not seen
anywhere) are omitted. “succ” represents a successful connection; “bad-stub” represents a “BADSTUB DATA (1783)” error;
“range” represents a “RANGEERROR (469827586)” error; “cant-perf” represents a “CANTPERFORM (1752)” error, and
“denied” represents a “ACCESSDENIED (5)” error.

TABLE II: The results of calling the first 100 procedures

Interface Procedure #’s TCP 135 XP null Vista null XP auth Vista auth
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] 0 denied succ succ succ succ

(rpcmgmt (ifids)) 1 denied bad-stub bad-stub bad-stub bad-stub
2–3 denied succ succ succ succ
4 bad-stub bad-stub bad-stub bad-stub bad-stub
5–99 denied range range range range

12345778-1234-abcd-ef00-0123456789ab[v0.0] 0 bad-stub bad-stub bad-stub bad-stub
(LSA access (lsarpc)) 1 denied denied bad-stub bad-stub

2–3 bad-stub bad-stub bad-stub bad-stub
4 denied denied bad-stub bad-stub
5–7 bad-stub bad-stub bad-stub bad-stub
8 denied denied bad-stub bad-stub
9 bad-stub bad-stub bad-stub bad-stub
10 denied denied bad-stub bad-stub
11 bad-stub bad-stub bad-stub bad-stub
12 denied denied bad-stub bad-stub
13–15 bad-stub bad-stub bad-stub bad-stub
16 denied denied bad-stub bad-stub
17–18 bad-stub bad-stub bad-stub bad-stub
19–20 denied denied bad-stub bad-stub
21 bad-stub bad-stub bad-stub bad-stub
22 denied denied bad-stub bad-stub
23 bad-stub bad-stub bad-stub bad-stub
24 denied denied bad-stub bad-stub
25–26 bad-stub bad-stub bad-stub bad-stub
27–30 denied denied bad-stub bad-stub
31–33 bad-stub bad-stub bad-stub bad-stub
34 denied denied bad-stub bad-stub
35–36 bad-stub bad-stub bad-stub bad-stub
37–38 denied denied bad-stub bad-stub
39 bad-stub bad-stub bad-stub bad-stub
40–43 denied denied bad-stub bad-stub
44–46 bad-stub bad-stub bad-stub bad-stub
47 denied denied bad-stub bad-stub
48 bad-stub bad-stub bad-stub bad-stub
49 denied denied bad-stub bad-stub
50 bad-stub bad-stub bad-stub bad-stub
51 denied denied bad-stub bad-stub
52–53 bad-stub bad-stub bad-stub bad-stub
54 denied denied bad-stub bad-stub
55 bad-stub bad-stub bad-stub bad-stub
56 denied denied bad-stub bad-stub
57–58 bad-stub bad-stub bad-stub bad-stub
59 denied denied bad-stub bad-stub

(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 102

Interface Procedure #’s TCP 135 XP null Vista null XP auth Vista auth
60–67 denied denied bad-stub denied
68 bad-stub bad-stub bad-stub bad-stub
69–72 denied denied bad-stub denied
73 bad-stub bad-stub bad-stub bad-stub
74 denied denied bad-stub bad-stub
75–78 denied denied bad-stub denied
79–99 denied denied range denied

12345778-1234-abcd-ef00-0123456789ac[v1.0] 0–1 bad-stub bad-stub bad-stub bad-stub
(samsrv) 2 denied denied bad-stub bad-stub

3 bad-stub bad-stub bad-stub bad-stub
4 denied denied bad-stub bad-stub
5–8 bad-stub bad-stub bad-stub bad-stub
9–10 denied denied bad-stub bad-stub
11 bad-stub bad-stub bad-stub bad-stub
12 denied denied bad-stub bad-stub
13 bad-stub bad-stub bad-stub bad-stub
14 denied denied bad-stub bad-stub
15–20 bad-stub bad-stub bad-stub bad-stub
21–24 denied denied bad-stub bad-stub
25 bad-stub bad-stub bad-stub bad-stub
26 denied denied bad-stub bad-stub
27–28 bad-stub bad-stub bad-stub bad-stub
29–32 denied denied bad-stub bad-stub
33–34 bad-stub bad-stub bad-stub bad-stub
35 denied denied bad-stub bad-stub
36 bad-stub bad-stub bad-stub bad-stub
37 denied denied bad-stub bad-stub
38–41 bad-stub bad-stub bad-stub bad-stub
42–43 denied denied bad-stub bad-stub
44 bad-stub bad-stub bad-stub bad-stub
45 denied denied bad-stub bad-stub
46–49 bad-stub bad-stub bad-stub bad-stub
50 denied denied bad-stub bad-stub
51 bad-stub bad-stub bad-stub bad-stub
52–53 denied denied bad-stub bad-stub
54–57 bad-stub bad-stub bad-stub bad-stub
58 denied denied bad-stub bad-stub
59 denied denied bad-stub denied
60 denied denied bad-stub bad-stub
61–65 bad-stub bad-stub bad-stub bad-stub
66 denied denied bad-stub bad-stub
67–99 denied denied range denied

3919286a-b10c-11d0-9ba8-00c04fd92ef5[v0.0] 0 bad-stub bad-stub bad-stub bad-stub
(LSA DS access (lsarpc)) 1–99 range range range range

c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] 0–13 bad-stub bad-stub bad-stub bad-stub
(efsrpc) 14–16 bad-stub bad-stub range bad-stub

17 succ succ range succ
18–19 bad-stub bad-stub range bad-stub
20 succ succ range succ
21–99 range range range range

0b0a6584-9e0f-11cf-a3cf-00805f68cb1b[v1.1] 0 denied succ denied
(localpmp) 1–4 denied bad-stub denied

5 denied succ denied
6–99 denied range denied

11220835-5b26-4d94-ae86-c3e475a809de[v1.0]
(ICryptProtect) 0–99 denied denied denied denied

1ff70682-0a51-30e8-076d-740be8cee98b[v1.0] 0–3 bad-stub bad-stub
(atsvc) 4–99 range range

300f3532-38cc-11d0-a3f0-0020af6b0add[v1.2] 0–3 bad-stub bad-stub
(trkwks) 4 succ succ

5–7 bad-stub bad-stub
8 succ succ
9–12 bad-stub bad-stub
13–99 range range

(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 103

Interface Procedure #’s TCP 135 XP null Vista null XP auth Vista auth

367abb81-9844-35f1-ad32-98f038001003[v2.0] 0–43 bad-stub bad-stub
(Services Control Manager (SCM)) 44–55 range bad-stub

56–99 range range

4b324fc8-1670-01d3-1278-5a47bf6ee188[v3.0] 0–53 bad-stub bad-stub
(from srvsvc.dll, Netr*) 54–57 range bad-stub

58–99 range range

5cbe92cb-f4be-45c9-9fc9-33e73e557b20[v1.0]
(from lsasrv.dll) 0–99 denied denied denied denied

6bffd098-a112-3610--9833-012892020162[v0.0] 0–11 bad-stub bad-stub
(from browser.dll, IBrowserr*, NetrBrowser*) 12–99 range range

6bffd098-a112-3610--9833-46c3f87e345a[v1.0] 0–30 bad-stub bad-stub
(wkssvc) 31 bad-stub range

32–99 range range

82273fdc-e32a-18c3-3f78-827929dc23ea[v0.0] 0–23 bad-stub bad-stub
(eventlog, from wevtsvc.dll) 24 range bad-stub

25–99 range range

99fcfec4-5260--101b-bbcb-00aa0021347a[v0.0] 0–2 bad-stub denied denied
(IOXIDResolver) 3 succ denied denied

4 bad-stub denied denied
5 succ denied denied
6–99 range denied denied

e1af8308-5d1f-11c9-91a4-08002b14a0fa[v3.0] 0–1 bad-stub cant-perf
(epmapper) 2–4 bad-stub bad-stub

5–6 bad-stub cant-perf
7–8 range bad-stub
9–99 range range

00000136-0000-0000-c000-000000000046[v0.0]
(ISCMLocalActivator) 0–99 denied denied denied

000001a0-0000-0000-c000-000000000046[v0.0]
(ISystemActivator) 0–99 denied denied denied

1d55b526-c137-46c5-ab79-638f2a68e869[v1.0]
(???) 0–99 denied denied denied

412f241e-c12a-11ce-abff-0020af6e7a17[v0.2]
(ISCM) 0–99 denied denied denied

4d9f4ab8-7d1c-11cf-861e-0020af6e7c57[v0.0]
(from rpcss.dll) 0–99 denied denied denied

894de0c0-0d55-11d3-a322-00c04fa321a1[v1.0] 0–2 bad-stub denied
(InitShutdown) 3–99 range denied

8d9f4e40-a03d-11ce-8f69-08003e30051b[v1.0] 0–1 bad-stub denied
(umpnpmgr) 2 succ denied

3 bad-stub denied
4 succ denied
5–38 bad-stub denied
39 succ denied
40–64 bad-stub denied
65–99 range denied

8fb6d884-2388-11d0-8c35-00c04fda2795[v4.1] 0 bad-stub denied
(w32time) 1 succ denied

2 bad-stub denied
3–99 range denied

93149ca2-973b-11d1-8c39-00c04fb984f9[v0.0] 0–19 bad-stub denied
(scesrv) 20 succ denied

21–33 bad-stub denied
34–99 range denied

c9ac6db5-82b7-4e55-ae8a-e464ed7b4277[v1.0]
(sysntfy) 0–99 denied denied denied

00000131-0000-0000-c000-000000000046[v0.0]
(from ole32.dll) 0–99 denied denied

00000132-0000-0000-c000-000000000046[v0.0]
(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 104

Interface Procedure #’s TCP 135 XP null Vista null XP auth Vista auth
((used by rpcss.dll)) 0–99 denied denied

00000134-0000-0000-c000-000000000046[v0.0]
((used by rpcss.dll)) 0–99 denied denied

00000143-0000-0000-c000-000000000046[v0.0]
(from ole32.dll) 0–99 denied denied

06bba54a-be05-49f9-b0a0-30f790261023[v1.0]
(wscsvc) 0–99 denied denied

0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53[v1.0]
(taskeng (idletask)) 0–99 denied denied

0d72a7d4-6148-11d1-b4aa-00c04fb66ea0[v1.0]
(ICertProtect) 0–99 denied denied

12b81e99-f207-4a4c-85d3-77b42f76fd14[v1.0]
(seclogon (ISeclogon)) 0–99 denied denied

18f70770-8e64-11cf-9af1-0020af6e72f4[v0.0]
(ole32 (IOrCallback)) 0–99 denied denied

20610036-fa22-11cf-9823-00a0c911e5df[v1.0]
(rasmans) 0–99 denied denied

2f5f6520-ca46-1067-b319-00dd010662da[v1.0]
(tapisrv) 0–99 denied denied

2f5f6521-cb55-1059-b446-00df0bce31db[v1.0]
(unimdm) 0–99 denied denied

326731e3-c1c0-4a69-ae20-7d9044a4ea5c[v1.0]
(profsvc (IUserProfile)) 0–99 denied denied

378e52b0-c0a9-11cf-822d-00aa0051e40f[v1.0]
(sasec) 0–99 denied denied

3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5[v1.0]
(dhcpcsvc (RpcSrvDHCPC)) 0–99 denied denied

3dde7c30-165d-11d1-ab8f-00805f14db40[v1.0] 0 bad-stub
(BackupKey) 1–99 range

3faf4738-3a21-4307-b46c-fdda9bb8c0d5[v1.1]
(AudioSrv) 0–99 denied denied

63fbe424-2029-11d1-8db8-00aa004abd5e[v1.0]
(SensApi) 0–99 denied denied

64fe0b7f-9ef5-4553-a7db-9a1975777554[v1.0]
(???) 0–99 denied denied

b9e79e60-3d52-11ce-aaa1-00006901293f[v0.2]
(IROT) 0–99 denied denied

c6f3ee72-ce7e-11d1-b71e-00c04fc3111a[v1.0]
(IMachineActivatorControl) 0–99 denied denied

e60c73e6-88f9-11cf-9af1-0020af6e72f4[v2.0]
(ILocalObjectExporter) 0–99 denied denied

f50aac00-c7f3-428e-a022-a6b71bfb9d43[v1.0]
(ICatDBSvc) 0–99 denied denied

0767a036-0d22-48aa-ba69-b619480f38cb[v1.0]
(?PcaSvc) 0–99 denied

11899a43-2b68-4a76-92e3-a3d6ad8c26ce[v1.0]
(???) 0–99 denied

11f25515-c879-400a-989e-b074d5f092fe[v1.0]
(???) 0–99 denied

12345678-1234-abcd-ef00-0123456789ab[v1.0]
(IPSECSVC (winipsec)) 0–99 denied

1e665584-40fe-4450-8f6e-802362399694[v1.0]
(???) 0–99 denied

201ef99a-7fa0-444c-9399-19ba84f12a1a[v1.0]
(?AppInfo) 0–99 denied

2eb08e3e-639f-4fba-97b1-14f878961076[v1.0]
(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 105

Interface Procedure #’s TCP 135 XP null Vista null XP auth Vista auth
(???) 0–99 denied

3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6[v1.0]
(dhcpcsvc6) 0–99 denied

45776b01-5956-4485-9f80-f428f7d60129[v2.0]
(from dnsrslvr.dll) 0–99 denied

484809d6-4239--471b-b5bc-61df8c23ac48[v1.0]
(from lsm.exe) 0–99 denied

4b112204-0e19-11d3-b42b-0000f81feb9f[v1.0]
(????) 0–99 denied

5f54ce7d-5b79-4175-8584-cb65313a0e98[v1.0]
(?AppInfo??) 0–99 denied

621dff68-3c39-4c6c-aae3-e68e2c6503ad[v1.0]
(wzcsvc (winwzc)) 0–99 denied

629b9f66-556c-11d1-8dd2-00aa004abd5e[v3.0]
(SENSNotify) 0–99 denied

654976df-1498-4056-a15e-cb4e87584bd8[v1.0]
(????) 0–99 denied

68b58241-c259-4f03-a2e5-a2651dcbc930[v1.0]
(???) 0–99 denied

76f226c3-ec14-4325-8a99-6a46348418ae[v1.0]
(???) 0–99 denied

76f226c3-ec14-4325-8a99-6a46348418af[v1.0]
(???) 0–99 denied

7ea70bcf-48af-4f6a-8968-6a440754d5fa[v1.0]
(nsisvc) 0–99 denied

86d35949-83c9-4044-b424-db363231fd0c[v1.0]
(???) 0–99 denied

88143fd0-c28d-4b2b-8fef-8d882f6a9390[v1.0]
(???) 0–99 denied

9b8699ae-0e44-47b1-8e7f-86a461d7ecdc[v0.0]
(???) 0–99 denied

a002b3a0-c9b7-11d1-ae88-0080c75e4ec1[v1.0]
((used by MigAutoPlay.exe and wuaueng.dll)) 0–99 denied

a0bc4698-b8d7-4330-a28f-7709e18b6108[v4.0]
(from Sens.dll) 0–99 denied

a398e520-d59a-4bdd-aa7a-3c1e0303a511[v1.0]
(IKEEXT) 0–99 denied

aa411582-9bdf-48fb-b42b-faa1eee33949[v1.0]
(???) 0–99 denied

b58aa02e-2884-4e97-8176-4ee06d794184[v1.0]
(sysmain) 0–99 denied

c13d3372-cc20-4449-9b23-8cc8271b3885[v1.0]
(???) 0–99 denied

c33b9f46-2088-4dbc-97e3-6125f127661c[v1.0]
(???) 0–99 denied

c386ca3e-9061-4a72-821e-498d83be188f[v1.1]
(???) 0–99 denied

c8cb7687-e6d3-11d2-a958-00c04f682e16[v1.0]
(WebClnt (davclntrpc)) 0–99 denied

c9378ff1-16f7-11d0-a0b2-00aa0061426a[v1.0]
(pstorsvc (IPStoreProv)) 0–99 denied

d95afe70-a6d5-4259--822e-2c84da1ddb0d[v1.0]
(???) 0–99 denied

f6beaff7-1e19-4fbb-9f8f-b89e2018337c[v1.0]
(???) 0–99 denied

fd7a0523-dc70-43dd-9b2e-9c5ed48225b1[v1.0]
(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 106

Interface Procedure #’s TCP 135 XP null Vista null XP auth Vista auth
(?AppInfo) 0–99 denied

C. Null Session Named Pipe Access

Three named pipes are available over a null session (in Appendix XXV-A): netlogon, lsarpc, and samr. We focused on those
three to find the set of procedures that are accessible anonymously over named pipes.

With the null session set up, we ran identify2.py on netlogonfrom an XP client:

xp> c:\python24\python identify2.py -P -f netlogon 192.16 8.0.203

The output of this is summarized as follows:

11220835-5b26-4d94-ae86-c3e475a809de[v1.0] (ICryptPr otect), proc0-99: ACCESS_DENIED (5)

12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc0: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc1: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc2-3: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc4: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc5-7: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc8: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc9: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc10: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc11: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc12: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc13-15: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc16: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc17-18: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc19-20: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc21: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc22: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc23: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc24: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc25-26: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc27-30: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc31-33: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc34: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc35-36: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc37-38: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc39: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc40-43: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc44-46: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc47: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc48: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc49: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc50: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc51: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc52-53: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc54: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc55: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc56: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc57-58: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc59-67: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc68: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc69-72: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc73: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA acces s (lsarpc)), proc74-99: ACCESS_DENIED (5)

12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc0-1: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc2: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc3: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc4: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc5-8: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc9-10: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc11: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc12: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc13: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc14: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc15-20: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc21-24: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc25: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc26: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc27-28: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc29-32: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc33-34: BAD_STUB_DATA (1783)

SYMANTEC ADVANCED THREAT RESEARCH 107

12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc35: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc36: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc37: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc38-41: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc42-43: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc44: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc45: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc46-49: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc50: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc51: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc52-53: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc54-57: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc58-60: ACCESS_DENIED (5)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc61-65: BAD_STUB_DATA (1783)
12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv), proc66-99: ACCESS_DENIED (5)

3919286a-b10c-11d0-9ba8-00c04fd92ef5[v0.0] (LSA DS acc ess (lsarpc)), proc0: BAD_STUB_DATA (1783)
3919286a-b10c-11d0-9ba8-00c04fd92ef5[v0.0] (LSA DS acc ess (lsarpc)), proc1-99: RANGE_ERROR (469827586)

5cbe92cb-f4be-45c9-9fc9-33e73e557b20[v1.0] (from lsas rv.dll), proc0-99: ACCESS_DENIED (5)

afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc0: success
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc1: BAD_STUB_DATA (1783)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc2-3: success
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc4: BAD_STUB_DATA (1783)
afa8bd80-7d8a-11c9-bef4-08002b102989[v1.0] (rpcmgmt (ifids)), proc5-99: RANGE_ERROR (469827586)

c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] (efsrpc), proc0-16: BAD_STUB_DATA (1783)
c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] (efsrpc), proc17: success
c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] (efsrpc), proc18-19: BAD_STUB_DATA (1783)
c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] (efsrpc), proc20: success
c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] (efsrpc), proc21-99: RANGE_ERROR (469827586)

c9ac6db5-82b7-4e55-ae8a-e464ed7b4277[v1.0] (sysntfy) , proc0-99: ACCESS_DENIED (5)

Specific procedures in five interfaces are callable, but nonein the three others were. Identical results were obtained from lsarpc
and samr, which is consistent with the three being aliased tothe same pipe. We also obtained the same result using Vista
as the client.12345778-1234-abcd-ef00-0123456789ab has 102 procedures thus we did not test the last two. Figure 7
(page 15) shows the the names of the procedures that were successfully called via a null session.

Examining these results in Table II (second and third results columns) and comparing these results to the direct TCP 135
results, shows that there is one interface in common, the RPCmanagement interface. However, we have more access to the
procedures in that interface using named pipes and a null session, than using a direct connection to port 135, since we can
call all of the first five procedures. With the range error now received, there appears to be exactly five procedures.

When we tried to call procedures in other named pipes including browser, lsass, InitShutdown, and an arbitrary non-
existent pipe, we received a uniform result of -1, since the attempt to open the pipe had yielded STATUSACCESSDENIED
(0xc0000022).

D. Authenticated Session Named Pipe Access

From Appendix XXV-B, we have a list of 22 named pipes that can be opened from Vista or XP across an authenticated
SMB/SMB2 session. For each of the named pipes, we ran identify2.py in an authenticated session from both XP and Vista, in
order to determine which interfaces and procedures could beaccessed.

From XP, we found that we could not get useful results from fiveof the named pipes (LSMAPI service, MsFteWds,
W32TIME ALT, plugplay, and tapsrv) since all attempts to call procedures yielded a -1 result. From Vista, scerpc and srvsvc
always returned -1, and MsFteWds calls were aborted due to a shorter RPC header than expected being returned by the server.
We excluded those pipes from the analysis of accessibility.

In our testing from XP, we got certain erroneous -1 results asa result for pipes what were mainly usable. This is similar to
the results we saw from direct access to TCP port 135 (Appendix XXVI-B) and we corrected it similarly, by merging in the
results of a second run.

We got varied results from the different pipes, as depicted in results columns 4 and 5 in Table II. However, interfaces that
appear in multiple pipes yield the same result within a configuration (authenticated XP or authenticated Vista). That result is
also true for the null session named pipe testing, so the specific named pipe does not matter as long as that pipe has access
to the relevant interface for the scenario

Table III depicts the observed UUIDs and pipes, and the circumstances under which they resulted in an error other than
UNKNOWN INTERFACE. X-A means the interface could only be accessed from Windows XP (SMB) with an authenticated
session; V-A means the interface could only be accessed fromWindows Vista (SMB2) with an authenticated session; A means
it could be accessed from either source of authenticated session; VorN means it could be accessed from either a XP or Vistanull
session or from an authenticated Vista session, and any means that it could be accessed from both OSs and session types. Note

SYMANTEC ADVANCED THREAT RESEARCH 108

that some columns represent multiple pipes that behaved identically for UUID access. Also described are the circumstances
under which pipes could be opened and usefully used. The faint dotted grid lines on every fifth row and column are depicted
only to facilitate reading the rows and columns; no groupingis implied.

TABLE III: When UUIDs and pipes result in an error other than UN-
KNOWN INTERFACE

Interface ls
ar

pc
,s

am
r,n

et
lo

go
n

ls
as

s,
pr

ot
ec

te
ds

to
ra

ge

LS
M

A
P

I
se

rv
ic

e

W
32

T
IM

E
A

LT

w
ks

sv
c

at
sv

c,
R

O
U

T
E

R
,b

ro
w

se
r

sr
vs

vc

tr
kw

ks

ke
ys

vc

ta
ps

rv

In
itS

hu
td

ow
n

ev
en

tlo
g

nt
sv

cs

sc
er

pc

pl
ug

pl
ay

ep
m

ap
pe

r

M
sF

te
W

ds

can be opened any A A A A A A A A A A A A A A A A
can be opened and used to call interfaces any A V-A V-A A A X-A A AV-A A A A X-A V-A A
11220835-5b26-4d94-ae86-c3e475a809de[v1.0] (rpcmgmt
(ifids))

any A V-A V-A A A X-A A A V-A A A A X-A V-A A

11220835-5b26-4d94-ae86-c3e475a809de[v1.0] (ICryptProtect) any A
12345778-1234-abcd-ef00-0123456789ab[v0.0] (LSA access
(lsarpc))

any A

12345778-1234-abcd-ef00-0123456789ac[v1.0] (samsrv) any A
3919286a-b10c-11d0-9ba8-00c04fd92ef5[v0.0] (LSA DS
access (lsarpc))

any A

5cbe92cb-f4be-45c9-9fc9-33e73e557b20[v1.0] (from lsasrv.dll) any A
c681d488-d850-11d0-8c52-00c04fd90f7e[v1.0] (efsrpc) any A
12345678-1234-abcd-ef00-0123456789ab[v1.0] (IPSECSVC
(winipsec))

X-A X-A

c9378ff1-16f7-11d0-a0b2-00aa0061426a[v1.0] (pstorsvc
(IPStoreProv))

X-A X-A

c9ac6db5-82b7-4e55-ae8a-e464ed7b4277[v1.0] (sysntfy) VorN V-A V-A V-A
11899a43-2b68-4a76-92e3-a3d6ad8c26ce[v1.0] (???) V-A
11f25515-c879-400a-989e-b074d5f092fe[v1.0] (???) V-A
1e665584-40fe-4450-8f6e-802362399694[v1.0] (???) V-A
484809d6-4239-471b-b5bc-61df8c23ac48[v1.0] (from lsm.exe) V-A
88143fd0-c28d-4b2b-8fef-8d882f6a9390[v1.0] (???) V-A
300f3532-38cc-11d0-a3f0-0020af6b0add[v1.2] (trkwks) X-A X-A X-A A X-A X-A X-A X-A
6bffd098-a112-3610-9833-46c3f87e345a[v1.0] (wkssvc) V-A A X-A X-A X-A X-A
8fb6d884-2388-11d0-8c35-00c04fda2795[v4.1] (w32time) V-A A X-A X-A X-A X-A
000001a0-0000-0000-c000-000000000046[v0.0]
(ISystemActivator)

V-A A A X-A A X-A A

00000132-0000-0000-c000-000000000046[v0.0] ((used by
rpcss.dll))

V-A A A X-A A A V-A

00000134-0000-0000-c000-000000000046[v0.0] ((used by
rpcss.dll))

V-A A A X-A A A V-A X-A V-A

00000131-0000-0000-c000-000000000046[v0.0] (from ole32.dll) V-A A A X-A A A V-A X-A V-A
00000143-0000-0000-c000-000000000046[v0.0] (from ole32.dll) V-A A A X-A A A V-A X-A V-A
18f70770-8e64-11cf-9af1-0020af6e72f4[v0.0] (ole32
(IOrCallback))

V-A A A X-A A A V-A X-A V-A

0d72a7d4-6148-11d1-b4aa-00c04fb66ea0[v1.0] (ICertProtect) X-A X-A X-A X-A A V-A
2f5f6520-ca46-1067-b319-00dd010662da[v1.0] (tapisrv) X-A X-A X-A X-A A V-A
2f5f6521-cb55-1059-b446-00df0bce31db[v1.0] (unimdm) X-A X-A X-A X-A A V-A
f50aac00-c7f3-428e-a022-a6b71bfb9d43[v1.0] (ICatDBSvc) X-A X-A X-A X-A A V-A
06bba54a-be05-49f9-b0a0-30f790261023[v1.0] (wscsvc) X-A X-A X-A X-A X-A V-A
3c4728c5-f0ab-448b-bda1-6ce01eb0a6d5[v1.0] (dhcpcsvc
(RpcSrvDHCPC))

X-A X-A X-A X-A X-A V-A

3faf4738-3a21-4307-b46c-fdda9bb8c0d5[v1.1] (AudioSrv) X-A X-A X-A X-A X-A V-A
0a74ef1c-41a4-4e06-83ae-dc74fb1cdd53[v1.0] (taskeng
(idletask))

X-A A X-A X-A X-A

12b81e99-f207-4a4c-85d3-77b42f76fd14[v1.0] (seclogon
(ISeclogon))

X-A A X-A X-A X-A

1ff70682-0a51-30e8-076d-740be8cee98b[v1.0] (atsvc) X-A A X-A X-A X-A
20610036-fa22-11cf-9823-00a0c911e5df[v1.0] (rasmans) X-A A X-A X-A X-A
378e52b0-c0a9-11cf-822d-00aa0051e40f[v1.0] (sasec) X-A A X-A X-A X-A
4b324fc8-1670-01d3-1278-5a47bf6ee188[v3.0] (from
srvsvc.dll, Netr*)

X-A A X-A X-A X-A

63fbe424-2029-11d1-8db8-00aa004abd5e[v1.0] (SensApi) X-A A X-A X-A X-A
6bffd098-a112-3610-9833-012892020162[v0.0] (from
browser.dll, IBrowserr*, NetrBrowser*)

X-A A X-A X-A X-A

621dff68-3c39-4c6c-aae3-e68e2c6503ad[v1.0] (wzcsvc
(winwzc))

X-A X-A X-A X-A X-A

629b9f66-556c-11d1-8dd2-00aa004abd5e[v3.0] (SENSNotify) X-A X-A X-A X-A X-A
(Continued on next page)

SYMANTEC ADVANCED THREAT RESEARCH 109

Interface ls
ar

pc
,s

am
r,n

et
lo

go
n

ls
as

s,
pr

ot
ec

te
ds

to
ra

ge

LS
M

A
P

I
se

rv
ic

e

W
32

T
IM

E
A

LT

w
ks

sv
c

at
sv

c,
R

O
U

T
E

R
,b

ro
w

se
r

sr
vs

vc

tr
kw

ks

ke
ys

vc

ta
ps

rv

In
itS

hu
td

ow
n

ev
en

tlo
g

nt
sv

cs

sc
er

pc

pl
ug

pl
ay

ep
m

ap
pe

r

M
sF

te
W

ds

45776b01-5956-4485-9f80-f428f7d60129[v2.0] (from
dnsrslvr.dll)

V-A V-A

68b58241-c259-4f03-a2e5-a2651dcbc930[v1.0] (???) V-A V-A
aa411582-9bdf-48fb-b42b-faa1eee33949[v1.0] (???) V-A V-A
c33b9f46-2088-4dbc-97e3-6125f127661c[v1.0] (???) V-A V-A
4b112204-0e19-11d3-b42b-0000f81feb9f[v1.0] (????) V-A V-A
7ea70bcf-48af-4f6a-8968-6a440754d5fa[v1.0] (nsisvc) V-A V-A
c8cb7687-e6d3-11d2-a958-00c04f682e16[v1.0] (WebClnt
(davclntrpc))

V-A V-A

3c4728c5-f0ab-448b-bda1-6ce01eb0a6d6[v1.0] (dhcpcsvc6) V-A
c386ca3e-9061-4a72-821e-498d83be188f[v1.1] (???) V-A
f6beaff7-1e19-4fbb-9f8f-b89e2018337c[v1.0] (???) V-A
82273fdc-e32a-18c3-3f78-827929dc23ea[v0.0] (eventlog, from
wevtsvc.dll)

A X-A X-A

367abb81-9844-35f1-ad32-98f038001003[v2.0] (Services
Control Manager (SCM))

X-A A X-A

93149ca2-973b-11d1-8c39-00c04fb984f9[v0.0] (scesrv) X-A A X-A
3dde7c30-165d-11d1-ab8f-00805f14db40[v1.0] (BackupKey) X-A X-A X-A
8d9f4e40-a03d-11ce-8f69-08003e30051b[v1.0] (umpnpmgr) X-A X-A X-A V-A
9b8699ae-0e44-47b1-8e7f-86a461d7ecdc[v0.0] (???) V-A
c13d3372-cc20-4449-9b23-8cc8271b3885[v1.0] (???) V-A V-A
76f226c3-ec14-4325-8a99-6a46348418ae[v1.0] (???) V-A
76f226c3-ec14-4325-8a99-6a46348418af[v1.0] (???) V-A
d95afe70-a6d5-4259-822e-2c84da1ddb0d[v1.0] (???) V-A
894de0c0-0d55-11d3-a322-00c04fa321a1[v1.0] (InitShutdown) A
a002b3a0-c9b7-11d1-ae88-0080c75e4ec1[v1.0] ((used by
MigAutoPlay.exe and wuaueng.dll))

X-A

326731e3-c1c0-4a69-ae20-7d9044a4ea5c[v1.0] (profsvc
(IUserProfile))

V-A X-A

201ef99a-7fa0-444c-9399-19ba84f12a1a[v1.0] (?AppInfo) V-A
2eb08e3e-639f-4fba-97b1-14f878961076[v1.0] (???) V-A
5f54ce7d-5b79-4175-8584-cb65313a0e98[v1.0] (?AppInfo??) V-A
86d35949-83c9-4044-b424-db363231fd0c[v1.0] (???) V-A
a0bc4698-b8d7-4330-a28f-7709e18b6108[v4.0] (from Sens.dll) V-A
a398e520-d59a-4bdd-aa7a-3c1e0303a511[v1.0] (IKEEXT) V-A
fd7a0523-dc70-43dd-9b2e-9c5ed48225b1[v1.0] (?AppInfo) V-A
00000136-0000-0000-c000-000000000046[v0.0]
(ISCMLocalActivator)

A

0b0a6584-9e0f-11cf-a3cf-00805f68cb1b[v1.1] (localpmp) A
1d55b526-c137-46c5-ab79-638f2a68e869[v1.0] (???) A
412f241e-c12a-11ce-abff-0020af6e7a17[v0.2] (ISCM) A
4d9f4ab8-7d1c-11cf-861e-0020af6e7c57[v0.0] (from rpcss.dll) A
99fcfec4-5260-101b-bbcb-00aa0021347a[v0.0]
(IOXIDResolver)

A

b9e79e60-3d52-11ce-aaa1-00006901293f[v0.2] (IROT) A
c6f3ee72-ce7e-11d1-b71e-00c04fc3111a[v1.0]
(IMachineActivatorControl)

A

e1af8308-5d1f-11c9-91a4-08002b14a0fa[v3.0] (epmapper) A
e60c73e6-88f9-11cf-9af1-0020af6e72f4[v2.0]
(ILocalObjectExporter)

A

64fe0b7f-9ef5-4553-a7db-9a1975777554[v1.0] (???) V-A
0767a036-0d22-48aa-ba69-b619480f38cb[v1.0] (?PcaSvc) V-A
654976df-1498-4056-a15e-cb4e87584bd8[v1.0] (????) V-A
b58aa02e-2884-4e97-8176-4ee06d794184[v1.0] (sysmain) V-A

Comparing our authenticated procedure access results to the results from the null session (Table II), we find that, partly due
to more pipes being accessible, we can get to many more interfaces and procedures. Using an authenticated session, we could
access all the interfaces that we could access from the null session, with one exception.

The following lists the additional procedures that were successfully called over an authenticated session, compared to those
in Figure 7. The dagger symbol (†) denotes calls that could only succeed from XP and the doubledagger (‡) denotes calls
that could only succeed from Vista.

SYMANTEC ADVANCED THREAT RESEARCH 110

0b0a6584-9e0f-11cf-a3cf-
00805f68cb1b[v1.1]
(localpmp):

• OpenEndpointMapper†
• AllocateReservedIPPort†
• ept insert ex†
• ept deleteex†
• SetRestrictRemoteClients†
• ResetWithNoAuthException†

12345778-1234-abcd-ef00-
0123456789ab[v0.0] (LSA access
(lsarpc)):

• LsarDelete
• LsarSetSecurityObject
• LsarSetInformationPolicy
• LsarCreateAccount
• LsarCreateTrustedDomain
• LsarCreateSecret
• LsarAddPrivilegesToAccount
• LsarRemovePrivileges-

FromAccount
• EfsSsoOnReconnectWL
• LsarSetSystemAccessAccount
• LsarSetInformation-

TrustedDomain
• LsarOpenSecret
• LsarSetSecret
• LsarQuerySecret
• LsarDeleteObject
• LsarAddAccountRights
• LsarRemoveAccountRights
• LsarSetTrustedDomainInfo
• LsarDeleteTrustedDomain
• LsarStorePrivateData
• LsarRetrievePrivateData
• LsarSetInformationPolicy2
• LsarSetTrustedDomain-

InfoByName
• LsarCreateTrustedDomainEx
• LsarSetDomainInformation-

Policy
• LsaITestCall
• LsarCreateTrustedDomainEx2
• CredrWrite†
• CredrRead†
• CredrEnumerate†
• CredrWriteDomain-

Credentials†
• CredrReadDomain-

Credentials†
• CredrDelete†
• CredrGetTargetInfo†
• CredrProfileLoaded†
• CredrGetSessionTypes†
• LsarRegisterAuditEvent†
• LsarGenAuditEvent†
• LsarUnregisterAuditEvent†
• LsarSetForestTrustInformation
• CredrRename†
• LsarLookupSids3†
• LsarLookupNames4†
• LsarOpenPolicySce†

1ff70682-0a51-30e8-076d-
740be8cee98b[v1.0]
(atsvc):

• NetrJobAdd
• NetrJobDel
• NetrJobEnum
• NetrJobGetInfo

300f3532-38cc-11d0-a3f0-
0020af6b0add[v1.2]
(trkwks):

• StuboldLnkMendLink
• StuboldLnkSearchMachine
• StubLnkCallSvrMessage

• StubLnkSetVolumeId
• StubLnkRestartDc-

Synchronization
• StubGetVolumeTracking-

Information
• StubGetFileTracking-

Information
• StubTriggerVolumeClaims
• StubLnkOnRestore
• StubLnkMendLink
• Stubold2LnkSearchMachine
• StubLnkCallSvrMessage
• StubLnkSearchMachine

367abb81-9844-35f1-ad32-
98f038001003[v2.0] (Services
Control Manager (SCM)):

• RCloseServiceHandle
• RControlService
• RDeleteService
• RLockServiceDatabase
• RQueryServiceObjectSecurity
• RSetServiceObjectSecurity
• RQueryServiceStatus
• RSetServiceStatus
• RUnlockServiceDatabase
• RNotifyBootConfigStatus
• RI ScSetServiceBitsW
• RChangeServiceConfigW
• RCreateServiceW
• REnumDependentServicesW
• REnumServicesStatusW
• ROpenSCManagerW
• ROpenServiceW
• RQueryServiceConfigW
• RQueryServiceLockStatusW
• RStartServiceW
• RGetServiceDisplayNameW
• RGetServiceKeyNameW
• RI ScSetServiceBitsA
• RChangeServiceConfigA
• RCreateServiceA
• REnumDependentServicesA
• REnumServicesStatusA
• ROpenSCManagerA
• ROpenServiceA
• RQueryServiceConfigA
• RQueryServiceLockStatusA
• RStartServiceA
• RGetServiceDisplayNameA
• RGetServiceKeyNameA
• RI ScGetCurrentGroupStateW
• REnumServiceGroupW
• RChangeServiceConfig2A
• RChangeServiceConfig2W
• RQueryServiceConfig2A
• RQueryServiceConfig2W
• RQueryServiceStatusEx
• REnumServicesStatusExA
• REnumServicesStatusExW
• RI ScSendTSMessage
• RCreateServiceWOW64A‡
• RCreateServiceWOW64W‡
• RI ScQueryServiceTagInfo‡
• RNotifyServiceStatusChange‡
• RGetNotifyResults‡
• RCloseNotifyHandle‡
• RControlServiceExA‡
• RControlServiceExW‡
• RI ScSendPnPMessage‡
• RI ScValidatePnPService‡
• RI ScOpenServiceStatus-

Handle‡
• RI ScQueryServiceConfig‡

3dde7c30-165d-11d1-ab8f-
00805f14db40[v1.0]
(BackupKey):

• s BackuprKey†

4b324fc8-1670-01d3-1278-
5a47bf6ee188[v3.0] (from
srvsvc.dll, Netr*):

• NetrCharDevQGetInfo
• NetrCharDevGetInfo
• NetrCharDevControl
• NetrCharDevQEnum
• NetrCharDevQGetInfo
• NetrCharDevQPurge
• NetrCharDevControl
• NetrConnectionEnum
• NetrFileEnum
• NetrFileGetInfo
• NetrFileClose
• NetrSessionEnum
• NetrSessionDel
• NetrShareAdd
• NetrShareEnum
• NetrShareGetInfo
• NetrShareSetInfo
• NetrShareDel
• NetrShareDelSticky
• NetrShareCheck
• NetrServerGetInfo
• NetrServerSetInfo
• NetrServerDiskEnum
• NetrServerStatisticsGet
• NetrServerTransportAdd
• NetrServerTransportEnum
• NetrServerTransportDel
• NetrRemoteTOD
• I NetrServerSetServiceBits
• NetprPathType
• NetprPathCanonicalize
• NetprPathCompare
• NetprNameValidate
• NetprNameCanonicalize
• NetprNameCompare
• NetrShareEnumSticky
• NetrShareDelStart
• NetrShareDelCommit
• NetrpGetFileSecurity
• NetrpSetFileSecurity
• NetrServerTransportAddEx
• I NetrServerSetServiceBitsEx
• NetrDfsGetVersion
• NetrDfsCreateLocalPartition
• NetrDfsDeleteLocalPartition
• NetrDfsSetLocalVolumeState
• NetrDfsSetServerInfo
• NetrDfsCreateExitPoint
• NetrDfsDeleteExitPoint
• NetrDfsModifyPrefix
• NetrDfsFixLocalVolume
• NetrDfsManagerReport-

SiteInfo
• NetrServerTransportDelEx
• NetrServerAliasAdd‡
• NetrServerAliasEnum‡
• NetrServerAliasDel‡
• NetrShareDelEx‡

6bffd098-a112-3610-9833-
012892020162[v0.0] (from
browser.dll, IBrowserr*,
NetrBrowser*):

• I BrowserrServerEnum
• I BrowserrDebugCall
• I BrowserrQueryOther-

Domains
• I BrowserrResetNetlogonState
• I BrowserrDebugTrace
• I BrowserrQueryStatistics
• I BrowserrResetStatistics
• NetrBrowserStatisticsClear
• NetrBrowserStatisticsGet

• I BrowserrSetNetlogonState
• I BrowserrQueryEmulated-

Domains
• I BrowserrServerEnumEx

6bffd098-a112-3610-9833-
46c3f87e345a[v1.0]
(wkssvc):

• NetrWkstaGetInfo
• NetrWkstaSetInfo
• NetrWkstaUserEnum
• NetrWkstaUserGetInfo
• NetrWkstaUserSetInfo
• NetrWkstaTransportEnum
• NetrWkstaTransportAdd
• NetrWkstaTransportDel
• NetrUseAdd
• NetrUseGetInfo
• NetrUseDel
• NetrUseEnum
• NetrValidateName
• NetrWorkstationStatisticsGet
• I NetrLogonDomainNameAdd
• NetrGetJoinableOUs
• NetrUnjoinDomain
• NetrValidateName
• NetrGetJoinInformation
• NetrGetJoinableOUs
• NetrJoinDomain2
• NetrUnjoinDomain2
• NetrRenameMachineIn-

Domain2
• NetrValidateName2
• NetrGetJoinableOUs2
• NetrAddAlternateComputer-

Name
• NetrRemoveAlternate-

ComputerName
• NetrSetPrimaryComputer-

Name
• NetrEnumerateComputer-

Names
• (proc31, name not known)†

82273fdc-e32a-18c3-3f78-
827929dc23ea[v0.0] (eventlog,
from wevtsvc.dll):

• ElfrClearELFW
• ElfrBackupELFW
• ElfrCloseEL
• ElfrDeregisterEventSource
• ElfrNumberOfRecords
• ElfrOldestRecord
• ElfrChangeNotify
• ElfrOpenELW
• ElfrRegisterEventSourceW
• ElfrOpenBELW
• ElfrReadELW
• ElfrReportEventW
• ElfrClearELFA
• ElfrBackupELFA
• ElfrOpenELA
• ElfrRegisterEventSourceA
• ElfrOpenBELA
• ElfrReadELA
• ElfrReportEventA
• ElfrRegisterClusterSvc
• ElfrDeregisterClusterSvc
• ElfrWriteClusterEvents
• ElfrGetLogInformation
• ElfrFlushEL
• ElfrReportEventAndSourceW‡

894de0c0-0d55-11d3-a322-
00c04fa321a1[v1.0]
(InitShutdown):

• s BaseInitiateShutdown†
• s BaseAbortShutdown†
• s BaseInitiateShutdownEx†

SYMANTEC ADVANCED THREAT RESEARCH 111

8d9f4e40-a03d-11ce-8f69-
08003e30051b[v1.0]
(umpnpmgr):

• PNPDisconnect†
• PNPGetVersion†
• PNPGetGlobalState†
• PNPInitDetection†
• PNPReportLogOn†
• PNPValidateDeviceInstance†
• PNPGetRootDeviceInstance†
• PNPGetRelatedDevice-

Instance†
• PNPEnumerateSubKeys†
• PNPGetDeviceList†
• PNPGetDeviceListSize†
• PNPGetDepth†
• PNPGetDeviceRegProp†
• PNPSetDeviceRegProp†
• PNPGetClassInstance†
• PNPCreateKey†
• PNPDeleteRegistryKey†
• PNPGetClassCount†
• PNPGetClassName†
• PNPDeleteClassKey†
• PNPGetInterface-

DeviceAlias†
• PNPGetInterfaceDeviceList†
• PNPGetInterface-

DeviceListSize†
• PNPRegisterDevice-

ClassAssociation†
• PNPUnregisterDevice-

ClassAssociation†
• PNPGetClassRegProp†

• PNPSetClassRegProp†
• PNPCreateDevInst†
• PNPDeviceInstanceAction†
• PNPGetDeviceStatus†
• PNPSetDeviceProblem†
• PNPDisableDevInst†
• PNPUninstallDevInst†
• PNPAddID†
• PNPRegisterDriver†
• PNPQueryRemove†
• PNPRequestDeviceEject†
• PNPIsDockStationPresent†
• PNPRequestEjectPC†
• PNPHwProfFlags†
• PNPGetHwProfInfo†
• PNPAddEmptyLogConf†
• PNPFreeLogConf†
• PNPGetFirstLogConf†
• PNPGetNextLogConf†
• PNPGetLogConfPriority†
• PNPAddResDes†
• PNPFreeResDes†
• PNPGetNextResDes†
• PNPGetResDesData†
• PNPGetResDesDataSize†
• PNPModifyResDes†
• PNPDetectResourceConflict†
• PNPQueryResConfList†
• PNPSetHwProf†
• PNPQueryArbitrator-

FreeData†
• PNPQueryArbitrator-

FreeSize†
• PNPRunDetection†

• PNP RegisterNotification†
• PNP UnregisterNotification†
• PNP GetCustomDevProp†
• PNP GetVersionInternal†
• PNP GetBlockedDriverInfo†
• PNP GetServerSideDevice-

InstallFlags†
8fb6d884-2388-11d0-8c35-
00c04fda2795[v4.1]
(w32time):

• s W32TimeSync†
• s W32TimeGetNetlogon-

ServiceBits†
• s W32TimeQueryProvider-

Status†
93149ca2-973b-11d1-8c39-
00c04fb984f9[v0.0]
(scesrv):

• SceSvcRpcQueryInfo†
• SceSvcRpcSetInfo†
• SceRpcSetupUpdateObject†
• SceRpcSetupMoveFile†
• SceRpcGenerateTemplate†
• SceRpcConfigureSystem†
• SceRpcGetDatabaseInfo†
• SceRpcGetObjectChildren†
• SceRpcOpenDatabase†
• SceRpcCloseDatabase†
• SceRpcGetDatabase-

Description†
• SceRpcGetDBTimeStamp†
• SceRpcGetObjectSecurity†
• SceRpcGetAnalysisSummary†
• SceRpcAnalyzeSystem†

• SceRpcUpdateDatabaseInfo†
• SceRpcUpdateObjectInfo†
• SceRpcStartTransaction†
• SceRpcCommitTransaction†
• SceRpcRollbackTransaction†
• SceRpcGetServerProduct-

Type†
• SceSvcRpcUpdateInfo†
• SceRpcCopyObjects†
• SceRpcSetupResetLocal-

Policy†
• SceRpcNotifySaveChanges-

InGP†
• SceRpcControlNotification-

QProcess†
• SceRpcBrowseDatabaseTable†
• SceRpcGetSystemSecurity†
• SceRpcSetSystemSecurity-

FromHandle†
• SceRpcSetDatabaseSetting†
• SceRpcGetDatabaseSetting†
• SceRpcConfigureConverted-

FileSecurityImmediately†

e1af8308-5d1f-11c9-91a4-
08002b14a0fa[v3.0]
(epmapper):

• ept mgmt delete†
• ept lookup
• ept map
• ept lookup handlefree
• ept mgmt delete†
• ept map auth‡
• ept map auth async‡

Only one procedure exists that we do not know the name of; fromVista, 6bffd098-a112-3610-9833-46c3f87e345a

(wkssvc) has procedures 0–31 callable, but only 0–30 are callable from XP (#31 yields a range error). In addition, wkssvc.dll,
the binary that contains the procedures, only has 0–30 listed—at least in the usual way; it remains unclear how there could be
a response to procedure #31, but multiple pipes obtained thesame result from XP (SMB).

Authenticated named pipe sessions have access to a supersetof the interfaces visible through TCP 135. Among interfaces
visible in both, the RPC management interface and localpmp had more successful procedures in authenticated pipe sessions.
However IOXIDResolver had been successfully called via port 135, but we only get ACCESSDENIED over authenticated
pipes. From this we can deduce that no strict ordering existsbased on privilege.

For calls to interfaces that were accessible in both sessiontypes, we did not gain any access denied cases, and in severalcases,
authentication eliminated access denied. Forc681d488-d850-11d0-8c52-00c04fd90f7e though, XP over an authenticated
session produced a range error for procedure 14 and higher, whereas in all other named pipe cases, there was consis-
tently either success or BADSTUB DATA for procedures 14–20 (EfsUsePinForEncryptedFiles, EfsRpcAddUsersToFileEx,
EfsRpcFileKeyInfoEx, EfsRpcGenerateEfsStream, EfsRpcGetEncryptedFileMetadata, EfsRpcSetEncryptedFileMetadata, EfsR-
pcFlushEfsCache) and range errors only above procedure 20;perhaps these are not relevant to XP over authenticated sessions.
There were more cases where authenticated XP (but not Vista)gained access to a call that was denied from null sessions, perhaps
due to applicability or stronger access requirements. On the epmapper UUID (e1af8308-5d1f-11c9-91a4-08002b14a0fa)
from Vista, we got the only CANTPERFORM (1752) results that we have seen; these are on procedures 0, 1, 5, and 6, which
are all named eptmgmt delete. 1752 means, “the server endpoint cannot perform theoperation”, but there is still uncertainty
as to the reason. Under XP, these received BADSTUB DATA.

The majority of the interfaces that we list in tables II and III uniformly return ACCESSDENIED for all procedures,
in all cases where they are available. Some of these results stem from the fact that we only saw client use of the UUID
on Vista (for example,00000132-0000-0000-c000-000000000046 , 00000132-0000-0000-c000-000000000046 , and
a002b3a0-c9b7-11d1-ae88-0080c75e4ec1). Others may require a higher level of privilege, or may require additional
services to be active on the Vista server.

Figure 6 (page 14) is like Table III, but results show up only if they produced either success or BADSTUB DATA. This
makes the table simpler, reducing the list of UUIDs to 19. That list does not include IOXIDResolver, which only succeeded
across TCP 135.

SYMANTEC ADVANCED THREAT RESEARCH 112

APPENDIX XXVII
TRANSITION TRAFFIC

We observed the traffic from Vista that occurred when we started up, shut down, and changed the static IPv4 address of a
clean Vista install. We summarize the traffic observed here.There was no traffic from logging in.

A. Vista Starting Up

These types of messages were observed from a Vista host starting up. Key factors suspected of affecting this traffic are
the fact that the host is on an isolated network and that the host has a statically configured IPv4 address. We observe that
IPv4 and IPv6 traffic seems tightly coupled; for example, corresponding MLDv2 and IGMPv3 subscribes or unsubscribes
will appear at around the same time. Multicast Listener Discovery version 2 (MLDv2) is the IPv6 equivalent of IGMPv3 and
sits on top of ICMPv6. For both IGMP and MLD, we see the interesting pattern of unsubscribing from a multicast address
immediately prior to subscribing to it.

ARP:
• broadcast query for〈statically configured IPv4 address〉, tell 0.0.0.0

NDP:
• Neighbor Solicitation for〈last used IPv6 link local address〉
• Router Solicitation

MLDv2:
• subscribe〈the solicited nodes multicast address for the last used IPv6link local address〉
• subscribe/unsubscribe ff02::1:3 (IPv6 multicast addressused by LLMNR)
• subscribe ff02::c (IPv6 multicast address used by SSDP)

IGMPv3:
• subscribe/unsubscribe 224.0.0.252 (IPv4 multicast address used by LLMNR)
• subscribe 239.255.255.250 (IPv4 multicast address used byUPnP)

LLMNR: (to both ff02::1:3 and 224.0.0.252 port 5355)
• type A and AAAA queries for〈defined hostname〉
• type A and AAAA queries for “isatap”
• type A and AAAA queries for “wpad”

NBNS:
• register〈defined hostname〉 <00>
• register “workgroup<00>”
• query “isatap<00>”
• query “wpad<00>”

B. Vista Shutting Down

From our observations, shutting down a Vista host yields thefollowing message types:

MLDv2:
• unsubscribe ff02::c
• subscribe/unsubscribe ff02::1:3

IGMPv3:
• unsubscribe 239.255.255.250
• subscribe/unsubscribe 224.0.0.252

NBNS:
• release “workgroup<00>”
• release〈defined hostname〉 <00>

BROWSER:
• host announcement for〈defined hostname〉

LLMNR: (to both ff02::1:3 and 224.0.0.252 port 5355)
• type A and AAAA queries for〈defined hostname〉

UPnP:
• bye messages

SYMANTEC ADVANCED THREAT RESEARCH 113

C. Vista Changing Static IPv4 Addresses

Changing the statically configured IPv4 address of a Vista host produces a variety of messages. These were seen when the
Vista host was still using the old IPv4 address:

ARP:
• broadcast query for〈new IPv4 address〉, tell 0.0.0.0

NDP:
• Neighbor Solicitation for〈IPv6 address〉 by peer Vista host
• Neighbor Advertisement for〈IPv6 address〉

MLDv2:
• subscribe/unsubscribe ff02::1:3

LLMNR: (to ff02::1:3 port 5355)
• type A query for “isatap”
• type A and AAAA query for〈defined hostname〉

WSD: (TCP port 5357)
• connect by peer Vista host (connection established)
• post of data by peer Vista host
• response with data to peer Vista host

UPnP:
• hello message to ff02::c
• resolve message to ff02::c
• resolve matches message IPv6 from peer Vista host
• resolve message to 239.255.255.250 and ff02::c by peer Vista host
• resolve matches message IPv6 to peer Vista host

SSDP: (to ff02::c)
• discover WFADevice, UPnP rootdevice, nhed:presence, MediaCenterExtender

The following were seen after the Vista host started to use the new address:

ARP:
• broadcast query for〈new IPv4 address〉, tell 〈peer Vista host〉
• reply 〈new IPv4 address〉 is 〈MAC address〉

NDP:
• Neighbor Solicitation for〈IPv6 address〉 by peer Vista host
• Neighbor Solicitation for〈peer Vista host〉
• Neighbor Advertisement for〈IPv6 address〉
• Neighbor Advertisement for〈peer Vista host〉

MLDv2:
• subscribe/unsubscribe ff02::1:3 (IPv6 multicast addressused by LLMNR)

IGMPv3:
• subscribe/unsubscribe 224.0.0.252 (IPv4 multicast address used by LLMNR)

NBNS:
• register〈defined hostname〉 <00>
• query “isatap<00>”
• register workgroup<00>

LLMNR: (to both ff02::1:3 and 224.0.0.252 port 5355)
• type A query for “isatap”
• type A and AAAA query for〈defined hostname〉

WSD: (TCP port 5357)
• post of data by peer Vista host
• response with data to peer Vista host
• close down connection

UPnP: (sent to 239.255.255.250 and ff02::c)
• hello message

SYMANTEC ADVANCED THREAT RESEARCH 114

SSDP:

• discover InternetGatewayDevice (to 239.255.255.250)
• discover WFADevice, UPnP rootdevice, nhed:presence, MediaCenterExtender (to ff02::c and 239.255.255.250)

SYMANTEC ADVANCED THREAT RESEARCH 115

APPENDIX XXVIII
UNSOLICITED TRAFFIC

We observed the network traffic of a clean installation of Windows Vista over a couple weeks. The following is the
“unsolicited” traffic that we saw. That is, traffic that was not a result of an explicit user request, to the best of our knowledge.
Traffic was captured from the Linux host (see Appendix I-A). The following is a summary of all traffic observed:

LLTD (may have been solicited)
ARP:
• request to broadcast addr and to a previously used MAC
• reply

NDP:
• NS for another Vista neighbor IPv6 address
• NS for the IPv6 address we want
• NA of our IPv6 address (reply to other Vista)
• RS

MLDv2: (includes a hop-by-hop header with router alert for MLD)
• subscribe/unsubscribe ff02::1:3 (LLMNR)
• subscribe/unsubscribe ff02::c (SSDP)
• subscribe to solicited nodes addresses for our IPv6 address

IGMPv3:

• subscribe/unsubscribe 224.0.0.252 (LLMNR)
• subscribe/unsubscribe 239.255.255.250 (UPnP)

NBNS: (over IPv4)

• query for isatap<00>
• query for wpad<00>
• query〈neighbor hostname〉 <20> plus response
• query WORKGROUP<1e>
• register〈our hostname〉 <00>
• register workgroup<*>

• register<01><02> MSBROWSE <02><01>
• release〈our hostname〉 <00>
• release workgroup<00>

BROWSER:
• announce hostname as workstation, server, NT workstation,potential browser
• get backup list request
• browser election request
• request announcement of self

LLMNR:
• type A query for own hostname (over IPv4,IPv6)
• type AAAA query for own hostname (over IPv4,IPv6)
• type A query for isatap (over IPv4,IPv6)
• type A query for wpad (over IPv4,IPv6)

WSD: (TCP port 5357)
• connect to local peer, pull info/reply with info

UPnP:
• bye (IPv4,IPv6)
• hello (IPv4,IPv6)
• resolve (IPv4,IPv6)

– plus resolve matches (reply to another Vista)
• Probe (IPv4,IPv6)

– plus probe matches (reply to another Vista)
SSDP:
• requests:

– InternetGatewayDevice (over IPv4)

SYMANTEC ADVANCED THREAT RESEARCH 116

– MediaCenterExtender (over IPv4,IPv6)
– schemas-microsoft-com:nhed:presence:1 (over IPv4,IPv6)
– UPnP rootdevice (over IPv4,IPv6)
– WFADevice (over IPv4,IPv6)

Most of the time, the Vista hosts were on an isolated network.However, they were individually connected to an Internet-
connected network in order to activate the system (license it). In at least the one case, we observed that a Teredo address
was configured by the time activation was completed. On a separate occasion, when Vista was being installed, the host was
accidentally connected to an Internet-connected network;before we realized it was on the Internet instead of the isolated
network, a Teredo address was established. As we had made no configuration changes and no installations, this action seems
to contradict Microsoft’s own statements on their web site[36], at the time of writing. Microsoft states that “In Windows Vista,
the Teredo component is enabled but inactive by default. In order to become active, a user must either install an application
that needs to use Teredo, or configure advanced Windows Firewall filter settings to allow edge traversal.” In fact, we had not
made any Internet requests.

We expect that we would see DHCP traffic if we had opted for DHCP-assigned addresses. Similarly, there may have been
other protocols, if the hosts were not on an isolated network.

