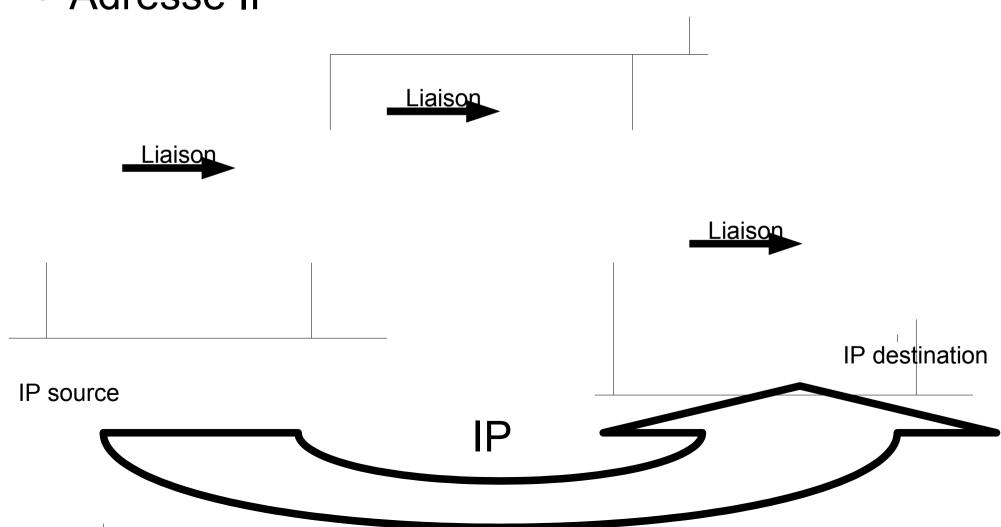
Présentation

- Pascal PETIT
- tel.: Non
- mèl: pascal.petit@info.univ-evry.fr
- WeB: http://www.ibisc.univ-evry.fr/~petit

programme de l'enseignement


- adressage et routage IP
- architecture en couche, notion fondamentales sur les réseaux
- protocole IP
- dhcp: attribution automatique d'adresses IP
- dns: domain name system
- couche liaison, sous couche MAC
- couche transport, tcp/udp
- VLAN
- traduction d'adresses (NAT)

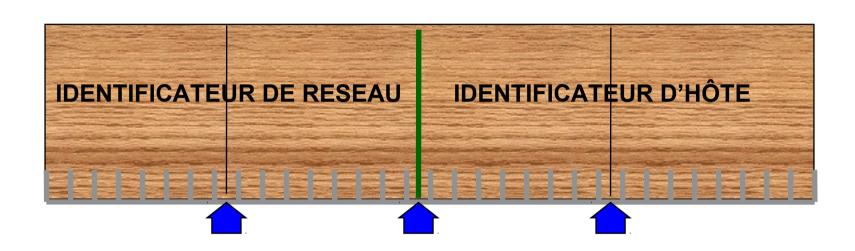
Réseau

- ensemble de machines
 - interconnectées
 - échangeant de données
- peut être représenté par
 - des nœuds : les hôtes : ordinateurs,
 routeurs, ...
 - des liens : relient certains noeuds

couche réseau: IP

- Routage IP
- Adresse IP

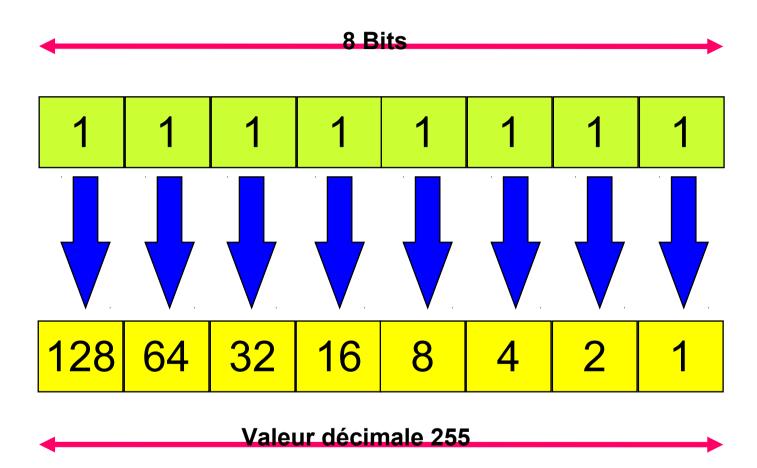
Adresse IP/ Adresse postale


- adresse IP: adresse postale
- boîte aux lettres : interface réseau
- maison: machine
 - une adresse IP identifie une carte réseau
 - deux machines différentes ne doivent pas avoir la même adresse
 - deux cartes différentes ne doivent pas avoir la même adresse
 - une machine peut avoir plusieurs adresses
 - une machine peur avoir plusieurs cartes

Adresse IP

- identifie l'inface réseau d'une machine
- constituée de deux parties :
 - une partie qui identifie le réseau où se trouve la machine
 - une partie qui identifie la machine sur ce réseau
- toutes les machines situées sur le même réseau ont la même partie réseau
- deux machines différentes ne doivent pas avoir la même adresse
- une machine peut avoir plusieurs adresses

Adresse IP v4

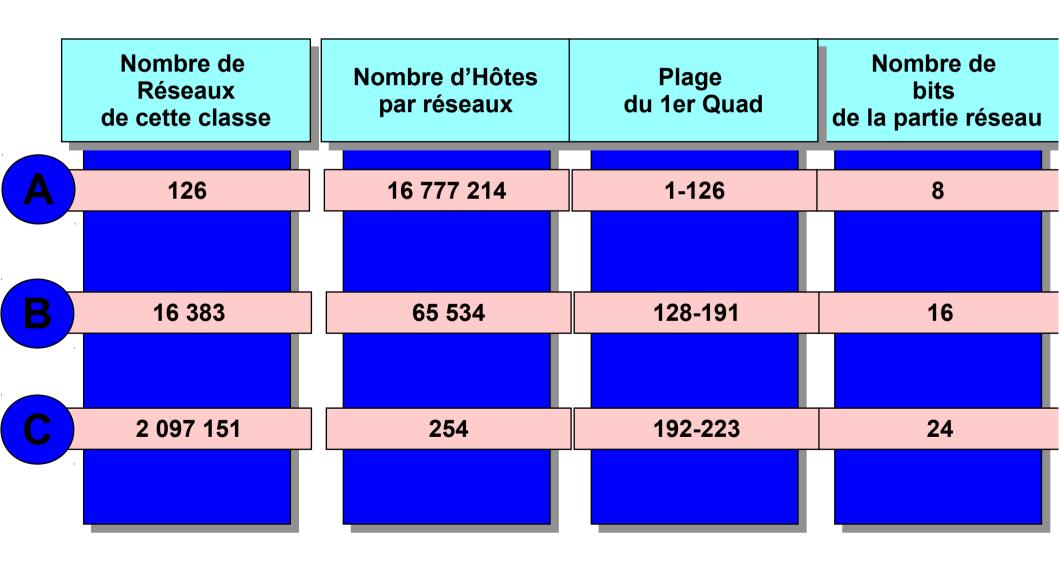

32 Bits


W.X.Y.Z

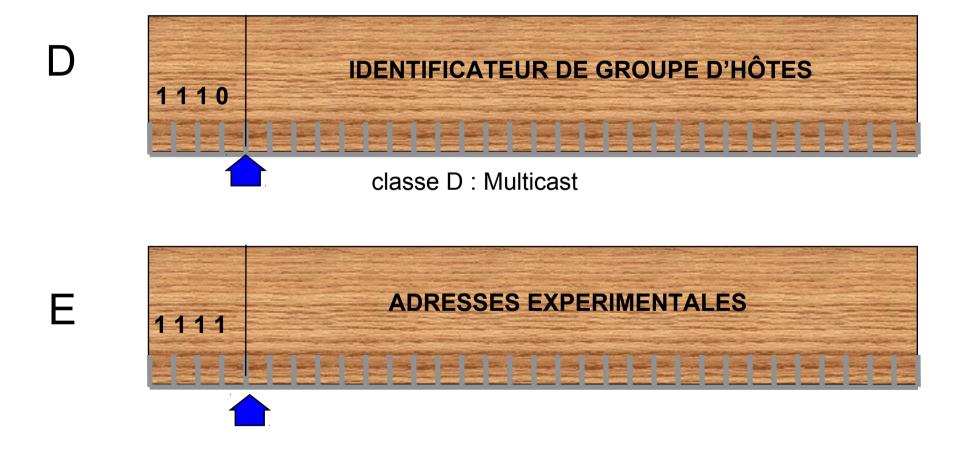
132.109.4.20

Rappels: Calcul en base 2

Classes d'adresses (la préhistoire)

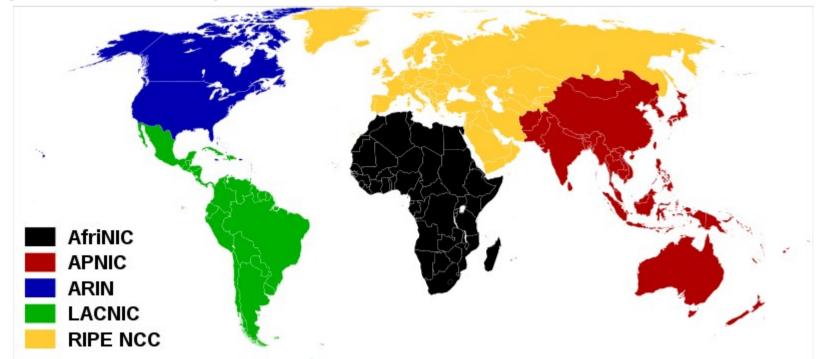


Classes d'adresses


Multicast : 29 bits
1110

Réservé : 28 bits
11110

Classes d'adresses



Classes d'adresses

ICANN

- Internet Corporation for Assigned Names and Numbers
- gère, entre autre, l'attribution des adresses ipv4 et v6
- délègue par zone géographique aux registres internet régionaux (RIR, rfc2050) qui délèguent aux LIR (registre locaux)

adresse ip PI et PA

- PA: provider agregable
 - fournie par votre fournisseur de connexion IP
 - quand on change de fournisseur, on change d'ip
 - le cas général
- PI: provider independant
 - peut être utilisée chez le fournisseur de son choix
 - tolérance de panne via plusieurs fournisseurs

Adresses réservées

- définies dans le rfc 5735
- Réseau: 127.0.0.0/8 (loopback)
- Adresse de bouclage (loopback): 127.0.0.1
- Adresse du réseau: partie hôte à 0
 - ex: 194.199.90.0
- Adresses de diffusion:
 - 255.255.255.255 : diffusion générale
 - Partie hôte à 255: ce réseau (destination). ex.: 194.199.90.255 (classe C)

Adresses réservées

- Adresse de réseau à zéro (adresse source) :
 - 0.0.0.0: ce réseau (source)
 - 0.x.y.z : l'hôte x.y.z sur ce réseau
- 169.254.0.0/16: utilisé en cas d'autoconfiguration d'un hote (rfc 3927)
- 192.0.0.0/24,198.51.100.0/24, 203.0.113.0 : réservé pour utilisation dans la documentation (rfc 5737)
- 192.88.99.0/24 : relay ipv6ipv4
- 100.64.0.0/10 : réservée pour « carrier grade nat » (rfc 6598)

Adresses réservées

- réseaux privés (rfc 1918) :
 - adresse utilisable sur un réseau interne mais pas sur internet
 - 192.168.x.0/24 : 256 réseaux de classe C
 - 172.16.0.0/16 → 172.31.0.0/16 : 16 réseaux de classe B
 - 10.0.0.0/8 : réseau de classe A

Masque

Permet

- De distinguer la partie réseau de la partie hôte d'une adresse
- De déterminer si deux hôtes sont sur le même réseau

```
194.199. 90.20
255.255.255.0
------
194.199. 90.0
```

en fait, on exprime le tout en base 2 et on fait un ET logique entre adresse et masque

Masque

en base 2 : on fait un ET logique :

```
résultat en base 10 : 194 . 199 . 90 .0
```

inadaptation des classes

- quel classe choisir pour un réseau de 1500 hôtes?
 - une classe B qui peut en contenir plus de 65000 ?
 - les classes B sont rares
- on utilise plusieurs classe C
- chaque classe C attribuée correspond à une entrée dans les tables des routeurs d'internet
- trop d'entrées => saturation de la mémoire des routeurs
- salution : CIDR/VLSM (1993)

CIDR/VLSM

- VLSM (Variable Length Subnet Mask, rfc 1878)
 : le masque est défini au bit près
- Permet :
 - Un découpage précis des sous-réseaux d'un site
 - Permet de regrouper des réseaux contigus de classe C en un seul « sur-réseau » : CIDR (Classless Inter Domain Routing)
 - Diminue le nombre d'entrée dans les tables de routage
- Notation /nn avec nn: nombres de bits de la partie réseau du masque
- CIDR: rfc 1519 (1993) remplacée par rfc 4632

CIDR/VLSM: masque

Classe d'adresse	Bits utilisés pour le masque de Sous-Réseau				Notation Décimale
Classe A /8	11111111	00000000	00000000	00000000	255.0.0.0
Classe B /16	11111111	11111111	00000000	00000000	255.255.0.0
Classe C /24	11111111	11111111	11111111	00000000	255.255.255.0
/23	11111111	11111111	11111110	00000000	255.255.254.0
/18	11111111	11111111	11000000	00000000	255.255.192.0
/15	11111111	11111110	00000000	00000000	255.254.0.0
/9	11111111	100000000	00000000	00000000	255.128.0.0
	Bits 1 à 8	bits 9 à 16	bits 17 à 24	bits 25 à 32	

adresses utilisées par un réseau

- première adresse : adresse du réseau : se calcule en passant la partie hôte à 0
- première adresse utilisable pour un hôte : adresse du réseau + 1
- dernière adresse : adresse de diffusion : se calcule en passant la partie hôte à 1 (255 en base 10)
- dernière adresse utilisable : adresse de diffusion -1
- le nombre de chiffres de la partie hôtes (= 32 masque) détermine le nombre d'adresses du réseau

Exemples

hote/masque	adresse de diffusion	masque décimal	
réseau	première adresse hôtes	dernière adresse hôtes	
194.199.165.165/24	194.199.165.255	255.255.255.0	
194.199.165.0	194.199.165.1	194.199.165.254	
194.199.165.165/21	194.199.167.255	255.255.248.0	
194.199.160.0	194.199.160.1	194.199.167.254	

21=2*8+5. la partie réseau contient donc les 2 premiers nombres et 5 chiffres du 3e. La partie hôte contient 3 (=8-5) chiffres du 3e et le dernier nombre.

165=**10100**101. On passe la partie hôte à 0 et on obtient : **10100**000=160 et 0 pour le dernier nombre donc le réseau est : 194.199.160.0.

on passe la partie hôte de 165 à 1 et on obtient : **10100**111=167 et 255 (=11111111) pour le dernier nombre donc l'adresse de diffusion est 194.199.167.255.

tailles de réseau

- quelle masque pour un réseau de :
 - 13 hôtes?
 - il faut 13+2=15 adresses.
 - 2³=8< 15 < 2⁴=16
 - donc 4 bits minimum pour la partie hôte
 - donc masque /28 (= 32 -4)
 - 95 hôtes?
 - 64=2^6<95+2=97 < 128=2^7
 - 7 chiffres pour hôtes donc /25 (= 32 -7)
 - 357 hôtes?
 - /23

un cas particuler /31 (rfc 3021)

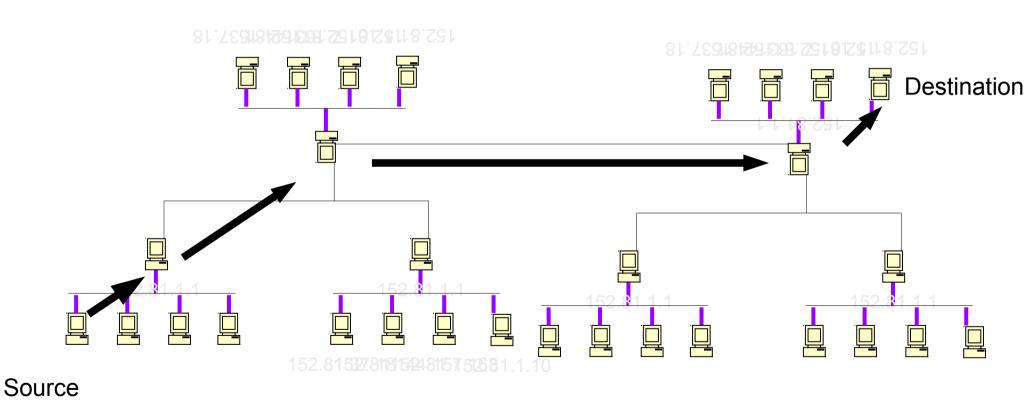
- /31 : il reste 1 bit pour les adresses
- donc 2 adresses possible
 - affectées à des hôtes sur un lien point à point
 - il n'y a pas d'adresse de diffusion
 - il n'y a pas d'adresse de réseau
- sert en général pour relier des routeurs
- C'est un cas particulier où on a décidé de ne pas suivre la règles générale

agréger des réseaux (1)

- objectif : pouvoir considérer l'union de plusieurs réseaux comme un unique réseau plus gros
- exemple : un découpage :
 - 192.168.64.0/22 : de 192.168.64.0 à 192.168.67.255
 - peut-être vu comme l'union de
 - 192.168.64.0/24 : de 192.168.64.0 à 192.168.64.255
 - 192.168.65.0/24 : de 192.168.65.0 à 192.168.65.255
 - 192.168.66.0/24 : de 192.168.66.0 à 192.168.66.255
 - 192.168.67.0/24 : de 192.168.67.0 à 192.168.67.255

agréger des réseaux (2)

- une entreprise a 2 classes C :
 - 192.168.10.0/24 et 194.199.90.0/24
 - peut-elle les agréger en un seul réseau ?
 - de quelle taille ?
- taille :
 - classe C: 256 adresses
 - 2 classes C: 512 adresses
 - partie hôtes à 9 chiffres en base 2 (512=2^9)
 - partie réseau de 32-9=23 chiffres : réseau /23
- agrégation : non car réseaux non contigus

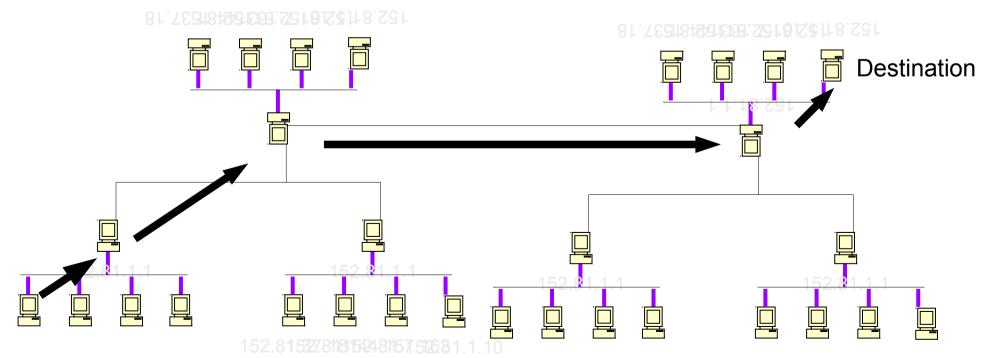

agréger des réseaux (3)

- une entreprise a 2 classes C contiguës
 - 192.168.9.0/24
 - 192.168.10.0/24
 - peut-elle les agréger en un seul réseau ?
- réponse : non car ces 2 classes C ne font pas partie du même /23 :
 - 192.168.9.x/23 a comme adresse réseau
 192.168.8.0/23 car 9=00001001
 - 192.168.10.x/23 a comme adresse réseau
 192.168.10.0/23 car 10=0000101

agréger des réseaux (4)

- une entreprise a 2 classes C contiguës
 - 192.168.8.0/24
 - 192.168.9.0/24
 - peut-elle les agréger en un seul réseau ?
- Oui, 192.168.8.0/23 dont les adresses vont de :
 - 192.168.8.0 à 192.167.9.255

Routage IP: problématique

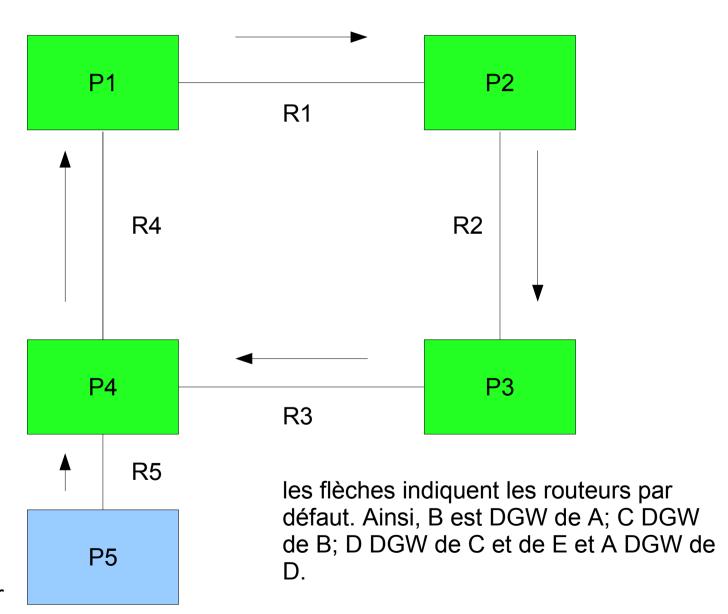


Routage IP: problématique

- chaque hôte a pour mission de déterminer le 'next hop » : à qui envoyer un paquet en fonction de la destination du paquet
- fait en fonction :
 - de la destination du paquet
 - d'information locales contenues dans la table de routage
 - aucune machine ne connaît le trajet complet jusqu'à la destination
- la sortie du réseau local se fait en passant par un routeur : machine reliée à plusieurs réseaux

Routage IP: problématique

- Une machine sait transmettre les paquets sur les sous-réseaux de ses interfaces (réseaux locaux)
- Les autres paquets sont envoyés à un routeur directement joignable (situé sur un réseau local)

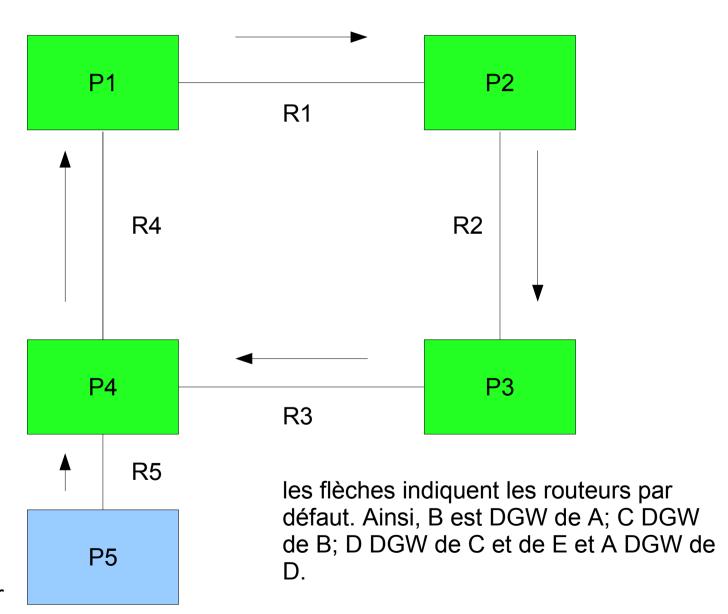

Routage: routeur par défaut, routes statique

- Table de routage :
 - Une entrée pour chaque réseau directement connecté
 - Routeur par défaut: pour les destinations non traités par les autres entrées
 - Routes statiques: pour les destinations pour lesquelles le routeur par défaut ne convient pas
- Le parcours de la table est récursif
 - Les cas d'arrêt sont les réseaux directement connectés à l'hôte.

Routage: algo de routage (faux)

- quand une machine M a un paquet à transmettre, elle applique l'algorithme suivant :
 - D: si le paquet est pour une machine située sur l'un des sous-réseaux d'une de ses cartes réseau, il est envoyé directement à la destination
 - RS: si le paquet est pour une destination pour laquelle M a une route définie, => envoyé au routeur défini dans la route
 - DGW: sinon, le paquet est envoyé au routeur par défaut de M

réseau 1:

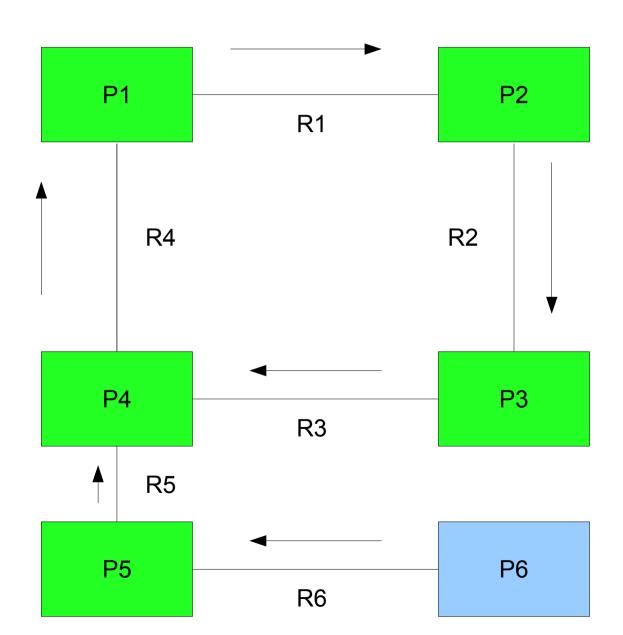


Couleurs:

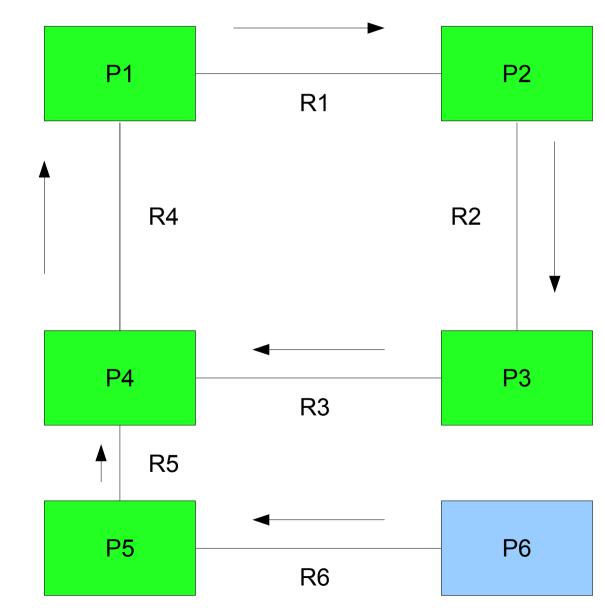
vert: routage activé

•- bleu: hôtes non routeur

réseau 1:



Couleurs:


vert: routage activé

•- bleu: hôtes non routeur

Routage

Routage

sur P4:

- pour aller en R6, passer par P5