Systeme d'exploitation

- un OS (opérating System) assure les services :
 - interface entre utilisateur et machine
 - offre des services logicicels (appels système, protection)
 - offre des services d'adminitration (gestion des ressources)
 - permet un accès uniforme à une classe de machines
 - la gestion des matériels composante la machine: périphériques, réseau
 - comparaison DOS/Windows sur les aspects gestion des pilotes

Quelques OS existants

- · domaine de recherche actif
- système centralisés
 - monoutilisateurs
 - MacOS, windows, Dos, ...
 - Multi-utilisateurs:
 - Unix (Linux, *BSD, Solaris, AIX, ...) , qnx, mach, NT, Mac OS X, ...
- systèmes distribués
 - amoeba, plan9, chorus, OSF-1, Sprite...
- ainsi que de nombreux systèmes d'exploitation propriétaires de niche:
 - cf http://www.cs.arizona.edu/people/bridges/oses.htm

Critères de choix d'un OS

- critères économiques
 - plus répandu = moins chers (bof :-)), recrutement facile, peu de frais de formation
 - perennité (quid de l'existence du vendeur dans 2 ans, est-on lié à un vendeur pour les corrections/évolutions (logiciel libre/propriétaire))
 - logithèque
- critères technologiques
 - charge attendue, domaine d'utilisation, simple ou multi utilisateur, fiabilité, sécurité, ...
- Le choix existe de plus en plus (ms-windows vs MacOS vs Unix vs ...)

Les caractéristiques d'Unix

- inspiré de MULTICS (1969 GE 645)
- système de gestion de fichier (SGF) hiérarchisé
- compatibilité des entrées/sorties
- création dynamique de processus
- communication inter processus (pipe, socket)
- langage de commande extensible
- système portable (noyau, fichiers, applications)
- système multi-tâches, multi-utilisateurs
- simple, nombreux outils de base disponibles
- rustique mais robuste (sans sécurité)

Olivier MICHEL - Univ. d'Évry Val d'Essoni

Historique d'Unix

- UNiplex Information and Computing System
 - 1969 lab. AT&T, lab. Bell, sur PDP-7 en assembleur (à partir de MULTICS du MIT, par K. Thomson, D. Ritchie et B.W. Kernighan)
 - 1974 AT&T le diffuse *gratuitement* auprès des Univ. (UNIX V5 à 90% en C)
 - 1975 Unix V6 (interne à Bell + Universités)
 - 1978 Unix V7
 - 1984 AT&T à le droit de commercialiser Unix
- de nos jours, de nombreuses versions ou clones (solaris, Linux, *BSD, AIX, ...)

Architecture générale (vue de l'utilisateur)

- Éditeur de programmes (sed, ed, vi, emacs)
- Outils de développement (cc, as, ld)
- Debuggers (adb, sdb, ddd)
- Gérants de bibliothèques de prog. (M4, make, sccs, rcs)
- Construction de compilateurs (lex, yacc)
- Outils de documentation (nroff, troff, eqn, tbl)
- Outils de communication (mail, uucp, telnet, rlogin)

Olivier MICHEL - Univ. d'Évry Val d'Esson

38

•A l'aide

- le manuel
- option « --help » de certaines commandes
- la documentation de votre système d'exploitation ou du programme posant problème
 - souvent /usr/share/doc, /usr/local/share/doc
 - centre d'aide ou ~ de votre gestionnaire de bureau
- recherche sur le WeB: quelqu'un d'autre a forcément déjà eu ce problème

•Le manuel

- dans une version ultérieure de ce document
- · les sections du manuel:

tions du mandei.	No section		
		BSD Ii-	
thème	SysV	nux	
commandes utilisateur	1	1	
commande systeme	1m	8	
référence du programmeur: noyau	2	2	
référence du programmeur: biblio. std	3	3	
format des fichiers de config.	4	5	
informations diverses	5	7	
jeux	6	6	

•Le manuel: consultation

- via la commande man
 - « man entrée »
 - paramètres de la commande man:
 - « man No_section entrée» pour les entrées présente dans plusieurs section (ex.: printf)
 - « man -f entrée » ou « whatis -r entrée »: affichela liste des pages de nom « entrée » dans toutes les sections
 - « man -k motClef » ou « apropos motClef »: affichela liste des pages contenant le mot motclef
 - si whatis et apropos ne fonctionne pas, c'est que leur base de donnée n'est pas à jour. cf « man whatis ».
- via les outils graphiques: xman ,centre d'aide de kde, ...

•Démonstration: manuel

- · man passwd
- man -k passwd
- · man -f passwd
- · idem avec printf

Définition

- SHELL: programme en mode texte assurant l'interface entre l'utilisateur et le système unix.
- S'utilise:
 - En interactif depuis une fenêtre terminal (xterm, connexion distante texte, ...): interpréteur de commande
 - Pour réaliser des scripts (fichiers de commandes) : langage de programmation

Shell: où que je clique?

- On ne clique pas : ça s'utilise avec une souris à 105 touches et sans boule : un clavier :-)
- L'accès est moins immédiat que celui d'une interface graphique
- Plus de liberté/possibilités qu'avec une interface graphique
- Langage de programmation: possibilité d'exprimer des requètes complexes
- Utilisation interactive ou pour écrire des fichiers de commandes (scripts)

Historique

- Les deux shells des origines sont à l'origine de deux familles de shells aux syntaxes incompatibles :
 - Le shell le plus ancien : sh ou Bourne shell écrit dans les années 70 par Steve Bourne. Tout système système unix a un shell /bin/sh qui est un bourne shell (ou un shell compatible);
 - Le csh: écrit à la même époque par Bill Joy incompatible avec le bourne shell mais offrant quelques fonctionnalités supplémentaires (historique des commandes, aliases, contrôle de tâches, ...

Historique (3)

- POSIX:
- SUS: Single Unix Specification: spécification suivie par les unix commerciaux (et de nombreux non commerciaux) modernes. Proche de la norme POSIX.
- se limiter à SUSv3/POSIX garantit une compatibilité maximale avec les unix utilisés de nos jours
- SUS: http://www.unix.org/what_is_unix/single_unix_sp ecification.html
- De nos jour, il est conseillé d'utiliser un shell compatible posix/sus: ksh, bash et zsh.

Historique (2)

- Ksh: korn shell (David Korn, 1983) sur la base du bourne sh. Le ksh 88 (ou +) est livré avec tous les unix commerciaux. Base de la norme IEEE Posix 1003.2:
- Tcsh: un shell évolué de la famille csh utilisé dans les années 90 comme shell interactif;
- Bash: Bourne Again sh, le shell de la FSF.
 Compatible posix 1003.2. Le shell de base des distribution linux.
- Zsh: un shell riche en fonctionnalités.
 Probablement le meilleur choix actuel en interactif.

Boucle d'interprétation

- Le shell est un programme qui réalise la boucle suivante :
 - Boucle:
 - Lire la ligne de commande
 - Décoder la ligne de commande
 - Exécution de la ligne de commande en créant un processus dans le cas de commandes externes
 - Attendre la fin de l'exécution du processus
 - Retourner en début de boucle

commandes simples: forme générale

arguments:

Nom Arguments

- paramètres optionnels permettant de modifier le comportement de la commande
- liste des entités auxquelles doit s'appliquer la commande (nom de fichier, processus, utilisateur, ...)
- Exemples:
 - mozilla
 - mozilla -P toto www.univ-evry.fr
 - Is -Irt /etc
 - find ~ -name *.avi -exec rm -f {} \;

quelques commandes simples

- who: liste des utilisateurs ayant une session en cours sur l'ordinateur
- w: idem mais indique aussi ce qu'ils font
- date: date courante
- echo: affiche ses arguments séparés par une espace

Exemples

- Le shell va servir à lancer des commandes internes ou externes
- Exemple de session :

#un commentaire commence par #

- # lister les fichiers présents
- # dans le dossier /etc

ls -l /etc

- # liste des utilisateurs connectés
- # sur l'ordinateur

who

Erreurs

- 5 causes classiques d'erreurs
 - 1) syntaxe ou chemin incorrect (commande inconnue, ...)
 - 2) paramètres incorrects (fichier inconnu, ..)
 - 3)droits d'accès : permission refusée (accès à un fichier, ...)
 - 4)options invalides (syntaxe des options de la commande)
 - 5)erreur de conception : le comportement n'est pas celui attendu

Systèmes de gestion de fichiers (SGF)

- SGF: mode d'organisation et de stockage des données sur disque;
- Exemples: FAT32, NTFS, ext2fs, ext3fs, reiserfs, UFS, ...
- Les SGF ont des propriétés et fournissent des services variés
- Exemple:
 - les SGF Unix (ext2fs, UFS, ...) : droits sur les fichiers
 - FAT32: pas de droits d'accès aux fichiers

SGF (suite)

- Les SGF unix fournissent un sous-ensemble commun de fonctionnalités: celui dont nous parlerons.
- Chaque SGF peut fournir plus que ce sousensemble
- Fichier unix: fichier disque mais aussi ressource du système (pilote de périphérique, terminal, mémoire, ...)
 - /dev/hda1 : partition 1 du disque 1 (Linux)
 - /dev/kmem: mémoire virtuelle du noyau

SGF: inode

- Inode: attributs + localisation des blocs contenant les données du fichier
- Inode:
 - Id. du disque logique où est le fichier,
 - numéro du fichier sur ce disque
 - Type de fichier et droits d'accès
 - Nombre de liens physiques
 - Propriétaire, groupe propriétaire
 - Taille
 - Dates :
 - De dernier accès (y compris en lecture): atime
 - Date de dernière modification des données: mtime
 - Date de dernier modification de l'inode: ctime

Dossier/répertoire

- Deux grandes classes de fichiers :
 - Fichier ayant un contenu sur disque : fichiers réguliers, dossiers, liens symboliques, tubes
 - Ressources : Fichiers spéciaux (pilotes de périphériques, ràf, ...)
- Dossiers: listes de couples (nom, No inode)
- Un couple est appelé « lien physique » (hardlink)
- Du point de vue de l'utilisateur, un dossier contient des fichiers (fichiers réguliers, dossiers, ...).

Fichiers: résumé:

- ce que l'utilisateur perçoit comme un fichier identifié par un nom peut se décomposer en trois notions sous unix :
 - un inode: informations (taille, dates, uid, gid, droits) et localisation des données sur disque
 - le contenu du fichier: les données qui y sont stockées
 - un lien physique: associe un nom à un inode. Un même inode peut avoir plusieurs lien.

Droits d'accès (2): suid, sgid, sticky bit

- 3 autres « droits » spéciaux:
 - bit SUID: le programme s'exécute avec les droits de son propriétaire (au lieu de ceux de l'utilisateur qui le lance)
 - bit SGID: le programme s'exécute avec les droits du groupe propriétaires du fichier
 - sticky bit:
 - sur un fichier exécutable : (obsolète) maintient le fichier en mémoire après l'exécution pour diminuer le temps de la prochaine invocation
 - sur un dossier: seul le propriétaire du fichier a le droit de le supprimer. Exemple: /tmp/

Inodes/Nom: conséquences

- Créer/détruire un fichier: ajouter/retirer un couple dans le dossier
- opération nécessitant un droit au niveau du dossier pas du fichier
- Le système travaille avec des No d'inode, l'utilisateur avec les noms de fichiers :
 - Ce sont les dossiers qui permettent de faire le lien entre les deux
 - On trouve le coupe (nom, inode) du dossier où est le fichier
 - Pour trouver ce dossier, on applique le même principe (pour Unix, un dossier est aussi un fichier)
 - voir plus loin Arborescences/algo de recherche

Droits d'accès aux fichiers

 3 types d'accès: lecture (R), écriture (W) et exécution (X)

Objet/Droit	R (lecture)	W (écriture)	X (exécuter)
fichier régulier	lire le contenu	modifier le fichier	exécuter le fichier
	lister le contenu du		dans un chemin ou s'y
dossier	dossier	destruction de fichier)	positionnner

 3 classes d'utilisateurs: le propriétaire du fichier, le <u>G</u>roupe du propriétaire du fichier, les Autres utilisateurs.

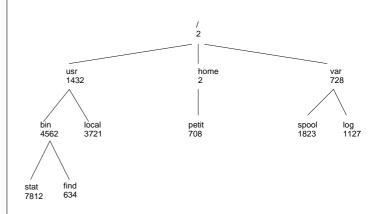
type fichier	Pr	ropriéta	ire	Group	e du p	roprio	Autre:	s utilisa	ateurs
-	R	w	X	R	-	X	R	-	X

 informations dans l'inode, affichage avec « ls », changement avec chmod, chgrp et chown

Commandes de base: chmod

- chmod [-R] mode fichier ...
- R: fichier est un dossier, chmod agit récursivement sur fichier et sur son contenu
- mode:
 - forme numérique: 644
 - pour u: 400 (r), 200 (w) et 100 (x)
 - pour g: 40 (r), 20 (w) et 10 (x)
 - pour o: 4 (r), 2 (w) et 1 (x)
 - forme symbolique: [ugo][+-=][rwxXstguo]

chmod: exemples	commande de base: umask • définit les droits d'accès par défaut d'un fichier • les droits sont le complément du paramètre d'umask: on laisse tout sauf les droits précisés • Exemple: - umask 002 : mode par défaut: RWXRWXR-X (tout sauf 002) - umask 026: mode par défaut: RWXR-XX (tout sauf 026) - umask a=rx,gu+w: mode par défaut: RWXRWXR-X - umask -S : affiche le l'état courant sous forme symbolique : u=rwx,g=rwx,o=rw dans notre exemple.
Commandes de base: chown, chgrp chown -R [-H -L -P] proprio[:groupe] fichier chgrp -R [-H -L -P] groupe fichier	chown/chgrp: exemples
Commandes de base: Is	Commandes de base: cat


Commande de base: stat

Exemples

- Stat fichier (noter ctime, mtime et atime)
- · Cat fichier
- Stat fichier (atime a changé)
- · Chmod fichier
- Stat fichier (ctime a changé)
- Modif fichier
- Stat fichier (mtime a changé)

- Sous unix, on a une arborescence unique (donc pas de C:\, D:\, ...comme sous windows)
- Le disque système contient la racine absolue
- toute l'arborescence est sous cette racine absolue
- Les systèmes de fichiers des autres partitions s'intègrent dans l'arborescence en prenant la place d'un dossier existant
- la racine d'un système de fichier a 2 comme numéro d'inode

arborescence

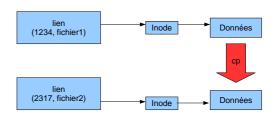
algo de recherche

- /usr/bin/stat
- · algo de localication:
 - examiner le contenu du dossier d'inode 2 pour trouver le No d'inode du dossier usr : 1432 par exemple.
 - examiner le contenu de dossier d'inode 1432 pour trouver le No d'inode du dossier bin. 4562 par exemple
 - examiner le contenu de dossier d'inode 4562 pour trouver le No d'inode du fichier stat. 7812 par exemple
 - exécuter le fichier d'inode 7812

Chemin

- /usr/bin/stat: chemin absolu du fichier stat
- chemin absolu: chemin depuis la racine absolue
- notion de dossier courant
- chemin relatif: chemin depuis le dossier courant

Commandes de base:


• pwd : indique le dossier courant

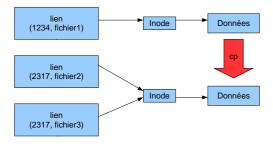
· cd : changer de dossier courant

• mkdir: pour créer un dossier

• rmdir: détruit les dossiers vides

commande de base: cp

cp fichier1 fichier2


Commandes de base: cp

- copie des données d'un fichier (source) dans un autre (cible) :
 - la cible n'existe pas : création d'un nouvel inode et recopie des données du fichier
 - la cible existe: inode destination inchangée, recopie des données du fichier dans la cible

cp (2)

- gnu cp: en standard sous Linux, installable facilement ailleurs
- fournit des options non standard mais pratiques
- ràf

cp et liens physiques

cp fichier1 fichier2

Commandes de base: rm

- suppression d'un lien d'un fichier ou plusieurs fichiers: rm [-fiRr] fichier1 ...
- options:
 - -i: demande de confirmation pour tout fichier à supprimer (aff sur stderr et lecture sur stdin)
 - -f: supprime les messages d'erreur lorsqu'un fichier n'existe pas et supprime la demande d'acquittement si l'utilisateur de rm n'a pas les droits d'écriture sur le fichier à supprimer
 - -R ou -r: supprime récursivement le contenu d'un dossier avant d'appliquer rmdir au dossier.

•rm :exemples

Commandes de base: mv

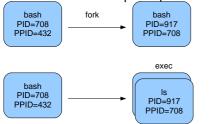
- mv [-fi] source destination
 - renomme un lien. Source et fichier sont des fichiers réguliers
- mv [-fi] source1 ... destination
 - renomme les sources en les déplaçant dans le dossier destination
- la commande fonctionne aussi si sources et destinations sont dans des systèmes de fichiers différents.
- la seconde forme est utilisée si la destination est un dossier existant

mv: exemples

- mv [-fi] source destination
 - renomme un lien. Source et fichier sont des fichiers réguliers
- mv [-fi] source1 ... destination
 - renomme les sources en les déplaçant dans le dossier destination
- la commande fonctionne aussi si sources et destinations sont dans des systèmes de fichiers différents.
- la seconde forme est utilisée si la destination est un dossier existant

Commandes de base: In

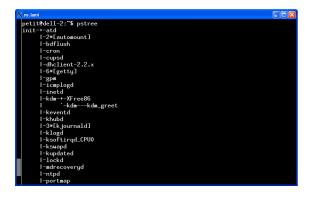
- In fichier nouveau_lien_physique
- In -s fichier lien_symbolique
- options:
 - -s: crée un lien symbolique
 - -f: force la création même si la destination existe déià
 - --: fin des options (pour permettre le traitement d'un fichier dont le nom commence par « « - »


Exemples

processus

- un programme: un fichier sur disque
- un processus: un programme en cours d'exécution
 - le code exécutable du programme
 - les données de l'instance en train de s'exécuter
- programme réentrant:
 - deux instances du même programme partagent le même code exécutable
 - elles ont par contre chacune leurs données
- processus système (daemon)/utilisateur

hiérarchie de processus, recouvrement


- un processus (processus fils) est toujours créé par un autre processus (processus père):
 - fork: création d'une copie du processus père
 - exec: recouvrement par le processus fils

Hiérarchie de processus

- tout processus a un processus parent sauf le processus initial
- processus initial: init (pid 1)
- arrêter la machine: demander à init d'arrêter tous ses processus fils

pstree

commandes internes/externes

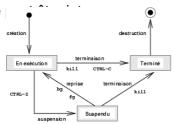
- commande externe: fichier exécutable:
 - création d'un nouveau processus chargé d'exécuter la commande
- commande interne:
 - exécutée par le shell (pas de création de nouveau processus)

type

- type indique si une commande est interne
- options non standard:
 - -a: indique toutes les implémentations
 - p : indique le chemin de la commande (rien si interne)
- Exemples: testez type sur les commandes suivantes :
 - cd
 - Is
 - pwd
 - file
 - echo
 - rm

caractéristiques des processus

- statiques
 - PID
 - PPID
 - propriétaire
 - terminal d'attache pour les entreés-sorties
- dynamique
 - priorité
 - nice
 - consommation cpu/mémoire
 - dossier de travail


commande ps

- 2 syntaxes:
 - syntaxe Systeme V: option précédées de -
 - syntaxe BSD: options NON précédées de -
 - quelques options SysV:
 - -e ou -A: tous les processus
 - -a: tous les processus associés à un terminal
 - -H: représentation hiérarchique (forêt)
 - -f: format complet;-l: format long (encore plus détaillé)
 - -o: pour modifier le format de sortie (cf manuel)
 - -g, -p, -t, -u: n'affiche que les processus des groupe (-g), processus (-p), terminaux (-t) ou utilisateurs (-u) listés.

commande ps: exemple

Etat d'un processus

- R: exécution
- Z: zombi: il est mort mais son père ne le sait pas
- D: le processus ne
- S: suspendu
- T: terminé

gestion de processus

- &
- bg
- fg
- jobs
- Ctrl-C
- Ctrl-Z

Signaux

- permettent au système de communiquer avec les processus
- · signaux utiles
 - STOP: suspendre
 - CONT: reprendre
 - HUP (1): souvent: relecture configuration
 - KILL(9): tuer sans possibilité de traitement
 - INT(2): équivalent à Ctrl-C: interruption gérable. permet au processus de gérer son interruption
- kill -signal PID

trap

• dans une version future de ce document

avant plan/arrière plan/détachement

• dans une version future de ce document (ràf)

priorité des processus

- l'exécution des divers processus est gérée par un ordonnanceur (scheduler)
- une priorité est définie dynamiquement
- but: que chaque processus puisse avancer son exécution tout en respectant des priorités
- nice: permet d'influer sur la priorité des processus
 - de 0 à 19 pour un utilisateur
 - de -20 à 19 pour root
 - plus le chiffre est élevé, moins le processus est prioritaire

code de retour

- valeur à laquelle le processus père peut accèder
- 0: terminaison normale
- autre valeur: situation anormale
- commande1 && commande2:la commande2 est exécutée si la commande 1 réussit
- commande1 || commande2: la commande2 est exécutée si la commande 1 échoue
- exemple: commande test
- exemple: construction if/then/else/fi