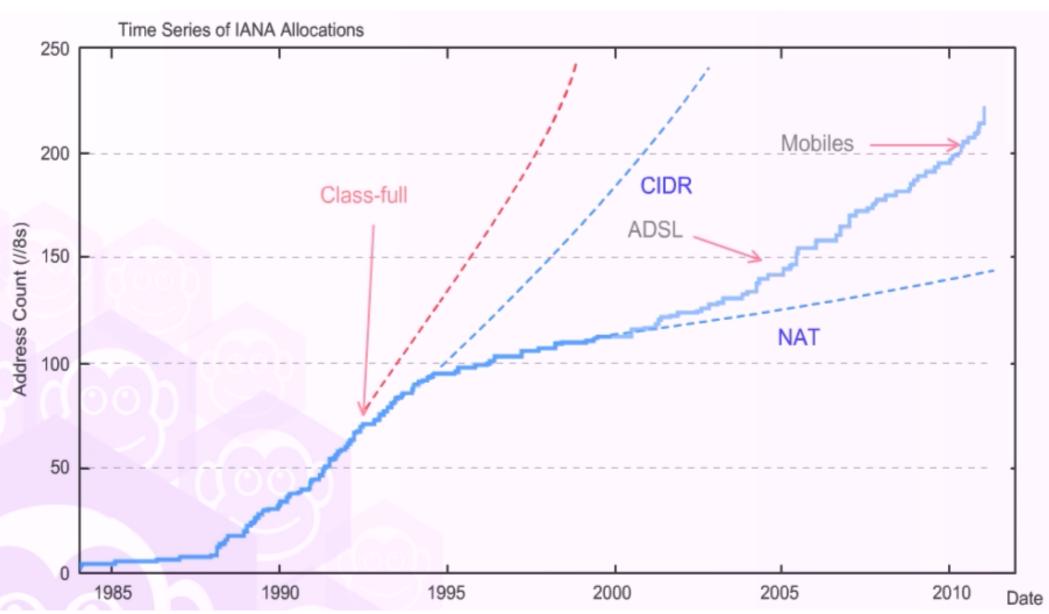
IPV6

Auteur Pascal Petit De nombreux éléments de ce cours sont tirés du cours IPV6 de France université numérique

https://www.fun-mooc.fr/courses/MinesTelecom/04012S02/session02/info


Licence

- Ce document est publié sous la Creative Commons CC BY-SA 4.0 International
 - Vous pouvez le modifier à votre guise
 - Vous pouvez distribuer ce document et les versions modifiées, y compris pour utilisation commerciale;
 - Vous devez attribuer le document initial à leurs auteurs et préciser les éventuelles modifications que vous aurez faites;
 - Les versions que vous distribuez, modifiées ou non par vous doivent être distribuées sous les mêmes conditions.

Protocole IPV6

- Successeur d'ip v4
- Finalisé dans la RFC 2460 (décembre 1998)
- Espace d'adressage important (adresses de 128 bits)
 - Résout l'épuisement des adresses ipv4
 - Élimine la nécessité d'utiliser du NAT (traduction d'adresses)
 - Permet plus de flexibilité dans l'attribution des adresses
 - Permet une meilleure agrégation des routes dans les tables de routage d'internet
- Mécanismes d'attributions automatiques d'adresses IP
- Intégration de la sécurité (IPSec)
- Simplification du format de l'entête

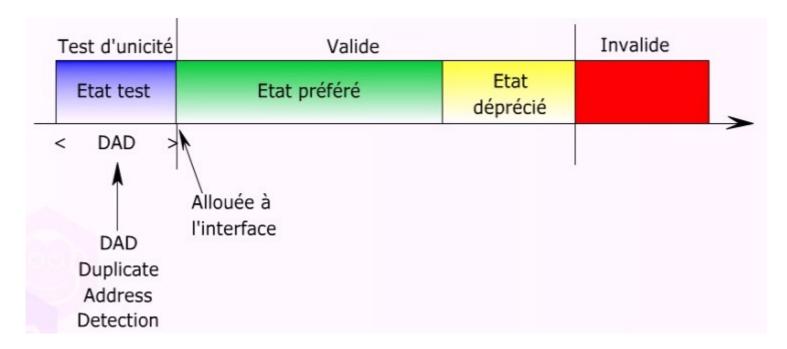
Épuisement IPV4

Source: http://livre.g6.asso.fr/images/7/7e/41-fig1-v1.png

Adressage IPv6

- 2 fonctions comme en IPV4
 - Identification d'une machine parmi l'ensemble des machines du réseau
 - Localisation :
 - Globale identifiant le réseau
 - Locale identifiant une machine sur un réseau donné
- Comme en IPV4 :
 - Routage
 - Partie réseau et partie hôte d'un adrese IP
 - 2 hôtes ayant la même partie réseau sont sur le même réseau
 - Notation CIDR /nn pour indiquer la taille de la partie réseau

Adressage IPv6


- Adressage hiérarchique
 - Opérateurs du coeur d'internet : décisions sur des préfixes courts
 - En périphérie, routage sur des préfixes longs
- l'adresse IPv6 fait 128 bits (contre 32 bits pour l'adresse IPv4)
- Les sites multidomiciliés ont autant d'adresses que de fournisseurs
- Des mécanismes de renumérotation automatique permettent de changer facilement de préfixes

Durée de vie d'une adresse IPv6

- l'attribution d'une adresse à une interface est temporaire
- Durée de vie : temps pendant lequel l'interface est dépositaire de l'adresse
- Par défaut 30 jours
- Cas particulier : une adresse lien local a une durée de vie illimitée (fe80...)
- Renumérotation d'interface : passage d'une adresse à une autre
 - Transition via un mécanisme obsolescence ;
 - Plusieurs adresses valides à une même interface

Vie d'une adresse IPv6

- État d'un IPv6 :
 - DAD : duplicate adress detection
 - Préféré : pas de restriction
 - Déprécié : non utilisé pour nouvelles connexions

Source: http://livre.g6.asso.fr/index.php/

Notation des adresses IPV6

- 16 octets
- adresse notée en hexadécimal (16 chiffres de 0 à 9 puis de A à F)
- En majuscules ou en minuscules ou en mixant les 2
- Exemple: 2001:0db8:0000:0000:0008:0800:200C:417A
- Par convention; on peut supprimer les 0 de poids forts non significatifs: 2001:db8:0:0:8:800:200C:417A
- On peut abréger plusieurs champs nuls consécutifs par :: (mais une seule fois) : 2001:db8::8:800:200C:417A

Exemples:

exemple	l'adresse	Peut s'écrire
Adr. unicast	2001:db8:0:0:8:800:200C:417A	2001:db8::800:200C:417A
Adr. multicast	ff01:0:0:0:0:0:101	ff01::101
bouclage	0:0:0:0:0:0:1	::1
Non spécifiée	0:0:0:0:0:0	
Lien local	fe80:0:0:0:64:73ff:fe77:6160/64	fe80::64:73ff:fe77:6160/64

IPv6 notation canonique

- RFC 5952
- Présentation destinée à l'affichage, aux sorties des programmes, log, ...
- En entrée, tout logiciel doit accepter toutes les formesvalides
- Forme canonique
 - Supprimer les zéros initiaux
 - :: doit être utilisé sur la série la plus longue, la plus à gauche en cas d'égalité
 - Chiffres hexa en minuscules
 - Si un numéro de port doit être indiqué, l'adresse doit être entre crochets

Exemples

Types d'adresses IPV6

- Adresses unicast
- Adresses multicast
- Adresses Anycast
- Types d'adresses généralement définis par leur préfixe dans le RFC3513

Adresses unicast

- Adresses globales : unique sur tout l'Internet 2000 ::/3 (adresses commençant par 2 ou 3)
- Adresses localement restreinte (obsolète) : équivalent des adresses privées d'IPv4
- Lien local : restreintes à un lien ou à un domaine de diffusion type VLAN. Ne sera pas routée : fe80 :...

Adresses multicast/anycats

Adresses multicast :

- désigne un groupe d'interfaces appartenant à différents nœuds pouvant être situés n'importe où sur le réseau.
- le paquet est remis à TOUTES les interfaces du groupe
- Remplace en plus souple et en plus sélectif la diffusion (broadcast) d'IPv4 : ex. s'adresser à tous les serveurs DHCP, à tous les routeurs, ...

Adresses anycast

- Désigne un groupe d'interfaces
- Le paquet est remis à UN des membres du groupe
- Utilisation expérimental pour l'instant (2016)

Adresses unicast globales : RFC3587

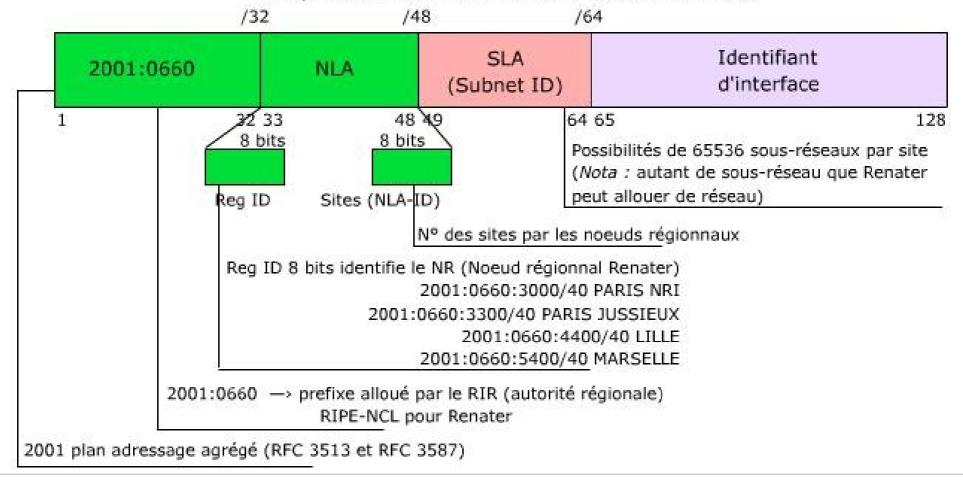
- RFC3587
 - définit la structure d'adressage IPv6 en précisant les tailles de chacun des blocs
 - géré hiérarchiquement
 - Topologie publique fournie par le FAI (48 bits)
 - Topologie de site (16 bits)
 - Identifiant d'interface des hôtes sur 64 bits
 - Un opérateur peut aussi fournir un /56 à ses clients

	n bits	64-n bits	64 bits
001	Préfixe global de routage	Préfixe de sous-réseau (SID)	Identifiant d'interface (IID)

Adresses unicast globales : RFC3587

- Préfixes réservés :
 - préfixe 2002::/16 qui est est réservé au mécanisme de transition 6to4;
 - préfixe 2001:db8::/32 est réservé pour la documentation (non routé)
 - préfixe 3ffe::/16 était le préfixe des adresses du réseau expérimental 6bone (arrété le 6/6/2006, déprécié)
- Le plan 2000/3 a été découpé en plages affectées par l'IANA aux différents RIR

L'adressage IPv6


Allocation	Préfixe binaire	Préfixe Hexa
Réservé	0000 0000	0000 :: / 8
Non alloué	0000 0001	0100 :: / 8
Réservé pour allocation	0000 001	0200 :: / 8
Non alloué	0000 01	0400 :: / 6
Non alloué	0000 1	0800 :: / 5
Non alloué	0001	1000 :: / 4
Global Unicast	001	2000 :: / 3
Non alloué	010	4000 :: / 3
Non alloué	011	6000 :: / 3
Non alloué	100	8000 :: / 3
Non alloué	101	A000 :: / 3
Non alloué	110	C000 :: / 3
Non alloué	1110	E000 :: / 3
Non alloué	1111 0	F000 :: / 3
Non alloué	1111 10	F800 :: / 3
Non alloué	1111110	FC00 :: / 7
Non alloué	1111 1110 0	FE00 :: / 9
Link-Local Unicast Adresses	1111 1110 10	FE80 :: / 10
Site-Local Unicast Adresses	1111 1110 11	FEC0 :: / 10
MultiCast Adresses	11111111	FF00 :: / 8

Allocation maintenant obsolète

Adresses IPV6

L'adressage Renater 3 est conçu de manière hiérarchisée

Chaque site se voit attribuer un NLA-ID soit 48 bits

Mécanismes de gestion : découverte de voisins

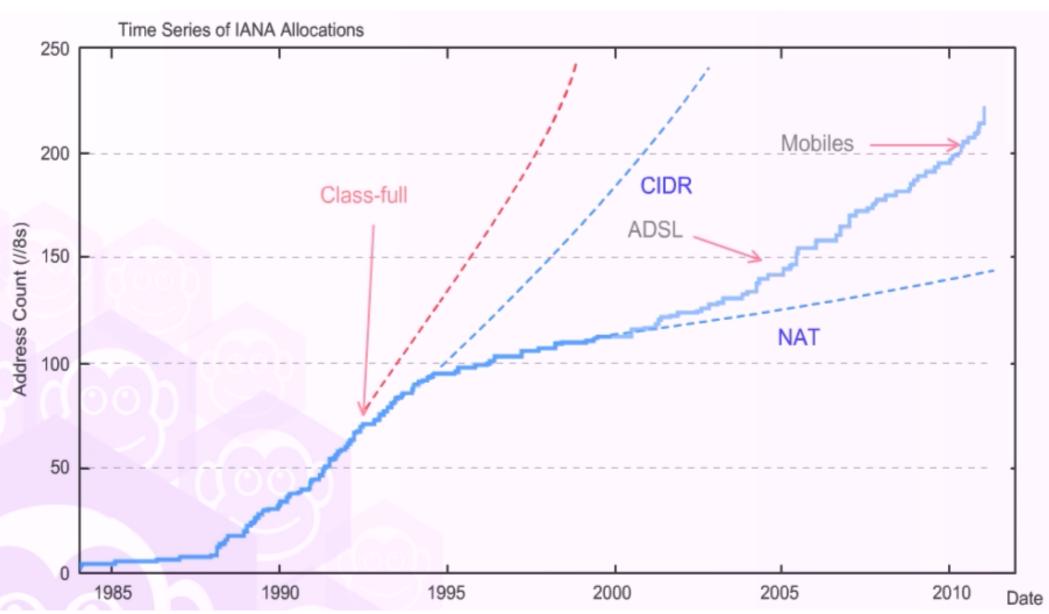
- Remplace ARP
- Obtention de l'adresse Mac ou détection d'adresses IP dupliquées
- Via des messages ICMPv6
 - Sollicitation d'un voisin (Neighbor Sollicitation ou NS)
 - Annonce d'un voisin (NeighborAdvertisment ou NA).
- Adresse destination : adresse multicast en général (pas de broadcast)

Mécanismes de gestion :autoconfiguration

- Étapes
 - Mise en place d'une adresse lien local (vérification d'unicité)
 - La machine peut communiquer avec les hôtes de son réseau
 - Obtention des informations de son routeur
 - Autoconfiguration sans état (choix de l'IP par l'hôte)
 - Autoconfiguration avec état (DHCPv6)
 - Routeur par défaut : adresse source du paquet d'annonce de routeur
 - Dns (cas sans état): RFC3646
 - Via DHCP
 - Via les annonces de routeur (RA)
 - Via anycast (abandonnée)

Transition vers ipv6

- IPV6 a de nombreux points communs avec IPV4
- MAIS IPV6 est incompatible avec IPV4
 - Un client IPV4 ne peut communiquer directement avec un serveur IPV6
 - Un client IPV6 ne peut communiquer directement avec un serveur IPV4
- Une machine peut communiquer simultanément en IPV4 et en IPV6 (dual stack)
- Comment faire communiquer des îlots IPV6 au travers d'un réseau IPV4 ?
- Pas de grand soir mais une intégration progressive d'IPV6 dans le réseau actuel (=> nécessite de mécanismes de compatibilité)


IPV4/IPV6 : état des forces

- IPV4 : épuisement des adresses
 - 3 février 2011 : plus aucun bloc libre (tous affectés à registre régional)
- Remèdes à l'épuisement
 - CIDR (1993, rfc1518, rfc1519 → rfc4632);
 - Mise en œuvre de Server Name Indication (SNI, rfc4366) permettant plusieurs noms de serveurs https sur une même IP;
 - Adresses privées (rfc1918) et traduction d'adresse (NAT)
 - CGNAT (Carrier Grade NAT ou NAT444, rfc6888)

NAT, CGNAT : une mauvaise solution

 Ici, on décrit les problèmes posés par ces solutions

Épuisement IPV4

Source: http://livre.g6.asso.fr/images/7/7e/41-fig1-v1.png

IPV6

- l'adoption d'ipv6 progresse : le 30/01/2018, 18,14 % des requêtes google venaient de machine en ipv6 (cf https://www.google.fr/ipv6/statistics.html)
- Akamai a des statistiques évalentes (avec un taux de 47 % (2016) pour la Belgique, cf https://www.akamai.com/fr/fr/our-thinking/state-of-the-internet-report/state-of-the-internet-ipv6-adoption-visualization.jsp
- De plus en plus de fournisseurs d'accès supportent ipv6
- Certains réseaux mobile sont en ipv6 seul cf http://blog.g6.asso.fr/2013/11/07/t-mobile-usa-un-reseau-3g-ipv6-seul/
- Les CDN (Content Delivery Networks) supportent souvent ipv6 (Akamai, Cloudflare, ...)
 - Mise à dispo en ipv6 (et ipv4) du contenu d'un serveur seulement ipv4

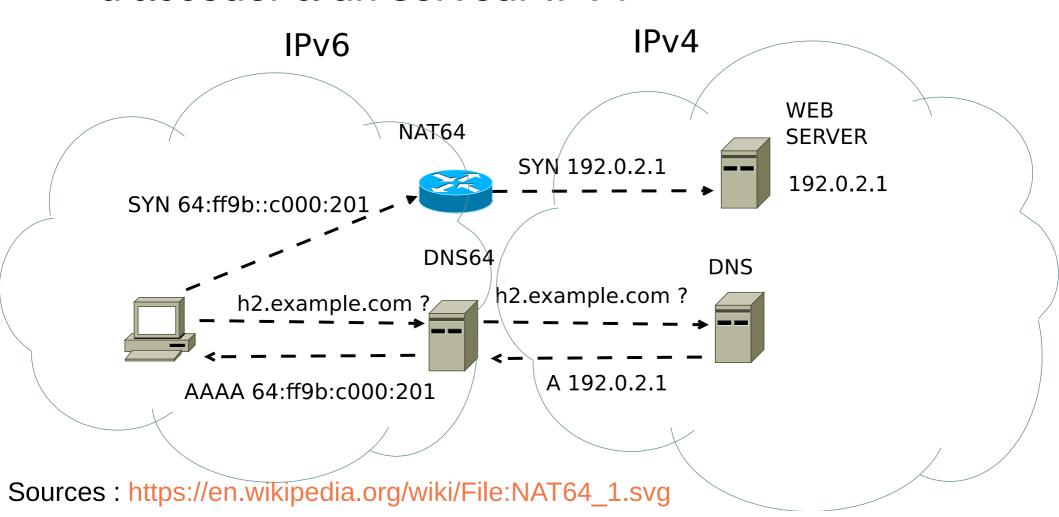
IPv6 sur un réseau local via la double pile

- Les machines, ... du réseau peuvent avoir en même temps
 - Une adresse IPv4
 - Une adresse IPv6
- Avantages :
 - Compatibilité avec tous les types de serveurs (ipv6 ou ipv4)
- Défauts :
 - Temps de connexion sur un service non IPv6 sur serveur IPv6 et IPv4 (cf diapo suivantes)
 - Complexifie le débug réseau (quand un processus démarre en IPv6, passe par IPv4 puis IPv6, ...)
 - Si on le veut sur les serveurs, garantir le service en IPv6 et en IPv4 (utile si abandon progressif d'IPv4)
 - Performance IPv6 si utilisation d'un tunnel

Double pile : performances

- Établissement de connexion : soucis si utilisation séquentielle IPV6 (échec) puis IPv4 (OK)
 - Cas d'un serveur avec IPv6 et IPv4 qui ne rend un service qu'en IPv4
- Solution (rfc6555): établir les connexions en parallèle et garder la plus rapide
 - Soucis : pour les CGN IPv4, les connexions supposent la gestion d'un état (coûteux)
 - Solution : utiliser en priorité les protocoles qui ne génère pas d'état (IPv6)
- Solution : n'annoncer dans le dns que l'IP fournissant le service

Compatibilité des applications


- Adresse sur 128 bits
- IPv4 mapped IPv6 addresse : stocker une IPv4 dans une IPv6 : ::FFFF:192.0.2.1
- Rendre une application IPv6 compatible
 - Langage de haut niveau : utiliser des types d'une bibliothèque intégrant IPv6 : standard et automatique de nos jours
 - Sinon, pour le bas niveau, tenir compte de la taille de l'adresse et du remplacement de la diffusion par le multicast

Interopérer les applications par traduction

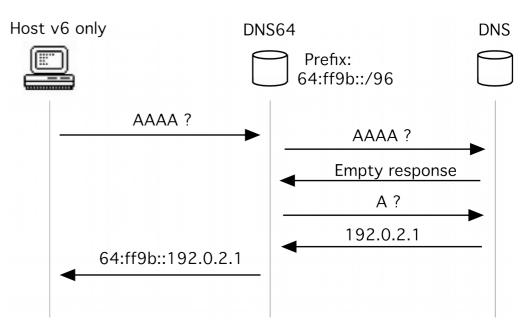
- Cette partie du document est très largement inspirée du travail réalisé par des membres du G6 dans le cadre du MOOC IPv6 de la plateforme FUN.
- Cf http://livre.g6.asso.fr/index.php/MOOC:Compagnon Act44

NAT 64

 Cas typique : Permettre à un client IPv6 d'accèder à un serveur IPv4

RFC 6052 : IPv4-Embedded IPv6 Address Format

- Suffix et les bit 64 à 71 sont à zéro (usage futur)
- « Well known prefix »: 64:ff9b ::/96 (neutre pour le calcul de checksum de couche 4)


RFC 6052 : IPv4-Embedded IPv6 Address Format

• Exemples (tirés de la RFC 6052) :

Network-Specific		
Prefix	IPv4 Address	IPv4-embedded IPv6 address
2001:db8::/32	192.0.2.33	2001:db8:c000:221::
2001:db8:100::/40	192.0.2.33	2001:db8:1c0:2:21::
2001:db8:122::/48	192.0.2.33	2001:db8:122:c000:2:2100::
2001:db8:122:300::/56	192.0.2.33	2001:db8:122:3c0:0:221::
2001:db8:122:344::/64	192.0.2.33	2001:db8:122:344:c0:2:2100::
2001:db8:122:344::/96	192.0.2.33	2001:db8:122:344::192.0.2.33

DNS 64: dns menteur (rfc 6147)

- Les services sont localisés par le dns :
 - Si ressource avec RR AAAA → IPv6
 - Si ressource sans RR AAAA, on essaie RR A et
 IPv4 et on renvoie un RR AAAA adapté du RR A
- Pb avec dnssec

Sources: http://livre.g6.asso.fr/index.php/MOOC:Compagnon_Act44

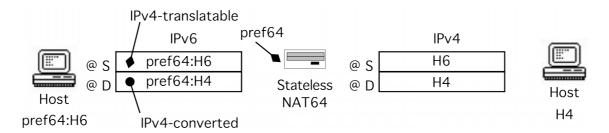
NAT 64 : sans état (RFC 7915)

- Problématiques :
 - comment associer une IPv6 à une connexion retour IPv4
 - Comment convertir un paquet IPv6 en paquet IPv4 et réciproquement
- Solution : toute IPv6 initiant une connexion correspond à une IPv4
- Défaut : il faut des IPv4
- Avantage : modèle sans état donc pas de table, performances indépendantes du nombre de connexions
- Usage typique : devant un serveur purement IPv4 devant être utilisé par des clients IPv6

SIIT : Stateless IP/ICMP Translation (RFC 7915)

- Transposition protocolaire des champs de l'entête
 - De nombreux champs des paquets IPv4 et IPv6 ont des significations proches (TTL/Hop limit, DiffServ, payload Length)

RFC 7915 : entête IPv6 à partir d'IPv4

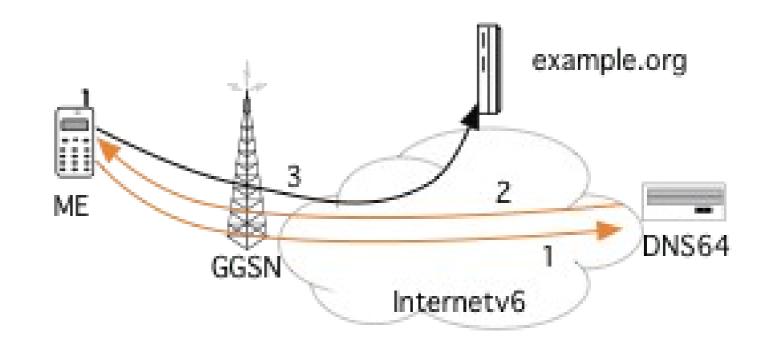

Champ de l'en-tête IPv4	Champ dans le nouvel en-tête IPv6	Valeur
Version	Version	6
IHL		Ignorer
Type Of Service	Traffic Class	Recopier
	Flow label	0
		Packet Length - IHL (en-tête IPv4 + options) + 8
Packet Length	Payload Length	(si extension de fragmentation)
	Extension Fragmenta-	Créer une extension de fragmentation à partir des
Ident./Flag/Offset	tion	valeurs IPv4
TTL	Hop Limit	Décrémenter de 1
Protocol	Next Header	Recopier ou extension de fragmentation si besoin. ICMPv4 (1) devient ICMPv6 (58).
Checksum		Ignorer
Source Address	Source Address	Voir le paragraphe Traduction des adresses
Destination Address	Destination Address	Voir le paragraphe Traduction des adresses
Options IPv4		Les options IPv4 ne sont pas traduites.

RFC 7915 : entête IPv4 à partir d'IPv6

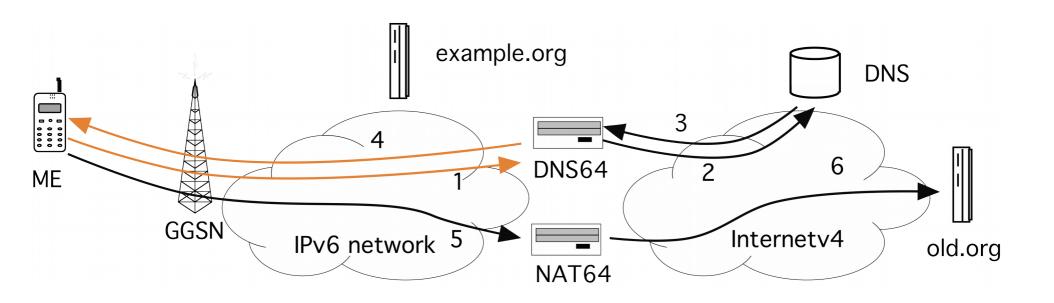
Champ de l'en-tête IPv6	Champ dans le nouvel en-tête IPv4	Valeur
Version	Version	4
	IHL	5
Traffic Class	Type of Service	Recopie
IPv6 Flowlabel		Ignorer
Payload Length	Packet Length	Payload Length + IHL
	Ident./Flag/Offset	0
Hop Limit	TTL	Décrémenter de 1
Next Header	Protocol	Recopier. ICMPv6 (58) devient ICMPv4 (1)
	Checksum	Calculer une fois l'en-tête créé
Source Address	Source Address	Voir le paragraphe Traduction des adresses
Destination Address	Destination Address	Voir le paragraphe Traduction des adresses
Extensions IPv6		Les extensions d'en-tête IPv6 ne sont pas traduites.

NAT64: avec état (RFC 6146)

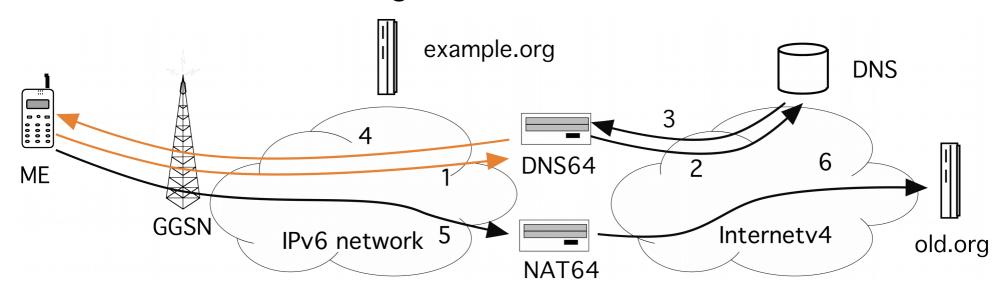
- Conversion de l'IP destination sans état (IPv4 incluse dans l'IPv6)
- Conversion IP sources IPv6 avec état : On associe l'IPv6 interne à l'IP externe à un No de port → usage d'une table
- Usage typique : accès de clients IPv6 only à des serveurs IPv4 only

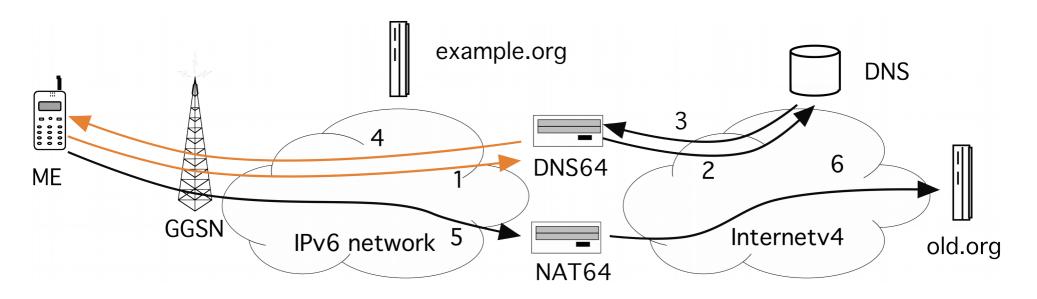


Sources: http://livre.g6.asso.fr/index.php/MOOC:Compagnon_Act44


NAT64 avec état : limites

- Les serveurs doivent être désignés par leur nom dns (pour DNS64)
- Applications et protocoles du clients doivent être compatibles IPv6
- Certains protocoles incluant l'IPv4 dans la charge utile sont incompatibles: FTP, SIP, Skype, MSN (source: https://en.wikipedia.org/wiki/NAT64#cite_note-4)
- Solutions :
 - 464XLAT
 - Un convertisseur SIIT convertit le paquet IPv4 initial en paquet IPv6 (sur le client en général)
 - Transmis à la passerelle NAT64 qui le convertit en IPv4
 - SIIT : Stateless IP/ICMP Translation : conversion réversible d'un paquet IPv4 en IPv6 défini dans la rfc7915
 - Utiliser des passerelles applicatives dont le mandataire/proxyWeB est un cas particulier


- 1 : requête DNS AAAA example .org
- 2 : réponse DNS AAAA example.org
- 3 : connexion au serveur en IPv6


- 1: ME interroge DNS64 sur AAAA old.org
- 2 et 3 : ME obtient les RR A et AAAA mais pas de AAAA
- 4: transmission au client des IPv6 obtenues en transformant les IPv4 du serveur old.org (rfc 6052)

- 5 : le client se connecte à cette IPv6 appartenant au pool déclaré par NAT64
- 6 : NAT64 traduite cette IPv6 en IPv4 et
 - Note l'association port source, IPv4 source (l'une des siennes), IPv6 source dans une table
 - transmet à old.org

- Le paquet retour sera retourné par old.org à l'IPv4 de NAT64
- NAT64 utilisera sa table pour déterminer l'IPv6 interne destination
- Le paquet sera envoyé à ME

