Dépendances fonctionnelles

Exercice 1

Soient A, B, C, D, E et F des attributs En utilisant <u>exclusivement</u> la définition d'implication de dépendances, démontrer ou réfuter les assertions suivantes :

- 1. $\{A \to BC, A \to E\}$ implique $A \to BCE$
- 2. $\{A \to BC, BCE \to F\}$ implique $AE \to F$
- 3. $\{C \to B\}$ implique $C \to BD$

Correction:

- 1. (Vrai, Union). Soit r une relation satisfaisant $A \to BC$ et $A \to E$. Soient t et t' deux n-uplets de r tels que t(A) = t'(A). On a : t(BC) = t'(BC) et t(E) = t'(E). Donc t(BCE) = t'(BCE). On en conclue que r satisfait $A \to BCE$.
- 2. (Vrai, Pseudo-Transitivité). Soit r une relation satisfaisant $A \to BC$ et $BCE \to F$. Soient t et t' deux n-uplets de r tels que t(AE) = t'(AE). A cause de la première dépendance, t(BC) = t'(BC). D'autre part, t(E) = t'(E). Donc t(BCE) = t'(BCE). A cause de la deuxième dépendance, on peut conclure que t(F) = t'(F).
- 3. (Faux). Ici, il suffit un contre-exemple simple : une table R(CBD) avec 2 seuls triplets $\langle c, b, d1 \rangle$ et $\langle c, b, d2 \rangle$

Exercice 2

Dans cet exercice, on utilisera <u>exclusivement</u> l'algorithme de calcul de la fermeture d'un ensemble d'attributs X par rapport à un ensemble de dépendances fonctionnelles F (et le théorème associé).

- 1. Mêmes questions que pour l'exercice 1 (mais il faut justifier les réponses autrement!)
- 2. Est-il vrai que $\{A \to B\}$ implique $\emptyset \to AB$? Comment expliquez vous, intuitivement, votre réponse ?

Correction : C'est mécanique. Mais, pour le second "item" où la réponse est "Non" (car on ne bouge jamais de la valeur initiale res, qui est \emptyset) il faut expliquer l'intuition. Dire que une table r satisfait $\emptyset \to AB$ revient à dire que <u>tout</u> cpuple de n-uplets t,t' est tel que t(AB) = t'(AB). Or, pour expliquer le résultat trouvé, raisonner sur la table R(AB) dont les seuls couples sont $\langle a1,b1 \rangle$ et $\langle a2,b2 \rangle$

Exercice 3

Soit ARM la formulation suivante du système de preuve d'Armstrong pour les dépendances fonctionnelles :

- Toute dépendance $X \to Y$ telle $Y \subseteq X$ est un axiome.
- On a deux règles d'inférence :

- 1. Si on a $X \to Y$, alors on peut dériver $XZ \to YZ$ (Augmentation)
- 2. Si on a $X \to Y$ et $Y \to Z$, alors on peut dériver $X \to Z$ (Transitivité)

Ce système est correct et complet par rapport à l'implication : Un ensemble F de DF implique une df $X \to Y$ si et seulement si il existe une preuve de $X \to Y$ à partir de l'ensemble d'hypothèses F.

Utiliser ARM et ce théorème (mais rien d'autre) pour chercher une réponse aux questions suivantes :

1. Soient X,Y et Y trois ensembles d'attributs quelconques. Est-il vrai que $\{X\to Y\}$ implique $XZ\to Y$?

NB : XZ abrège $X \cup Z$.

- 2. Est-il vrai que $\{A \to B\}$ implique $ACD \to B$?
- 3. Est-il vrai que $F = \{B \to CD, D \to E\}$ implique $AB \to E$?
- 4. Est-il vrai que $\{A \to BC, A \to E\}$ implique $A \to BCE$? Attention, cette fois ci il faut utiliser ARM, pour répondre (à différence de l'exercice 1).
- 5. Et il vrai que $\{A \to BC, BCE \to F\}$ implique $AE \to F$? Idem. il faut utiliser ARM, pour répondre (à différence de l'exercice 1).
- 6. Est-il vrai que $\{AB\to C\}$ implique $B\to C$? Même question pour $\{A\to C\}$ implique $A\to CD.$

A nouveau, utiliser ARM pour répondre.

Correction : On peut d'abord illustrer le système pour montrer, par exemple : $\{A \to BC, A \to E\}$ implique $A \to BCE$:

- 1) $A \rightarrow BC$ hyp
- 2) $AE \rightarrow BCE$ 2, Aug
- 3) $A \rightarrow E \ hyp$
- 4) $A \rightarrow AE$ 3, aug (nb : AA=A)
- 5) $A \rightarrow BCE 4$, 2 Trans
 - 1. Oui.
 - $1)X \to Y \ hyp \in F \ = \ : \ \{X \to Y\}$
 - 2) $XZ \rightarrow YZ$ 1, Aug
 - $3)YZ \rightarrow Y$ axiome
 - 4) $XZ \rightarrow Y$ 2, 3 Trans
 - 2. Oui. Cas particulier de la question ci-dessus.
 - 3. Oui
 - 1) $B \to CD$ hyp $\in F$
 - 2) $AB \rightarrow ACD$ 1, Augmentation
 - 3) $ACD \rightarrow CD$ Axiome
 - 4) $AB \rightarrow CD$, 2,3 Trans
 - 5) $D \to E$, hyp $\in F$
 - 6) $CD \rightarrow CE$ 3, Aug
 - 7) $CE \rightarrow E$ Axiome
 - 8) $CD \rightarrow E$ 6,8 Trans
 - 9) $AB \rightarrow E$ 4, 8 Trans

- 4. OUI.
 - 1) $A \to E \text{ hyp} \in F$
 - 2) $A \rightarrow AE$ 1, Aug
 - 3) $A \to BC \ hyp \in F$
 - 4) $AE \rightarrow BCE$ 3, Aug
 - 5) $A \rightarrow BCE$ 2, 4 Trans
- 5. OUI
 - 1) $A \to BC \text{ hyp} \in F$
 - 2) $AE \rightarrow BC2$ 2, Augm
 - 3) $BCE \to F \text{ hyp} \in F$
 - 4) $AE \rightarrow F$ 2, 3, Trans
- 6. Faux, les 2 fois.

Dire juste "je ne trouve pas de déduction" n'est pas une justification. Il faudra donner 2 contreexemples et expliquer ce que la correction du système ARM veut dire pour justifier la réponse. Topos sur le fait que ARM ne fournit pas d'algo de décision de l'implication.