Examen SGBD, L3 2007-2008

28-3-2009

Durée : 3h. Les documents de cours sont permis. Le barème est donné à titre indicatif et peut être modifié.

Ecrivez votre parcours (ASR, Informatique, Math, MIage) à coté de votre nom, sur la partie de la copie qui sera cachée par le volet collant.

Exercice 1, 2pts

Soit le schéma R(C, S, J, P, D, Q, V) et l'ensemble de dépendances fonctionnelles $F = \{C \to SJPDQV, JP \to C, SD \to P\}$

- 1. Soit $f = SDJ \to CSJPDQV$. Est-il vrai que F implique f? Justifiez votre réponse et, si c'est "Non", donner un contre-exemple.
- 2. Mêmes questions pour $f = SD \rightarrow CSPDQV$.
- 3. Calculer les projections de F sur les sous-schémas JPV et SDJP, c'est-à-dire ${\cal F}_{JPV}$ et ${\cal F}_{SDJP}.$

Exercice 2, 4pts

On considère le schéma relationnel R(A, B, C, D) muni des dépendances fonctionnelles F et la décomposition de ce schéma en R1(A, B), R2(B, C), R3(A, B, D).

- 1. On suppose que $F=\{B\to D\}$. S'agit-il d'une décomposition sans perte d'information (SPI) ? Pourquoi ? Si la réponse est "Non", on donnera un contre-exemple. S'agit-il d'une décomposition sans perte de dépendances (SPD) ? Pourquoi ?
- 2. Mêmes questions, mais avec $F = \{B \to D, D \to A\}$

Exercice 3, 5pts

Pour chacun des couples de schéma S_i et d'ensemble ${\cal F}_i$ de dépendances fonctionnnelles ci-dessous :

- Donner l'ensemble des clés;
- Calculer l'ensemble des attributs premiers;

- Indiquer quelles sont les formes normales valables, en justifiant la réponse donnée.
- Si S_i n'est pas en FN3, en donner une décomposition qui soit FN3, SPI et SPD. On indiquera les étapes d'application de l'algorithme utilisé.
 - 1. $S_1(A, B, C, D, E), F_1 = \{A \to B, C \to D\}.$
 - 2. $S_2(A, B, C, E, F), F_2 = \{AC \to E, B \to F\}.$
 - 3. $S_3(A, I, C, E)$, F_3 contient seulement des dependances banales.

Exercice 4, 4pts

On considère le schéma relationnel suivant : Cours(Module, Professeur, Horaire) qui signifie que Professeur enseigne Module au créneau Horaire. Un même module peut utiliser deux horaires.

On a les dépendances fonctionnelles suivantes : $Module \rightarrow Professeur$ et $Professeur\ Horaire \rightarrow Module.$

- 1. Pourquoi ce schéma n'est-il pas en forme normale de Boyce-Codd?
- 2. Mettre ce schéma en forme normale de Boyce-Codd.
- 3. S'agit-il d'une décomposition sans perte d'information (SPI) ? Pourquoi ?
- 4. S'agit-il d'une décomposition sans perte d'information (SPD) ? Pourquoi ?

Exercice 5, 3 pts

- 1. Notons |F| le nombre d'éléments de F et soit X un ensemble d'attributs quelconque. En sachant qu'il existe un algorithme $\mathcal B$ qui calcule X^+ avec un temps O(|F|), donner un algorithme $\mathcal A$ qui teste si un schéma de relation S muni d'un ensemble de dépendances F est en forme normale de Boyce-Codd et qui soit polynomial par rapport à |F|.
- 2. Adapter \mathcal{A} de façon à obtenir un algorithme \mathcal{A}' qui teste si S est en FN3. Quelle est la complexité de l'algoritme obtenu ?

Exercice 6, 2 pts

Démontrer que si un schéma S (muni d'un ensemble de dépendances F) a une seule clé, qui consiste d'une seul attribut, alors il est en forme normale de Boyce-Codd si et seulement si il est en FN3.