
Part I

BASICS

Katz_C01.qxd 7/23/03 2:45 PM Page 1

Katz_C01.qxd 7/23/03 2:45 PM Page 2

Chapter 1

XQUERY:
A GUIDED TOUR

Jonathan Robie

XML (Extensible Markup Language) is an extremely versatile data
format that has been used to represent many different kinds of data,

including web pages, web messages, books, business and accounting
data, XML representations of relational database tables, programming
interfaces, objects, financial transactions, chess games, vector graphics,
multimedia presentations, credit applications, system logs, and textual
variants in ancient Greek manuscripts.

In addition, some systems offer XML views of non-XML data sources
such as relational databases, allowing XML-based processing of data that
is not physically represented as XML. An XML document can represent
almost anything, and users of an XML query language expect it to per-
form useful queries on whatever they have stored in XML. Examples
illustrating the variety of XML documents and queries that operate on
them appear in [XQ-UC].

However complex the data stored in XML may be, the structure of XML
itself is simple. An XML document is essentially an outline in which
order and hierarchy are the two main structural units. XQuery is based
on the structure of XML and leverages this structure to provide query
capabilities for the same range of data that XML stores. To be more pre-
cise, XQuery is defined in terms of the XQuery 1.0 and XPath 2.0 Data
Model [XQ-DM], which represents the parsed structure of an XML doc-
ument as an ordered, labeled tree in which nodes have identity and may

3

Katz_C01.qxd 7/23/03 2:45 PM Page 3

be associated with simple or complex types. XQuery can be used to
query XML data that has no schema at all, or that is governed by a
World Wide Web Consortium (W3C) XML Schema or by a Docu-
ment Type Definition (DTD). Note that the data model used by
XQuery is quite different from the classical relational model, which has
no hierarchy, treats order as insignificant, and does not support identity.
XQuery is a functional language—instead of executing commands as
procedural languages do, every query is an expression to be evaluated,
and expressions can be combined quite flexibly with other expressions to
create new expressions.

This chapter gives a high-level introduction to the XQuery language by
presenting a series of examples, each of which illustrates an important
feature of the language and shows how it is used in practice. Some of the
examples are drawn from [XQ-UC]. We cover most of the language fea-
tures of XQuery, but also focus on teaching the idioms used to solve spe-
cific kinds of problems with XQuery. We start with a discussion of the
structure of XML documents as input and output to queries and then
present basic operations on XML—locating nodes in XML structures
using path expressions, constructing XML structures with element
constructors, and combining and restructuring information from XML
documents using FLWOR expressions, sorting, conditional expres-
sions, and quantified expressions. After that, we explore operators and
functions, discussing arithmetic operators, comparisons, some of the
common functions in the XQuery function library, and how to write and
call user-defined functions. Finally, we discuss how to import and use
XML Schema types in queries.

Many users will learn best if they have access to a working implementation
of XQuery. Several good implementations can be downloaded for free from
the Internet; a list of these appears on the W3C XML Query Working
Group home page, which is found at http://www.w3.org/xml/Query.html.

This chapter is based on the May 2003 Working Draft of the XQuery lan-
guage. XQuery is still under development, and some aspects of the language
discussed in this chapter may change.

4 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 4

Sample Data: A Bibliography

This chapter uses bibliography data to illustrate the basic features of
XQuery. The data used is taken from the XML Query Use Cases, Use
Case “XMP,” and originally appeared in [EXEMPLARS]. We have mod-
ified the data slightly to illustrate some of the points to be made. The data
used appears in Listing 1.1.

Listing 1.1 Bibliography Data for Use Case “XMP”

<bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

<book year="1992">
<title>Advanced Programming in the UNIX Environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>
</book>

<book year="2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>65.95</price>

</book>

<book year="1999">
<title>The Economics of Technology and Content

for Digital TV</title>
<editor>

<last>Gerbarg</last>
<first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>

</bib>

SAMPLE DATA: A BIBLIOGRAPHY 5

Katz_C01.qxd 7/23/03 2:45 PM Page 5

The data for this example was created using a DTD, which specifies that
a bibliography is a sequence of books, each book has a title, publication
year (as an attribute), an author or an editor, a publisher, and a price, and
each author or editor has a first and a last name, and an editor has an affil-
iation. Listing 1.2 provides the DTD for our example.

Listing 1.2 DTD for the Bibliography Data

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

Data Model

XQuery is defined in terms of a formal data model, not in terms of XML
text. Every input to a query is an instance of the data model, and the out-
put of every query is an instance of the data model. In the XQuery data
model, every document is represented as a tree of nodes. The kinds of
nodes that may occur are: document, element, attribute, text, name-
space, processing instruction, and comment. Every node has a unique
node identity that distinguishes it from other nodes—even from other
nodes that are otherwise identical.

In addition to nodes, the data model allows atomic values, which are
single values that correspond to the simple types defined in the W3C
Recommendation, “XML Schema, Part 2” [SCHEMA], such as strings,
Booleans, decimals, integers, floats and doubles, and dates. These simple
types may occur in any document associated with a W3C XML Schema.
As we will see later, we can also represent several simple types directly as
literals in the XQuery language, including strings, integers, doubles, and
decimals.

6 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 6

An item is a single node or atomic value. A series of items is known as a
sequence. In XQuery, every value is a sequence, and there is no distinction
between a single item and a sequence of length one. Sequences can only
contain nodes or atomic values; they cannot contain other sequences.

The first node in any document is the document node, which contains
the entire document. The document node does not correspond to any-
thing visible in the document; it represents the document itself. Element
nodes, comment nodes, and processing instruction nodes occur in the
order in which they are found in the XML (after expansion of entities).
Element nodes occur before their children—the element nodes, text
nodes, comment nodes, and processing instructions they contain. Attrib-
utes are not considered children of an element, but they have a defined
position in document order: They occur after the element in which they
are found, before the children of the element. The relative order of
attribute nodes is implementation-dependent. In document order, each
node occurs precisely once, so sorting nodes in document order removes
duplicates.

An easy way to understand document order is to look at the text of an
XML document and mark the first character of each element start tag,
attribute name, processing instruction, comment, or text node. If the first
character of one node occurs before the first character of another node, it
will precede that node in document order. Let’s explore this using the fol-
lowing small XML document:

<!— document order —>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>

</book>

The first node of any document is the document node. After that, we can
identify the sequence of nodes by looking at the sequence of start charac-
ters found in the original document—these are identified by underlines in
the example. The second node is the comment, followed by the book ele-
ment, the year attribute, the title element, the text node containing TCP/IP
Illustrated, the author element, the last element, the text node contain-
ing Stevens, the first element, and the text node containing W.

DATA MODEL 7

Katz_C01.qxd 7/23/03 2:45 PM Page 7

Literals and Comments

XQuery uses “smiley faces” to begin and end comments. This cheerful
notation was originally suggested by Jeni Tennison. Here is an example of
a comment:

(: Thanks, Jeni! :)

Note that XQuery comments are comments found in a query. XML doc-
uments may also have comments, like the comment found in an earlier
example:

<!— document order —>

XQuery comments do not create XML comments—XQuery has a con-
structor for this purpose, which is discussed later in the section on
constructors.

XQuery supports three kinds of numeric literals. Any number may begin
with an optional + or – sign. A number that has only digits is an integer, a
number containing only digits and a single decimal point is a decimal,
and any valid floating-point literal containing an e or E is a double. These
correspond to the XML Schema simple types xs:integer, xs:decimal,
and xs:double.

1 (: An integer :)
-2 (: An integer :)
+2 (: An integer :)
1.23 (: A decimal :)
-1.23 (: A decimal :)
1.2e5 (: A double :)
-1.2E5 (: A double :)

String literals are delimited by quotation marks or apostrophes. If a string
is delimited by quotation marks, it may contain apostrophes; if a string is
delimited by apostrophes, it may contain quotation marks:

"a string"
'a string'
"This is a string, isn't it?"
'This is a "string"'

8 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 8

If the literal is delimited by apostrophes, two adjacent apostrophes within
the literal are interpreted as a single apostrophe. Similarly, if the literal is
delimited by quotation marks, two adjacent quotation marks within the
literal are interpreted as one quotation mark. The following two string
literals are identical:

"a "" or a ' delimits a string literal"
'a " or a '' delimits a string literal'

A string literal may contain predefined entity references. The entity ref-
erences shown in Table 1.1 are predefined in XQuery.

Here is a string literal that contains two predefined entity references:

'<bold>A sample element.</bold>'

Input Functions

XQuery uses input functions to identify the data to be queried. There are
two input functions:

1. doc() returns an entire document, identifying the document by a
Universal Resource Identifier (URI). To be more precise, it
returns the document node.

2. collection() returns a collection, which is any sequence of
nodes that is associated with a URI. This is often used to identify
a database to be used in a query.

TABLE 1.1 Entity References Predefined in XQuery

Entity Reference Character Represented

< <

> >

& &

" "

' '

INPUT FUNCTIONS 9

Katz_C01.qxd 7/23/03 2:45 PM Page 9

If our sample data is in a file named books.xml, then the following query
returns the entire document:

doc("books.xml")

A dynamic error is raised if the doc() function is not able to locate the
specified document or the collection() function is not able to locate
the specified collection.

Locating Nodes: Path Expressions

In XQuery, path expressions are used to locate nodes in XML data.
XQuery’s path expressions are derived from XPath 1.0 and are identical
to the path expressions of XPath 2.0. The functionality of path expres-
sions is closely related to the underlying data model. We start with a few
examples that convey the intuition behind path expressions, then define
how they operate in terms of the data model.

The most commonly used operators in path expressions locate nodes by
identifying their location in the hierarchy of the tree. A path expression
consists of a series of one or more steps, separated by a slash, /, or double
slash, //. Every step evaluates to a sequence of nodes. For instance, con-
sider the following expression:

doc("books.xml")/bib/book

This expression opens books.xml using the doc() function and returns
its document node, uses /bib to select the bib element at the top of the
document, and uses /book to select the book elements within the bib ele-
ment. This path expression contains three steps. The same books could
have been found by the following query, which uses the double slash, //,
to select all of the book elements contained in the document, regardless
of the level at which they are found:

doc("books.xml")//book

Predicates are Boolean conditions that select a subset of the nodes com-
puted by a step expression. XQuery uses square brackets around predi-
cates. For instance, the following query returns only authors for which
last="Stevens" is true:

10 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 10

doc("books.xml")/bib/book/author[last="Stevens"]

If a predicate contains a single numeric value, it is treated like a subscript.
For instance, the following expression returns the first author of each book:

doc("books.xml")/bib/book/author[1]

Note that the expression author[1] will be evaluated for each book. If
you want the first author in the entire document, you can use parentheses
to force the desired precedence:

(doc("books.xml")/bib/book/author)[1]

Now let’s explore how path expressions are evaluated in terms of the data
model. The steps in a path expression are evaluated from left to right. The
first step identifies a sequence of nodes using an input function, a variable
that has been bound to a sequence of nodes, or a function that returns
a sequence of nodes. Some XQuery implementations also allow a path
expression to start with a / or //.

Such paths start with the root node of a document, but how this node is
identified is implementation-defined. For each / in a path expression,
XQuery evaluates the expression on the left-hand side and returns the
resulting nodes in document order; if the result contains anything that is
not a node, a type error is raised. After that, XQuery evaluates the
expression on the right-hand side of the / once for each left-hand node,
merging the results to produce a sequence of nodes in document order; if
the result contains anything that is not a node, a type error is raised.
When the right-hand expression is evaluated, the left-hand node for
which it is being evaluated is known as the context node.

The step expressions that may occur on the right-hand side of a / are the
following:

� A NameTest, which selects element or attribute nodes based on
their names. A simple string is interpreted as an element name; we
have already seen the NameTest bib, which evaluates to the bib ele-
ments that are children of the context node. If the name is prefixed
by the @ character (pronounced “at”), then the NameTest evaluates
to the attributes of the context node that have the specified name.
For instance, doc("books.xml")/bib/book/@year returns the

LOCATING NODES: PATH EXPRESSIONS 11

Katz_C01.qxd 7/23/03 2:45 PM Page 11

year attribute of each book. NameTest supports both namespaces
and wildcards, which are discussed later in this section.

� A KindTest, which selects processing instructions, comments, text
nodes, or any node based on the type of the node. The KindTest
used to select a given kind of node looks like a function with the
same name as the type of the node: processing-instruction(),
comment(), text(), and node().

� An expression that uses an explicit “axis” together with a NameTest
or KindTest to choose nodes with a specific structural relationship
to the context node. If the NameTest book selects book elements,
then child::book selects book elements that are children of the
context node; descendant::book selects book elements that are
descendants of the context node; attribute::book selects book
attributes of the context node; self::book selects the context
node if it is a book element, descendant-or-self::book selects
the context node or any of its descendants if they are book ele-
ments, and parent::book selects the parent of the context node if
it is a book element. Explicit axes are not frequently used in
XQuery.

� A PrimaryExpression, which may be a literal, a function call, a vari-
able name, or a parenthetical expression. These are discussed in
the next section of this tutorial.

Now let’s apply what we have learned to the following expression:

doc("books.xml")/bib/book[1]

Working from left to right, XQuery first evaluates the input function,
doc("books.xml"), returning the document node, which becomes the
context node for evaluating the expression on the right side of the first
slash. This right-hand expression is bib, a NameTest that returns all ele-
ments named bib that are children of the context node. There is only one
bib element, and it becomes the context node for evaluating the expres-
sion book, which first selects all book elements that are children of the
context node and then filters them to return only the first book element.

12 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 12

Up to now, we have not defined the // operator in terms of the data
model. The formal definition of this operator is somewhat complex; intu-
itively, the // operator is used to give access to all attributes and all descen-
dants of the nodes in the left-hand expression, in document order. The
expression doc("books.xml")//bib matches the bib element at the root
of our sample document, doc("books.xml")//book matches all the
book elements in the document, and doc("books.xml")//@year

matches all the year attributes in the document. The // is formally
defined using full axis notation: // is equivalent to /descendant-or-
self::node()/.

For each node from the left-hand expression, the // operator takes the node
itself, each attribute node, and each descendant node as a context node, then
evaluates the right-hand expression. For instance, consider the following
expression:

doc("books.xml")/bib//author[1]

The first step returns the document node, the second step returns the
bib element, the third step—which is not visible in the original query—
evaluates descendant-or-self::node()to return the bib element and
all nodes descended from it, and the fourth step selects the first author
element for each context node from the third step. Since only book ele-
ments contain author elements, this means that the first author of each
book will be returned.

In the examples we have shown so far, NameTest uses simple strings to
represent names. NameTest also supports namespaces, which distinguish
names from different vocabularies. Suppose we modify our sample data
so that it represents titles with the title element from the Dublin Core,
a standard set of elements for bibliographical data [DC]. The namespace
URI for the Dublin Core is http://purl.org/dc/elements/1.1/. Here is an
XML document containing one simple book, in which the title ele-
ment is taken from Dublin Core:

<book year="1994" xmlns:dcx="http://purl.org/dc/elements/1.1/">
<dcx:title>TCP/IP Illustrated</dcx:title>
<author><last>Stevens</last><first>W.</first></author>

</book>

LOCATING NODES: PATH EXPRESSIONS 13

Katz_C01.qxd 7/23/03 2:45 PM Page 13

In this data, xmlns:dcx="http://purl.org/dc/elements/1.1/" declares
the prefix "dcx" as a synonym for the full namespace, and the element
name dcx:title uses the prefix to indicate this is a title element as
defined in the Dublin Core. The following query finds Dublin Core titles:

declare namespace dc="http://purl.org/dc/elements/1.1/"
doc("books.xml")//dc:title

The first line declares the namespace dc as a synonym for the Dublin Core
namespace. Note that the prefix used in the document differs from the pre-
fix used in the query. In XQuery, the name used for comparisons consists of
the namespace URI and the “local part,” which is title for this element.

Wildcards allow queries to select elements or attributes without specify-
ing their entire names. For instance, a query might want to return all
the elements of a given book, without specifying each possible element
by name. In XQuery, this can be done with the following query:

doc("books.xml")//book[1]/*

The * wildcard matches any element, whether or not it is in a namespace.
To match any attribute, use @*. To match any name in the namespace
associated with the dc prefix, use dc:*. To match any title element,
regardless of namespace, use *:title.

Creating Nodes: Element, Attribute, and
Document Constructors

In the last section, we learned how to locate nodes in XML documents.
Now we will learn how to create nodes. Elements, attributes, text nodes,
processing instructions, and comments can all be created using the same
syntax as XML. For instance, here is an element constructor that creates
a book:

<book year="1977">
<title>Harold and the Purple Crayon</title>
<author><last>Johnson</last><first>Crockett</first></author>
<publisher>HarperCollins Juvenile Books</publisher>
<price>14.95</price>

</book>

14 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 14

As we have mentioned previously, the document node does not have
explicit syntax in XML, but XQuery provides an explicit document
node constructor. The query document { } creates an empty docu-
ment node. Let’s use a document node constructor together with other
constructors to create an entire document, including the document
node, a processing instruction for stylesheet linking, and an XML
comment:

document {
<?xml-stylesheet type="text/xsl"

href="c:\temp\double-slash.xslt"?>,
<!—I love this book! —>,
<book year="1977">
<title>Harold and the Purple Crayon</title>
<author><last>Johnson</last><first>Crockett</first></author>
<publisher>HarperCollins Juvenile Books</publisher>
<price>14.95</price>

</book>
}

Constructors can be combined with other XQuery expressions to gener-
ate content dynamically. In an element constructor, curly braces, { },
delimit enclosed expressions, which are evaluated to create open content.
Enclosed expressions may occur in the content of an element or the value
of an attribute. For instance, the following query might be used in an
interactive XQuery tutorial to teach how element constructors work:

<example>
<p> Here is a query. </p>
<eg> doc("books.xml")//book[1]/title </eg>
<p> Here is the result of the above query.</p>
<eg>{ doc("books.xml")//book[1]/title }</eg>

</example>

Here is the result of executing the above query for our sample data:

<example>
<p> Here is a query. </p>
<eg> doc("books.xml")//book[1]/title </eg>
<p> Here is the result of the above query.</p>
<eg><title>TCP/IP Illustrated</title></eg>

</example>

CREATING NODES: ELEMENT, ATTRIBUTE, AND DOCUMENT CONSTRUCTORS 15

Katz_C01.qxd 7/23/03 2:45 PM Page 15

Enclosed expressions in element constructors permit new XML values to
be created by restructuring existing XML values. Here is a query that
creates a list of book titles from the bibliography:

<titles count="{ count(doc('books.xml')//title) }">
{
doc("books.xml")//title
}
</titles>

The output of this query follows:

<titles count = "4">
<title>TCP/IP Illustrated</title>
<title>Advanced Programming in the Unix Environment</title>
<title>Data on the Web</title>
<title>The Economics of Technology and Content for
Digital TV</title>

</titles>

Namespace declaration attributes in element constructors have the same
meaning they have in XML. We previously showed the following Dublin
Core example as XML text—but it is equally valid as an XQuery element
constructor, and it treats the namespace declaration the same way:

<book year="1994" xmlns:dcx="http://purl.org/dc/elements/1.1/">
<dcx:title>TCP/IP Illustrated</dcx:title>
<author><last>Stevens</last><first>W.</first></author>

</book>

Computed element and attribute constructors are an alternative syntax
that can be used as the XML-style constructors are, but they offer addi-
tional functionality that is discussed in this section. Here is a computed
element constructor that creates an element named title, with the
content "Harold and the Purple Crayon". Inside the curly braces,
constants are represented using XQuery’s native syntax, in which strings
are delimited by double or single quotes.

element title {
"Harold and the Purple Crayon"

}

Here is a slightly more complex constructor that creates nested elements
and attributes using the computed constructor syntax:

16 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 16

element book
{

attribute year { 1977 },
element author
{

element first { "Crockett" },
element last { "Johnson" }

},
element publisher {"HarperCollins Juvenile Books"},
element price { 14.95 }

}

The preceding example uses literals for the names of elements. In a com-
puted element or attribute constructor, the name can also be an enclosed
expression that must have the type QName, which represents an element
or attribute name. For instance, suppose the user has written a function
that takes two parameters, an element name in English and a language,
and returns a QName that has been translated to the desired language.
This function could be used in a computed element constructor as follows:

element { translate-element-name("publisher", "German") }
{ "HarperCollins Juvenile Books" }

The result of the above query is

<Verlag>HarperCollins Juvenile Books</Verlag>

In constructors, if sequences of whitespace characters occur in the
boundaries between tags or enclosed expressions, with no intervening
non-whitespace characters, then the whitespace is known as boundary
whitespace. Implementations may discard boundary whitespace unless
the query specifically declares that space must be preserved using the
xmlspace declaration, a declaration that can occur in the prolog. The
following query declares that all whitespace in element constructors must
be preserved:

declare xmlspace = preserve

<author>
<last>Stevens</last>
<first>W.</first>

</author>

CREATING NODES: ELEMENT, ATTRIBUTE, AND DOCUMENT CONSTRUCTORS 17

Katz_C01.qxd 7/23/03 2:45 PM Page 17

The output of the above query is

<author>
<last>Stevens</last>
<first>W.</first>

</author>

If the xmlspace declaration is absent, or is set to strip, then boundary
whitespace is stripped:

<author><last>Stevens</last><first>W.</first></author>

Combining and Restructuring Nodes

Queries in XQuery often combine information from one or more sources
and restructure it to create a new result. This section focuses on the
expressions and functions most commonly used for combining and
restructuring XML data.

FLWOR Expressions

FLWOR expressions, pronounced “flower expressions,” are one of the
most powerful and common expressions in XQuery. They are similar to
the SELECT-FROM-WHERE statements in SQL. However, a FLWOR expres-
sion is not defined in terms of tables, rows, and columns; instead, a
FLWOR expression binds variables to values in for and let clauses, and
uses these variable bindings to create new results. A combination of vari-
able bindings created by the for and let clauses of a FLWOR expression
is called a tuple.

For instance, here is a simple FLWOR expression that returns the title
and price of each book that was published in the year 2000:

for $b in doc("books.xml")//book
where $b/@year = "2000"
return $b/title

This query binds the variable $b to each book, one at a time, to create a
series of tuples. Each tuple contains one variable binding in which $b is

18 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 18

bound to a single book. The where clause tests each tuple to see if
$b/@year is equal to “2000,” and the return clause is evaluated for each
tuple that satisfies the conditions expressed in the where clause. In our
sample data, only Data on the Web was written in 2000, so the result of this
query is

<title>Data on the Web</title>

The name FLWOR is an acronym, standing for the first letter of the
clauses that may occur in a FLWOR expression:

� for clauses: associate one or more variables to expressions, creat-
ing a tuple stream in which each tuple binds a given variable to
one of the items to which its associated expression evaluates

� let clauses: bind variables to the entire result of an expression,
adding these bindings to the tuples generated by a for clause, or
creating a single tuple to contain these bindings if there is no for
clause

� where clauses: filter tuples, retaining only those tuples that satisfy
a condition

� order by clauses: sort the tuples in a tuple stream
� return clauses: build the result of the FLWOR expression for a

given tuple

The acronym FLWOR roughly follows the order in which the clauses
occur. A FLWOR expression starts with one or more for or let clauses in
any order, followed by an optional where clause, an optional order by

clause, and a required return clause.

The for and let Clauses

Every clause in a FLWOR expression is defined in terms of tuples, and
the for and let clauses create the tuples. Therefore, every FLWOR
expression must have at least one for or let clause. It is extremely
important to understand how tuples are generated in FLWOR expres-
sions, so we will start with a series of artificial queries that show this in
detail for various combinations of for clauses and let clauses.

COMBINING AND RESTRUCTURING NODES 19

Katz_C01.qxd 7/23/03 2:45 PM Page 19

We have already shown an example that binds one variable in a for clause.
The following query creates an element named tuple in its return clause
to show the tuples generated by such a query:

for $i in (1, 2, 3)
return

<tuple><i>{ $i }</i></tuple>

In this example, we bind $i to the expression (1, 2, 3), which constructs
a sequence of integers. XQuery has a very general syntax, and for clauses
or let clauses can be bound to any XQuery expression. Here is the result
of the above query, showing how the variable $i is bound in each tuple:

<tuple><i>1</i></tuple>
<tuple><i>2</i></tuple>
<tuple><i>3</i></tuple>

Note that the order of the items bound in the tuple is the same as the
order of the items in the original expression (1, 2, 3). A for clause pre-
serves order when it creates tuples.

A let clause binds a variable to the entire result of an expression. If there
are no for clauses in the FLWOR expression, then a single tuple is cre-
ated, containing the variable bindings from the let clauses. The follow-
ing query is like the previous query, but it uses a let clause rather than
a for:

let $i := (1, 2, 3)
return

<tuple><i>{ $i }</i></tuple>

The result of this query contains only one tuple, in which the variable $i
is bound to the entire sequence of integers:

<tuple><i>1 2 3</i></tuple>

If a let clause is used in a FLWOR expression that has one or more for
clauses, the variable bindings of let clauses are added to the tuples gen-
erated by the for clauses. This is demonstrated by the following query:

for $i in (1, 2, 3)
let $j := (1, 2, 3)
return

<tuple><i>{ $i }</i><j>{ $j }</j></tuple>

20 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 20

If a let clause is used in a FLWOR expression that has one or more for
clauses, the variable bindings from let clauses are added to the tuples
generated by the for clauses:

<tuple><i>1</i><j>1 2 3</j></tuple>
<tuple><i>2</i><j>1 2 3</j></tuple>
<tuple><i>3</i><j>1 2 3</j></tuple>

Here is a query that combines for and let clauses in the same way as the
previous query:

for $b in doc("books.xml")//book
let $c := $b/author
return <book>{ $b/title, <count>{ count($c) }</count>}</book>

This query lists the title of each book together with the number of authors.
Listing 1.3 shows the result when we apply it to our bibliography data.

Listing 1.3 Query Results

<book>
<title>TCP/IP Illustrated</title>
<count>1</count>

</book>
<book>
<title>Advanced Programming in the UNIX Environment</title>
<count>1</count>

</book>
<book>
<title>Data on the Web</title>
<count>3</count>

</book>
<book>
<title>The Economics of Technology and Content for
Digital TV</title>
<count>0</count>

</book>

If more than one variable is bound in the for clauses of a FLWOR expres-
sion, then the tuples contain all possible combinations of the items to
which these variables are bound. For instance, the following query shows
all combinations that include 1, 2, or 3 combined with 4, 5, or 6:

for $i in (1, 2, 3),
$j in (4, 5, 6)

return
<tuple><i>{ $i }</i><j>{ $j }</j></tuple>

COMBINING AND RESTRUCTURING NODES 21

Katz_C01.qxd 7/23/03 2:45 PM Page 21

Here is the result of the above query:

<tuple><i>1</i><j>4</j></tuple>
<tuple><i>1</i><j>5</j></tuple>
<tuple><i>1</i><j>6</j></tuple>
<tuple><i>2</i><j>4</j></tuple>
<tuple><i>2</i><j>5</j></tuple>
<tuple><i>2</i><j>6</j></tuple>
<tuple><i>3</i><j>4</j></tuple>
<tuple><i>3</i><j>5</j></tuple>
<tuple><i>3</i><j>6</j></tuple>

A combination of all possible combinations of sets of values is called a
Cartesian cross-product. The tuples preserve the order of the original
sequences, in the order in which they are bound. In the previous example,
note that the tuples reflect the values of each $i in the original order; for
a given value of $i, the values of $j occur in the original order. In mathe-
matical terms, the tuples generated in a FLWOR expression are drawn
from the ordered Cartesian cross-product of the items to which the for
variables are bound.

The ability to create tuples that reflect combinations becomes particu-
larly interesting when combined with where clauses to perform joins.
The following sections illustrate this in depth. But first we must intro-
duce the where and return clauses.

The where Clause

A where clause eliminates tuples that do not satisfy a particular condi-
tion. A return clause is only evaluated for tuples that survive the where
clause. The following query returns only books whose prices are less
than $50.00:

for $b in doc("books.xml")//book
where $b/price < 50.00
return $b/title

Here is the result of this query:

<title>Data on the Web</title>

A where clause can contain any expression that evaluates to a Boolean
value. In SQL, a WHERE clause can only test single values, but there is no

22 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 22

such restriction on where clauses in XQuery. The following query
returns the title of books that have more than two authors:

for $b in doc("books.xml")//book
let $c := $b//author
where count($c) > 2
return $b/title

Here is the result of the above query:

<title>Data on the Web</title>

The order by Clause

The order by clause sorts the tuples before the return clause is evalu-
ated in order to change the order of results. For instance, the following
query lists the titles of books in alphabetical order:

for $t in doc("books.xml")//title
order by $t
return $t

The for clause generates a sequence of tuples, with one title node in
each tuple. The order by clause sorts these tuples according to the value
of the title elements in the tuples, and the return clause returns the
title elements in the same order as the sorted tuples. The result of this
query is

<title>Advanced Programming in the Unix Environment</title>
<title>Data on the Web</title>
<title>TCP/IP Illustrated</title>
<title>The Economics of Technology and Content for Digital TV</title>

The order by clause allows one or more orderspecs, each of which specifies
one expression used to sort the tuples. An orderspec may also specify
whether to sort in ascending or descending order, how expressions that eval-
uate to empty sequences should be sorted, a specific collation to be used, and
whether stable sorting should be used (stable sorting preserves the relative
order of two items if their values are equal). Here is a query that returns
authors, sorting in reverse order by the last name, then the first name:

for $a in doc("books.xml")//author
order by $a/last descending, $a/first descending
return $a

COMBINING AND RESTRUCTURING NODES 23

Katz_C01.qxd 7/23/03 2:45 PM Page 23

The result of this query is shown in Listing 1.4.

Listing 1.4 Results of Query for Authors Sorted by Last Name

<author>
<last>Suciu</last>
<first>Dan</first>

</author>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
<author>

<last>Buneman</last>
<first>Peter</first>

</author>
<author>

<last>Abiteboul</last>
<first>Serge</first>

</author>

The order by clause may specify conditions based on data that is not
used in the return clause, so there is no need for an expression to return
data in order to use it to sort. Here is an example that returns the titles of
books, sorted by the name of the first author:

let $b := doc("books.xml")//book
for $t in distinct-values($b/title)
let $a1 := $b[title=$t]/author[1]
order by $a1/last, $a1/first
return $b/title

The result of this query is

<title>The Economics of Technology and Content for Digital TV</title>
<title>Data on the Web</title>
<title>Advanced Programming in the UNIX Environment</title>
<title>TCP/IP Illustrated</title>

The first book in this list has editors, but no authors. For this book,
$a1/last and $a1/first will both return empty sequences. Some
XQuery implementations always sort empty sequences as the greatest
possible value; others always sort empty sequences as the least possible
value. The XML Query Working Group decided to allow vendors to

24 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 24

choose which of these orders to implement because many XQuery imple-
mentations present views of relational data, and relational databases dif-
fer in their sorting of nulls. To guarantee that an XQuery uses the same
sort order across implementations, specify “empty greatest” or “empty
least” in an orderspec if its expression can evaluate to an empty sequence.

Two books in our data are written by the same author, and we may want
to ensure that the original order of these two books is maintained. We
can do this by specifying a stable sort, which maintains the relative order
of two items if the comparison expressions consider them equal. The fol-
lowing query specifies a stable sort, and requires empty sequences to be
sorted as least:

let $b := doc("books.xml")//book
for $t in distinct-values($b/title)
let $a1 := $b[title=$t]/author[1]
stable order by $a1/last empty least, $a1/first empty least
return $b/title

This query returns the same result as the previous one, but is guaranteed
to do so across all implementations.

Collations may also be specified in an order by clause. The following
query sorts titles using a U.S. English collation:

for $t in doc("books.xml")//title
order by $t collation "http://www.example.com/collations/eng-us"
return $t

Most queries use the same collation for all comparisons, and it is gener-
ally too tedious to specify a collation for every orderspec. XQuery allows
a default collation to be specified in the prolog. The default collation is
used when the orderspec does not specify a collation. Here is a query that
sets http://www.example.com/collations/eng-us as the default collation; it
returns the same results as the previous query:

default collation = "http://www.example.com/collations/eng-us"

for $t in doc("books.xml")//title
order by $t
return $t

When sorting expressions in queries, it is important to remember that
the / and // operators sort in document order. That means that an order

COMBINING AND RESTRUCTURING NODES 25

Katz_C01.qxd 7/23/03 2:45 PM Page 25

established with an order by clause can be changed by expressions that
use these operators. For instance, consider the following query:

let $authors := for $a in doc("books.xml")//author
order by $a/last, $a/first
return $a

return $authors/last

This query does not return the author’s last names in alphabetical order,
because the / in $authors/last sorts the last elements in document
order. This kind of error generally occurs with let bindings, not with
for bindings, because a for clause binds each variable to a single value in
a given tuple, and returning children or descendents of a single node does
not lead to surprises. The following query returns author’s last names in
alphabetical order:

for $a in doc("books.xml")//author
order by $a/last, $a/first
return $a/last

The return Clause

We have already seen that a for clause or a let clause may be bound to
any expression, and a where clause may contain any Boolean expres-
sion. Similary, any XQuery expression may occur in a return clause.
Element constructors are an extremely common expression in return
clauses; for instance, the following query uses an element constructor
to create price quotes:

for $b in doc("books.xml")//book
return
<quote>{ $b/title, $b/price }</quote>

Listing 1.5 shows the result of the above query.

Listing 1.5 Results of Query for Price Quotes

<quote>
<title>TCP/IP Illustrated</title>
<price>65.95</price>

</quote>
<quote>

<title>Advanced Programming in the UNIX Environment</title>
<price>65.95</price>

</quote>

26 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 26

Listing 1.5 Results of Query for Price Quotes (continued)

<quote>
<title>Data on the Web</title>
<price>39.95</price>

</quote>
<quote>

<title>The Economics of Technology and Content for Digital
TV</title>

<price>129.95</price>
</quote>

Element constructors can be used in a return clause to change the hier-
archy of data. For instance, we might want to represent an author’s name
as a string in a single element, which we can do with the following query:

for $a in doc("books.xml")//author
return
<author>{ string($a/first), " ", string($a/last) }</author>

Here is the result of the above query:

<author>W. Stevens</author>
<author>W. Stevens</author>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>

Another application might want to insert a name element to hold the first
and last name of the author—after all, an author does not consist of a first and
a last! Here is a query that adds a level to the hierarchy for names:

for $a in doc("books.xml")//author
return
<author>

<name>{ $a/first, $a/last }</name>
</author>

Here is one author’s name taken from the output of the above query:

<author>
<name>
<first>Serge</first>
<last>Abiteboul</last>
</name>

</author>

COMBINING AND RESTRUCTURING NODES 27

Katz_C01.qxd 7/23/03 2:45 PM Page 27

This section has discussed the most straightforward use of for and
return clauses, and it has shown how to combine FLWOR expressions
with other expressions to perform common tasks. More complex uses of
for clauses are explored later in separate sections on joins and positional
variables.

The Positional Variable at

The for clause supports positional variables, which identify the position
of a given item in the expression that generated it. For instance, the fol-
lowing query returns the titles of books, with an attribute that numbers
the books:

for $t at $i in doc("books.xml")//title
return <title pos="{$i}">{string($t)}</title>

Here is the result of this query:

<title pos="1">TCP/IP Illustrated</title>
<title pos="2">Advanced Programming in the Unix Environment</title>
<title pos="3">Data on the Web</title>
<title pos="4">The Economics of Technology and Content for Digital
TV</title>

In some data, position conveys meaning. In tables, for instance, the row
and column in which an item is found often determine its meaning. For
instance, suppose we wanted to create data from an XHTML web page
that contains the table shown in Table 1.2.

TABLE 1.2 Table from an XHTML Web Page

Title Publisher Price Year

TCP/IP Illustrated Addison-Wesley 65.95 1994

Addison-Wesley 65.95 1992

Data on the Web Morgan Kaufmann Publishers 39.95 2000

Kluwer Academic Publishers 129.95 1999The Economics of Technology
and Content for Digital TV

Advanced Programming in the
UNIX Environment

28 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 28

The XHTML source for this table is shown in Listing 1.2.

Listing 1.6 XHTML Source for Table 1.2

<table border="1">
<thead>

<tr>
<td>Title</td>
<td>Publisher</td>
<td>Price</td>
<td>Year</td>

</tr>
</thead>
<tbody>

<tr>
<td>TCP/IP Illustrated</td>
<td>Addison-Wesley</td>
<td>65.95</td>
<td>1994</td>

</tr>
<tr>

<td>Advanced Programming in the UNIX
Environment</td>
<td>Addison-Wesley</td>
<td>65.95</td>
<td>1992</td>

</tr>
<!— Additional rows omitted to save space —>
</tbody>

</table>

In this table, every entry in the same column as the Title header is a title,
every entry in the same column as the Publisher header is a publisher,
and so forth. In other words, we can determine the purpose of an entry if
we can determine its position as a column of the table, and relate it to the
position of a column header. Positional variables make this possible.
Since XHTML is XML, it can be queried using XQuery. Listing 1.7
shows a query that produces meaningful XML from the above data, gen-
erating the names of elements from the column headers.

Listing 1.7 Query to Generate Names of Elements from Column Headers

let $t := doc("bib.xhtml")//table[1]
for $r in $t/tbody/tr
return
<book>

COMBINING AND RESTRUCTURING NODES 29

Katz_C01.qxd 7/23/03 2:45 PM Page 29

Listing 1.7 Query to Generate Names of Elements from Column Headers (continued)

{
for $c at $i in $r/td
return element{ lower-case(data($t/thead/tr/td[$i])) }

{ string($c) }
}
</book>

Note the use of a computed element constructor that uses the column
header to determine the name of the element. Listing 1.8 shows the por-
tion of the output this query generates for the partial data shown in
Table 1.2.

Listing 1.8 Output Generated by the Query of Listing 1.7

<book>
<title>TCP/IP Illustrated</title>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>
<year>1994</year>

</book>
<book>

<title>Advanced Programming in the Unix Environment</title>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>
<year>1992</year>

</book>

Eliminating Duplicate Subtrees with distinct-values() and
FLWOR Expressions

Data often contains duplicate values, and FLWOR expressions are often
combined with the distinct-values() function to remove duplicates
from subtrees. Let’s start with the following query, which returns the last
name of each author:

doc("books.xml")//author/last

Since one of our authors wrote two of the books in the bibliography, the
result of this query contains a duplicate:

<last>Stevens</last>
<last>Stevens</last>
<last>Abiteboul</last>
<last>Buneman</last>
<last>Suciu</last>

30 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 30

The distinct-values() function extracts the values of a sequence of
nodes and creates a sequence of unique values, eliminating duplicates. Here
is a query that uses distinct-values() to eliminate duplicate last names:

distinct-values(doc("books.xml")//author/last)

Here is the output of the above query:

Stevens Abiteboul Buneman Suciu

The distinct-values() function eliminates duplicates, but in order to
do so, it extracts values from nodes. FLWOR expressions are often used
together with distinct-values() to create subtrees that correspond to
sets of one or more unique values. For the preceding query, we can use an
element constructor to create a last element containing each value:

for $l in distinct-values(doc("books.xml")//author/last)
return <last>{ $l }</last>

Here is the output of the above query:

<last>Stevens</last>
<last>Abiteboul</last>
<last>Buneman</last>
<last>Suciu</last>

The same problem arises for complex subtrees. For instance, the follow-
ing query returns authors, and one of the authors is a duplicate by both
first and last name:

doc("books.xml")//author

The output of the above query appears in Listing 1.9.

Listing 1.9 Output of the Query for Authors

<authors>
<author>
<last>Stevens</last>
<first>W.</first>

</author>
<author>
<last>Stevens</last>
<first>W.</first>

</author>

COMBINING AND RESTRUCTURING NODES 31

Katz_C01.qxd 7/23/03 2:45 PM Page 31

Listing 1.9 Output of the Query for Authors (continued)

<author>
<last>Abiteboul</last>
<first>Serge</first>

</author>
<author>
<last>Buneman</last>
<first>Peter</first>

</author>
<author>
<last>Suciu</last>
<first>Dan</first>

</author>
</authors>

To eliminate duplicates from complex subtrees, we have to decide what
criterion to use for detecting a duplicate. In this case, let’s say that an
author is a duplicate if there is another author who has the same first and
last names. Now let’s write a query that returns one author for each first
and last name that occur together within an author element in our dataset:

let $a := doc("books.xml")//author
for $l in distinct-values($a/last),

$f in distinct-values($a[last=$l]/first)
return

<author>
<last>{ $l }</last>
<first>{ $f }</first>

</author>

In the output of the above query (Listing 1.10), each author’s name
appears only once.

Listing 1.10 Output of Query to Avoid Duplicate Author Names

<authors>
<author>
<last>Stevens</last>
<first>W.</first>

</author>
<author>
<last>Abiteboul</last>
<first>Serge</first>

</author>
<author>
<last>Buneman</last>
<first>Peter</first>

</author>

32 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 32

Listing 1.10 Output of Query to Avoid Duplicate Author Names (continued)

<author>
<last>Suciu</last>
<first>Dan</first>

</author>
</authors>

Joins: Combining Data Sources with for and where Clauses

A query may bind multiple variables in a for clause in order to combine
information from different expressions. This is often done to bring
together information from different data sources. For instance, suppose
we have a file named reviews.xml that contains book reviews:

<reviews>
<entry>
<title>TCP/IP Illustrated</title>
<rating>5</rating>
<remarks>Excellent technical content. Not much plot.</remarks>
</entry>

</reviews>

A FLWOR expression can bind one variable to our bibliography data and
another to the reviews, making it possible to compare data from both files
and to create results that combine their information. For instance, a
query could return the title of a book and any remarks found in a review.

As we have discussed earlier, the Cartesian cross-product of two sequences
contains all possible combinations of the items in those sequences. When
a where clause is used to select interesting combinations from the Carte-
sian cross-product, this is known as a join. The following query performs a
join to combine data from a bibliography with data from a set of reviews:

for $t in doc("books.xml")//title,
$e in doc("reviews.xml")//entry

where $t = $e/title
return <review>{ $t, $e/remarks }</review>

The result of this query is as follows:

<review>
<title>TCP/IP Illustrated</title>
<remarks>Excellent technical content. Not much plot.</remarks>

</review>

COMBINING AND RESTRUCTURING NODES 33

Katz_C01.qxd 7/23/03 2:45 PM Page 33

In this query, the for clauses create tuples from the Cartesian cross-
product of titles and entries, the where clause filters out tuples where the
title of the review does not match the title of the book, and the return
clause constructs the result from the remaining tuples. Note that only
books with reviews are shown. SQL programmers will recognize the
preceding query as an inner join, returning combinations of data that
satisfy a condition.

The tuples generated for a FLWOR expression include all expressions
bound in variable bindings in for clauses. A FLWOR expression with
multiple for clauses has the same meaning as a FLWOR expression that
binds multiple variables in a single for clause. The following query is
precisely equivalent to the previous one:

for $t in doc("books.xml")//title
for $e in doc("reviews.xml")//entry
where $t = $e/title
return <review>{ $t, $e/remarks }</review>

The query shown in Listing 1.11 returns the title of each book regardless
of whether it has a review; if a book does have a review, the remarks found
in the review are also included. SQL programmers will recognize this as a
left outer join.

Listing 1.11 Query to Return Titles with or without Reviews

for $t in doc("books.xml")//title
return
<review>
{ $t }
{
for $e in doc("reviews.xml")//entry
where $e/title = $t
return $e/remarks

}
</review>

Inverting Hierarchies

XQuery can be used to do quite general transformations. One transfor-
mation that is used in many applications is colloquially referred to as
“inverting a hierarchy”—creating a new document in which the top
nodes represent information which was found in the lower nodes of the

34 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 34

original document. For instance, in our sample data, publishers are
found at the bottom of the hierarchy, and books are found near the top.
Listing 1.12 shows a query that creates a list of titles published by each
publisher, placing the publisher at the top of the hierarchy and listing
the titles of books at the bottom.

Listing 1.12 Query to List Titles by Publisher

<listings>
{
for $p in distinct-values(doc("books.xml")//publisher)
order by $p
return

<result>
{ $p }
{

for $b in doc("books.xml")/bib/book
where $b/publisher = $p
order by $b/title
return $b/title

}
</result>

}
</listings>

The results of this query are as follows:

<listings>
<result>

<publisher>Addison-Wesley</publisher>
<title>Advanced Programming in the Unix Environment</title>
<title>TCP/IP Illustrated</title>
</result>
<result>
<publisher>Kluwer Academic Publishers</publisher>
<title>The Economics of Technology and Content for
Digital TV</title>
</result>
<result>
<publisher>Morgan Kaufmann Publishers</publisher>
<title>Data on the Web</title>
</result>

</listings>

A more complex example of inverting a hierarchy is discussed in the fol-
lowing section on quantifiers.

COMBINING AND RESTRUCTURING NODES 35

Katz_C01.qxd 7/23/03 2:45 PM Page 35

Quantifiers

Some queries need to determine whether at least one item in a sequence
satisfies a condition, or whether every item in a sequence satisfies a condi-
tion. This is done using quantifiers. An existential quantifier tests whether
at least one item satisfies a condition. The following query shows an exis-
tential quantifier in XQuery:

for $b in doc("books.xml")//book
where some $a in $b/author

satisfies ($a/last="Stevens" and $a/first="W.")
return $b/title

The some quantifier in the where clause tests to see if there is at least one
author that satisfies the conditions given inside the parentheses. Here is
the result of the above query:

<title>TCP/IP Illustrated</title>
<title>Advanced Programming in the Unix Environment</title>

A universal quantifier tests whether every node in a sequence satisfies a
condition. The following query tests to see if every author of a book is
named W. Stevens:

for $b in doc("books.xml")//book
where every $a in $b/author

satisfies ($a/last="Stevens" and $a/first="W.")
return $b/title

Here is the result of the above query:

<title>TCP/IP Illustrated</title>
<title>Advanced Programming in the Unix Environment</title>
<title>The Economics of Technology and Content for Digital TV</title>

The last title returned, The Economics of Technology and Content for Digital
TV, is the title of a book that has editors but no authors. For this book, the
expression $b/author evaluates to an empty sequence. If a universal
quantifier is applied to an empty sequence, it always returns true, because
every item in that (empty) sequence satisfies the condition—even though
there are no items.

Quantifiers sometimes make complex queries much easier to write and
understand. For instance, they are often useful in queries that invert

36 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 36

hierarchies. Listing 1.13 shows a query that creates a list of books writ-
ten by each author in our bibliography.

Listing 1.13 Query to List Books by Author

<author-list>
{
let $a := doc("books.xml")//author
for $l in distinct-values($a/last),

$f in distinct-values($a[last=$l]/first)
order by $l, $f
return

<author>
<name>{ $l, ", ", $f }</name>
{

for $b in doc("books.xml")/bib/book
where some $ba in $b/author satisfies

($ba/last=$l and $ba/first=$f)
order by $b/title
return $b/title

}
</author>

}
</author-list>

The result of the above query is shown in Listing 1.14.

Listing 1.14 Results of Query to List Books by Author

<author-list>
<author>

<name>Stevens, W.</name>
<title>Advanced Programming in the Unix Environment</title>
<title>TCP/IP Illustrated</title>

</author>
<author>

<name>Abiteboul, Serge</name>
<title>Data on the Web</title>

</author>
<author>

<name>Buneman, Peter</name>
<title>Data on the Web</title>

</author>
<author>

<name>Suciu, Dan</name>
<title>Data on the Web</title>

</author>
</author-list>

COMBINING AND RESTRUCTURING NODES 37

Katz_C01.qxd 7/23/03 2:45 PM Page 37

Conditional Expressions

XQuery’s conditional expressions are used in the same way as conditional
expressions in other languages. Listing 1.15 shows a query that uses a con-
ditional expression to list the first two authors’ names for each book and a
dummy name containing “et al.” to represent any remaining authors.

Listing 1.15 Query to List Author’s Names with “et al.”

for $b in doc("books.xml")//book
return
<book>
{ $b/title }
{
for $a at $i in $b/author
where $i <= 2
return <author>{string($a/last), ", ",

string($a/first)}</author>
}
{
if (count($b/author) > 2)
then <author>et al.</author>
else ()

}
</book>

In XQuery, both the then clause and the if clause are required. Note
that the empty sequence () can be used to specify that a clause should
return nothing. The output of this query is shown in Listing 1.16.

Listing 1.16 Result of Query from Listing 1.15

<book>
<title>TCP/IP Illustrated</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Advanced Programming in the Unix Environment</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Data on the Web</title>
<author>Abiteboul, Serge</author>
<author>Buneman, Peter</author>
<author>et al.</author>

</book>

38 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 38

Listing 1.16 Result of Query from Listing 1.15 (continued)

<book>
<title>The Economics of Technology and Content for
Digital TV</title>

</book>

Operators

The queries we have shown up to now all contain operators, which we
have not yet covered. Like most languages, XQuery has arithmetic oper-
ators and comparison operators, and because sequences of nodes are a
fundamental datatype in XQuery, it is not surprising that XQuery also
has node sequence operators. This section describes these operators in
some detail. In particular, it describes how XQuery treats some of the
cases that arise quite easily when processing XML; for instance, consider
the following expression: 1 * $b. How is this interpreted if $b is an
empty sequence, untyped character data, an element, or a sequence of
five nodes? Given the flexible structure of XML, it is imperative that
cases like this be well defined in the language. (Chapter 2, “Influences on
the Design of XQuery,” provides additional background on the technical
complexities that the working group had to deal with to resolve these and
similar issues.)

Two basic operations are central to the use of operators and functions in
XQuery. The first is called typed value extraction. We have already used
typed value extraction in many of our queries, without commenting on it.
For instance, we have seen this query:

doc("books.xml")/bib/book/author[last='Stevens']

Consider the expression last='Stevens'. If last is an element, and
'Stevens' is a string, how can an element and a string be equal? The
answer is that the = operator extracts the typed value of the element,
resulting in a string value that is then compared to the string Stevens. If
the document is governed by a W3C XML Schema, then it may be asso-
ciated with a simple type, such as xs:integer. If so, the typed value will
have whatever type has been assigned to the node by the schema. XQuery
has a function called data() that extracts the typed value of a function.
Assuming the following element has been validated by a schema proces-
sor, the result of this query is the integer 4:

OPERATORS 39

Katz_C01.qxd 7/23/03 2:45 PM Page 39

data(<e xsi:type="xs:integer">4</e>)

A query may import a schema. We will discuss schema imports later, but
schema imports have one effect that should be understood now. If typed
value extraction is applied to an element, and the query has imported a
schema definition for that element specifying that the element may have
other elements as children, then typed value extraction raises an error.

Typed value extraction is defined for a single item. The more general
form of typed value extraction is called atomization, which defines how
typed value extraction is done for any sequence of items. For instance,
atomization would be performed for the following query:

avg(1, <e>2</e>, <e xsi:type="xs:integer">3</e>)

Atomization simply returns the typed value of every item in the sequence.
The preceding query returns 2, which is the average of 1, 2, and 3. In
XQuery, atomization is used for the operands of arithmetic expressions
and comparison expressions. It is also used for the parameters and return
values of functions and for cast expressions, which are discussed in other
sections.

Arithmetic Operators

XQuery supports the arithmetic operators +, -, *, div, idiv, and mod.
The div operator performs division on any numeric type. The idiv
operator requires integer arguments, and returns an integer as a result,
rounding toward 0. All other arithmetic operators have their conven-
tional meanings. If an operand of an arithmetic operator is a node, atom-
ization is applied. For instance, the following query returns the integer 4:

2 + <int>{ 2 }</int>

If an operand is an empty sequence, the result of an arithmetic operator is
an empty sequence. Empty sequences in XQuery frequently operate like
nulls in SQL. The result of the following query is an empty sequence:

2 + ()

40 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 40

If an operand is untyped data, it is cast to a double, raising an error if the
cast fails. This implicit cast is important, because a great deal of XML
data is found in documents that do not use W3C XML Schema, and
therefore do not have simple or complex types. Many of these documents
however contain data that is to be interpreted as numeric. The prices in
our sample document are one example of this. The following query adds
the first and second prices, returning the result as a double:

let $p := doc("books.xml")//price
return $p[1] + $p[2]

Comparison Operators

XQuery has several sets of comparison operators, including value com-
parisons, general comparisons, node comparisons, and order compar-
isons. Value comparisons and general comparisons are closely related; in
fact, each general comparison operator combines an existential quanti-
fier with a corresponding a value comparison operator. Table 1.3 shows
the value comparison operator to which each general comparison opera-
tor corresponds.

The value comparisons compare two atomic values. If either operand is a
node, atomization is used to convert it to an atomic value. For the com-
parison, if either operand is untyped, it is treated as a string. Here is a
query that uses the eq operator:

for $b in doc("books.xml")//book
where $b/title eq "Data on the Web"
return $b/price

TABLE 1.3 Value Comparison Operators vs. General Comparison Operators

Value Comparison Operator General Comparison Operator

eq =

ne !=

lt <

le <=

gt >

ge >=

OPERATORS 41

Katz_C01.qxd 7/23/03 2:45 PM Page 41

Using value comparisons, strings can only be compared to other strings,
which means that value comparisons are fairly strict about typing. If our
data is governed by a DTD, then it does not use the W3C XML Schema
simple types, so the price is untyped. Therefore, a cast is needed to cast
price to a decimal in the following query:

for $b in doc("books.xml")//book
where xs:decimal($b/price) gt 100.00
return $b/title

If the data were governed by a W3C XML Schema that declared price to
be a decimal, this cast would not have been necessary. In general, if the
data you are querying is meant to be interpreted as typed data, but there
are no types in the XML, value comparisons force your query to cast when
doing comparisons—general comparisons are more loosely typed and do
not require such casts. This problem does not arise if the data is meant to
be interpreted as string data, or if it contains the appropriate types.

Like arithmetic operators, value comparisons treat empty sequences
much like SQL nulls. If either operand is an empty sequence, a value
comparison evaluates to the empty sequence. If an operand contains
more than one item, then a value comparison raises an error. Here is an
example of a query that raises an error:

for $b in doc("books.xml")//book
where $b/author/last eq "Stevens"
return $b/title

The reason for the error is that many books have multiple authors, so the
expression $b/author/last returns multiple nodes. The following
query uses =, the general comparison that corresponds to eq, to return
books for which any author’s last name is equal to Stevens:

for $b in doc("books.xml")//book
where $b/author/last = "Stevens"
return $b/title

There are two significant differences between value comparisons and
general comparisons. The first is illustrated in the previous query. Like
value comparisons, general comparisons apply atomization to both
operands, but instead of requiring each operand to be a single atomic

42 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 42

value, the result of this atomization may be a sequence of atomic values.
The general comparison returns true if any value on the left matches any
value on the right, using the appropriate comparison.

The second difference involves the treatment of untyped data—general
comparisons try to cast to an appropriate “required type” to make the
comparison work. This is illustrated by the following query:

for $b in doc("books.xml")//book
where $b/price = 100.00
return $b/title

In this query, 100.00 is a decimal, and the = operator casts the price to
decimal as well. When a general comparison tests a pair of atomic values
and one of these values is untyped, it examines the other atomic value to
determine the required type to which it casts the untyped operand:

� If the other atomic value has a numeric type, the required type is
xs:double.

� If the other atomic value is also untyped, the required type is
xs:string.

� Otherwise, the required type is the dynamic type of the other
atomic value. If the cast to the required type fails, a dynamic error
is raised.

These conversion rules mean that comparisons done with general com-
parisons rarely need to cast when working with data that does not contain
W3C XML Schema simple types. On the other hand, when working with
strongly typed data, value comparisons offer greater type safety.

You should be careful when using the = operator when an operand has
more than one step, because it can lead to confusing results. Consider the
following query:

for $b in doc("books.xml")//book
where $b/author/first = "Serge"
and $b/author/last = "Suciu"

return $b

The result of this query may be somewhat surprising, as Listing 1.17 shows.

OPERATORS 43

Katz_C01.qxd 7/23/03 2:45 PM Page 43

Listing 1.17 Surprising Results

<book year = "2000">
<title>Data on the Web</title>
<author>
<last>Abiteboul</last>
<first>Serge</first>

</author>
<author>
<last>Buneman</last>
<first>Peter</first>

</author>
<author>
<last>Suciu</last>
<first>Dan</first>

</author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

Since this book does have an author whose first name is “Serge” and an
author whose last name is “Suciu,” the result of the query is correct, but it
is surprising. The following query expresses what the author of the previ-
ous query probably intended:

for $b in doc("books.xml")//book,
$a in $b/author

where $a/first="Serge"
and $a/last="Suciu"

return $b

Comparisons using the = operator are not transitive. Consider the fol-
lowing query:

let $a := (<first>Jonathan</first>, <last>Robie</last>),
$b := (<first>Jonathan</first>, <last>Marsh</last>),
$c := (<first>Rodney</first>, <last>Marsh</last>)

return
<out>
<equals>{ $a = $b }</equals>
<equals>{ $b = $c }</equals>
<equals>{ $a = $c }</equals>

</out>

44 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 44

Remember that = returns true if there is a value on the left that matches
a value on the right. The output of this query is as follows:

<out>
<equals>True</equals>
<equals>True</equals>
<equals>False</equals>

</out>

Node comparisons determine whether two expressions evaluate to the
same node. There are two node comparisons in XQuery, is and is not.
The following query tests whether the most expensive book is also the
book with the greatest number of authors and editors:

let $b1 := for $b in doc("books.xml")//book
order by count($b/author) + count($b/editor)
return $b

let $b2 := for $b in doc("books.xml")//book
order by $b/price
return $b

return $b1[last()] is $b2[last()]

This query also illustrates the last() function, which determines
whether a node is the last node in the sequence; in other words,
$b1[last()] returns the last node in $b1.

XQuery provides two operators that can be used to determine whether
one node comes before or after another node in document order. These
operators are generally most useful for data in which the order of elements
is meaningful, as it is in many documents or tables. The operator $a <<
$b returns true if $a precedes $b in document order; $a >> $b returns
true if $a follows $b in document order. For instance, the following query
returns books where Abiteboul is an author, but is not listed as the first
author:

for $b in doc("books.xml")//book
let $a := ($b/author)[1],

$sa := ($b/author)[last="Abiteboul"]
where $a << $sa
return $b

In our sample data, there are no such books.

OPERATORS 45

Katz_C01.qxd 7/23/03 2:45 PM Page 45

Sequence Operators

XQuery provides the union, intersect, and except operators for com-
bining sequences of nodes. Each of these operators combines two
sequences, returning a result sequence in document order. As we have
discussed earlier, a sequence of nodes that is in document order, never
contains the same node twice. If an operand contains an item that is not a
node, an error is raised.

The union operator takes two node sequences and returns a sequence
with all nodes found in the two input sequences. This operator has two
lexical forms: | and union. Here is a query that uses the | operator to
return a sorted list of last names for all authors or editors:

let $l := distinct-values(doc("books.xml")//(author | editor)/last)
order by $l
return <last>{ $l }</last>

Here is the result of the above query:

<last>Abiteboul</last>
<last>Buneman</last>
<last>Gerbarg</last>
<last>Stevens</last>
<last>Suciu</last>

The fact that the union operator always returns nodes in document order
is sometimes quite useful. For instance, the following query sorts books
based on the name of the first author or editor listed for the book:

for $b in doc("books.xml")//book
let $a1 := ($b/author union $b/editor)[1]
order by $a1/last, $a1/first
return $b

The intersect operator takes two node sequences as operands and
returns a sequence containing all the nodes that occur in both operands.
The except operator takes two node sequences as operands and returns a
sequence containing all the nodes that occur in the first operand but not
in the second operand. For instance, the following query returns a book
with all of its children except for the price:

46 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 46

for $b in doc("books.xml")//book
where $b/title = "TCP/IP Illustrated"
return

<book>
{ $b/@* }
{ $b/* except $b/price }
</book>

The result of this query contains all attributes of the original book and all
elements—in document order—except for the price element, which is
omitted:

<book year = "1994">
<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
<publisher>Addison-Wesley</publisher>
</book>

Built-in Functions

XQuery has a set of built-in functions and operators, including many
that are familiar from other languages, and some that are used for cus-
tomized XML processing. The complete list of built-in functions is
found in [XQ-FO]. This section focuses on the most commonly used
functions, some of which must be understood to follow what is said in
the rest of the chapter.

SQL programmers will be familiar with the min(), max(), count(),
sum(), and avg() functions. The following query returns the titles of
books that are more expensive than the average book:

let $b := doc("books.xml")//book
let $avg := average($b//price)
return $b[price > $avg]

For our sample data, Listing 1.18 shows the result of this query.

BUILT-IN FUNCTIONS 47

Katz_C01.qxd 7/23/03 2:45 PM Page 47

Listing 1.18 Result of Query for Books More Expensive Than Average

<book year = "1999">
<title>The Economics of Technology and Content for
Digital TV</title>
<editor>
<last>Gerbarg</last>
<first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>

Note that price is the name of an element, but max() is defined for
atomic values, not for elements. In XQuery, if the type of a function argu-
ment is an atomic type, then the following conversion rules are applied.
If the argument is a node, its typed value is extracted, resulting in a
sequence of values. If any value in the argument sequence is untyped,
XQuery attempts to convert it to the required type and raises an error if it
fails. A value is accepted if it has the expected type.

Other familiar functions in XQuery include numeric functions like
round(), floor(), and ceiling(); string functions like concat(),
string-length(), starts-with(), ends-with(), substring(),
upper-case(), lower-case(); and casts for the various simple types.
These are all covered in [XQ-FO], which defines the standard function
library for XQuery; they need no further coverage here since they are
straightforward.

XQuery also has a number of functions that are not found in most other
languages. We have already covered distinct-values(), the input
functions doc() and collection(). Two other frequently used functions
are not() and empty(). The not() function is used in Boolean condi-
tions; for instance, the following returns books where no author’s last
name is Stevens:

for $b in doc("books.xml")//book
where not(some $a in $b/author satisfies $a/last="Stevens")
return $b

The empty() function reports whether a sequence is empty. For instance,
the following query returns books that have authors, but does not return the
one book that has only editors:

48 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 48

for $b in doc("books.xml")//book
where not(empty($b/author))
return $b

The opposite of empty() is exists(), which reports whether a sequence
contains at least one item. The preceding query could also be written as
follows:

for $b in doc("books.xml")//book
where exists($b/author)
return $b

XQuery also has functions that access various kinds of information asso-
ciated with a node. The most common accessor functions are string(),
which returns the string value of a node, and data(), which returns the
typed value of a node. These functions require some explanation. The
string value of a node includes the string representation of the text found
in the node and its descendants, concatenated in document order. For
instance, consider the following query:

string((doc("books.xml")//author)[1])

The result of this query is the string "Stevens W." (The exact result
depends on the whitespace found in the original document—we have
made some assumptions about what whitespace is present.)

User-Defined Functions

When a query becomes large and complex, it is often much easier to
understand if it is divided into functions, and these functions can be
reused in other parts of the query. For instance, we have seen a query
that inverts a hierarchy to create a list of books by each author in a bibli-
ography. It contained the following code:

for $b in doc("books.xml")/bib/book
where some $ba in $b/author satisfies

($ba/last=$l and $ba/first=$f)
order by $b/title
return $b/title

USER-DEFINED FUNCTIONS 49

Katz_C01.qxd 7/23/03 2:45 PM Page 49

This code returns the titles of books written by a given author whose first
name is bound to $f and whose last name is bound to $l. But you have to
read all of the code in the query to understand that. Placing it in a named
function makes its purpose clearer:

define function books-by-author($last, $first)
as element()*

{
for $b in doc("books.xml")/bib/book
where some $ba in $b/author satisfies

($ba/last=$last and $ba/first=$first)
order by $b/title
return $b/title

}

XQuery allows functions to be recursive, which is often important for
processing the recursive structure of XML. One common reason for
using recursive functions is that XML allows recursive structures. For
instance, suppose a book chapter may consist of sections, which may be
nested. The query in Listing 1.19 creates a table of contents, containing
only the sections and the titles, and reflecting the structure of the original
document in the table of contents.

Listing 1.19 Query to Create a Table of Contents

define function toc($book-or-section as element())
as element()*

{
for $section in $book-or-section/section
return
<section>
{ $section/@* , $section/title , toc($section) }

</section>
}

<toc>
{
for $s in doc("xquery-book.xml")/book
return toc($s)

}
</toc>

If two functions call each other, they are mutually recursive. Mutually
recursive functions are allowed in XQuery.

50 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 50

Variable Definitions

A query can define a variable in the prolog. Such a variable is available at
any point after it is declared. For instance, if access to the titles of books is
used several times in a query, it can be provided in a variable definition:

define variable $titles { doc(“books.xml”)//title }

To avoid circular references, a variable definition may not call functions
that are defined prior to the variable definition.

Library Modules

Functions can be put in library modules, which can be imported by any
query. Every module in XQuery is either a main module, which contains
a query body to be evaluated, or a library module, which has a module
declaration but no query body. A library module begins with a module dec-
laration, which provides a URI that identifies the module for imports, as
shown in Listing 1.20.

Listing 1.20 Module Declaration for a Library Module

module "http://example.com/xquery/library/book"

define function toc($book-or-section as element())
as element()*

{
for $section in $book-or-section/section
return
<section>
{ $section/@* , $section/title , toc($section) }

</section>
}

Functions and variable definitions in library modules are namespace-
qualified. Any module can import another module using a module
import, which specifies the URI of the module to be imported. It may
also specify the location where the module can be found:

import module "http://example.com/xquery/library/book"
at "file:///c:/xquery/lib/book.xq"

VARIABLE DEFINITIONS 51

Katz_C01.qxd 7/23/03 2:45 PM Page 51

The location is not required in an import, since some implementations
can locate modules without it. Implementations are free to ignore the
location if they have another way to find modules.

A namespace prefix can be assigned in a module import, which is con-
venient since the functions in a module can only be called if a prefix has
been assigned. The following query imports a module, assigns a prefix,
and calls the function:

import module namespace b = "http://example.com/xquery/library/book"
at "file:///c:/xquery/lib/book.xq"

<toc>
{
for $s in doc("xquery-book.xml")/book
return b:toc($s)

}
</toc>

When a module is imported, both its functions and its variables are made
available to the importing module.

External Functions and Variables

XQuery implementations are often embedded in an environment such as
a Java or C# program or a relational database. The environment can pro-
vide external functions and variables to XQuery. To access these, a query
must declare them in the prolog:

define function outtie($v as xs:integer) as xs:integer external

define variable $v as xs:integer external

XQuery does not specify how such functions and variables are made
available by the external environment, or how function parameters and
arguments are converted between the external environment and
XQuery.

52 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 52

Types in XQuery

Up to now, we have not spent much time discussing types, but the type
system of XQuery is one of the most eclectic, unusual, and useful
aspects of the language. XML documents contain a wide range of type
information, from very loosely typed information without even a
DTD, to rigidly structured data corresponding to relational data or
objects. A language designed for processing XML must be able to deal
with this fact gracefully; it must avoid imposing assumptions on what is
allowed that conflict with what is actually found in the data, allow data
to be managed without forcing the programmer to cast values fre-
quently, and allow the programmer to focus on the documents being
processed and the task to be performed rather than the quirks of the
type system.

Consider the range of XML documents that XQuery must be able to
process gracefully:

� XML may be strongly typed and governed by a W3C XML
Schema, and a strongly typed query language with static typing
can prevent many errors for this kind of data.

� XML may be governed by another schema language, such as
DTDs or RELAX-NG.

� XML may have an ad hoc structure and no schema, and the whole
reason for performing a query may be to discover the structure
found in a document. For this kind of data, the query language
should be able to process whatever data exists, with no precon-
ceived notions of what should be there.

� XML may be used as a view of another system, such as a relational
database. These systems are typically strongly typed, but do not
use W3C XML Schema as the basis for their type system. Fortu-
nately, standard mappings are emerging for some systems, such as
SQL’s mappings from relational schemas to W3C XML Schema.
These are defined in the SQL/XML proposal, which provides
standard XML extensions to SQL [SQLXML].

� XML data sources may have very complex structure, and expres-
sions in XQuery must be well defined in terms of all the structures
to which the operands can evaluate.

TYPES IN XQUERY 53

Katz_C01.qxd 7/23/03 2:45 PM Page 53

To meet these requirements, XQuery allows programmers to write
queries that rely on very little type information, that take advantage of
type information at run-time, or that take advantage of type information
to detect potential errors before a query is ever executed. Chapter 4 pro-
vides a tutorial-like look at the topic of static typing in XQuery. Chapter 2,
“Influences on the Design of XQuery,” looks at the intricacies of some of
the typing-related issues that members of the Work Group had to resolve.

Introduction to XQuery Types

The type system of XQuery is based on [SCHEMA]. There are two sets
of types in XQuery: the built-in types that are available in any query, and
types imported into a query from a specific schema. We will illustrate this
with a series of functions that use increasing amounts of type informa-
tion. XQuery specifies a conformance level called Basic XQuery, which
is required for all implementations and allows two extensions: the schema
import feature allows a W3C XML Schema to be imported in order to
make its definitions available to the query, and the static typing feature
allows a query to be compared to the imported schemas in order to catch
errors without needing to access data. We will start with uses of types that
are compatible with Basic XQuery. As we explore functions that require
more type information, we will point out the points at which schema
import and static typing are needed.

The first function returns a sequence of items in reverse order. The func-
tion definition does not specify the type of the parameter or the return
type, which means that they may be any sequence of items:

define function reverse($items)
{

let $count := count($items)
for $i in 0 to $count
return $items[$count - $i]

}
reverse(1 to 5)

This function uses the to operator, which generates sequences of inte-
gers. For instance, the expression 1 to 5 generates the sequence 1, 2, 3,
4, 5. The reverse function takes this sequence and returns the sequence
5, 4, 3, 2, 1. Because this function does not specify a particular type for its

54 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 54

parameter or return, it could also be used to return a sequence of some
other type, such as a sequence of elements. Specifying more type infor-
mation would make this function less useful.

Some functions take advantage of the known structures in XML or the
built-in types of W3C XML Schema but need no advanced knowledge
of any particular schema. The following function tests an element to see
if it is the top-level element found in a document. If it is, then its parent
node will be the document node, and the expression $e/.. instance
of document will be true when evaluated for that node. The parameter
type is element, since this is only defined for elements, and the return
type is xs:boolean, which is a predefined type in XQuery and is the
type of Boolean values:

define function is-document-element($e as element())
as xs:boolean

{
if ($e/.. instance of document-node())
then true()
else false()

}

All the built-in XML Schema types are predefined in XQuery, and
these can be used to write function signatures similar to those found
in conventional programming languages. For instance, the query in
Listing 1.21 defines a function that computes the nth Fibonacci number
and calls that function to create the first ten values of the Fibonacci
sequence.

Listing 1.21 Query to Create the First Ten Fibonacci Numbers

define function fibo($n as xs:integer)
{
if ($n = 0)
then 0
else if ($n = 1)
then 1
else (fibo($n - 1) + fibo($n - 2))
}

let $seq := 1 to 10
for $n in $seq
return <fibo n="{$n}">{ fibo($n) }</fibo>

TYPES IN XQUERY 55

Katz_C01.qxd 7/23/03 2:45 PM Page 55

Listing 1.22 shows the output of that query.

Listing 1.22 Results of the Query in Listing 1.21

<fibo n = "1">1</fibo>
<fibo n = "2">1</fibo>
<fibo n = "3">2</fibo>
<fibo n = "4">3</fibo>
<fibo n = "5">5</fibo>
<fibo n = "6">8</fibo>
<fibo n = "7">13</fibo>
<fibo n = "8">21</fibo>
<fibo n = "9">34</fibo>
<fibo n = "10">55</fibo>

Schemas and Types

On several occasions, we have mentioned that XQuery can work with
untyped data, strongly typed data, or mixtures of the two. If a document
is governed by a DTD or has no schema at all, then documents contain
very little type information, and queries rely on a set of rules to infer an
appropriate type when they encounter values at run-time. For instance,
the following query computes the average price of a book in our bibliog-
raphy data:

avg(doc("books.xml")/bib/book/price)

Since the bibliography does not have a schema, each price element is
untyped. The avg() function requires a numeric argument, so it converts
each price to a double and then computes the average. The conversion
rules are discussed in detail in a later section. The implicit conversion is
useful when dealing with untyped data, but prices are generally best rep-
resented as decimals rather than floating-point numbers. Later in this
chapter we will present a schema for the bibliography in order to add
appropriate type information. The schema declares price to be a decimal,
so the average would be computed using decimal numbers.

Queries do not need to import schemas to be able to use built-in types found
in data—if a document contains built-in types, the data model preserves
type information and allows queries to access it. If we use the same query we

56 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 56

used before to compute the average price, it will now compute the price as a
decimal. This means that even Basic XQuery implementations, which are
not able to import a schema, are able to use simple types found in the data.
However, if a query uses logic that is related to the meaning of a schema, it is
generally best to import the schema. This can only be done if an implemen-
tation supports the schema import feature. Consider the following function,
which is similar to one discussed earlier:

define function books-by-author($author)
{
for $b in doc("books.xml")/bib/book
where some $ba in $b/author satisfies

($ba/last=$author/last and $ba/first=$author/first)
order by $b/title
return $b/title

}

Because this function does not specify what kind of element the parameter
should be, it can be called with any element at all. For instance, a book ele-
ment could be passed to this function. Worse yet, the query would not
return an error, but would simply search for books containing an author
element that exactly matches the book. Since such a match never occurs, this
function always returns the empty sequence if called with a book element.

If an XQuery implementation supports the schema import feature, we
can ensure that an attempt to call this function with anything but an
author element would raise a type error. Let’s assume that the namespace
of this schema is "urn:examples:xmp:bib". We can import this schema
into a query and then use the element and attribute declarations and type
definitions of the schema in our query, as shown in Listing 1.23.

Listing 1.23 Schema Import and Type Checking

import schema "urn:examples:xmp:bib" at "c:/dev/schemas/eg/bib.xsd"
default element namespace = "urn:examples:xmp:bib"
define function books-by-author($a as element(b:author))
as element(b:title)*

{
for $b in doc("books.xml")/bib/book
where some $ba in $b/author satisfies

($ba/last=$a/last and $ba/first=$a/first)
order by $b/title
return $b/title

}

TYPES IN XQUERY 57

Katz_C01.qxd 7/23/03 2:45 PM Page 57

In XQuery, a type error is raised when the type of an expression does not
match the type required by the context in which it appears. For instance,
given the previous function definition, the function call in the following
expression raises a type error, since an element named book can never be
a valid author element:

for $b in doc("books.xml")/bib/book
return books-by-author($b)

All XQuery implementations are required to detect type errors, but some
implementations detect them before a query is executed, and others
detect them at run-time when query expressions are evaluated. The
process of analyzing a query for type errors before a query is executed is
called static typing, and it can be done using only the imported schema
information and the query itself—there is no need for data to do static
typing. In XQuery, static typing is an optional feature, but an implemen-
tation that supports static typing must always detect type errors statically,
before a query is executed.

The previous example sets the default namespace for elements to the
namespace defined by the schema. This allows the function to be written
without namespace prefixes for the names in the paths. Another way to
write this query is to assign a namespace prefix as part of the import and
use it explicitly for element names. The query in Listing 1.24 is equiva-
lent to the previous one.

Listing 1.24 Assigning a Namespace Prefix in Schema Imports

import schema namespace b = "urn:examples:xmp:bib"
at "c:/dev/schemas/eg/bib.xsd"

define function books-by-author($a as element(b:author))
as element(b:title)*

{
for $b in doc("books.xml")/b:bib/b:book
where some $ba in $b/b:author satisfies

($ba/b:last=$l and $ba/b:first=$f)
order by $b/b:title
return $b/b:title

}

58 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 58

When an element is created, it is immediately validated if there is a
schema definition for its name. For instance, the following query raises
an error because the schema definition says that a book must have a price:

import schema "urn:examples:xmp:bib" at "c:/dev/schemas/eg/bib.xsd"
default element namespace = "urn:examples:xmp:bib"

<book year="1994">
<title>Catamaran Racing from Start to Finish</title>
<author><last>Berman</last><first>Phil</first></author>
<publisher>W.W. Norton & Company</publisher>

</book>

The schema import feature reduces errors by allowing queries to specify
type information, but these errors are not caught until data with the
wrong type information is actually encountered when executing a query.
A query processor that implements the static typing feature can detect
some kinds of errors by comparing a query to the imported schemas,
which means that no data is required to find these errors. Let’s modify
our query somewhat and introduce a spelling error—$a/first is mis-
spelled as $a/firt in Listing 1.25.

Listing 1.25 Query with a Spelling Error

import schema "urn:examples:xmp:bib" at "c:/dev/schemas/eg/bib.xsd"
default element namespace = "urn:examples:xmp:bib"

define function books-by-author($a as element(author))
as element(title)*

{
for $b in doc("books.xml")/bib/book
where some $ba in $b/author satisfies

($ba/last=$a/last and $ba/first=$a/firt)
order by $b/title
return $b/title

}

An XQuery implementation that supports static typing can detect this
error, because it has the definition for an author element, the function
parameter is identified as such, and the schema says that an author ele-
ment does not have a firt element. In an implementation that has
schema import but not static typing, this function would actually have to
call the function before the error would be raised.

TYPES IN XQUERY 59

Katz_C01.qxd 7/23/03 2:45 PM Page 59

However, in the following path expression, only the names of elements
are stated:

doc("books.xml")/bib/book

XQuery allows element tests and attribute tests, node tests that are simi-
lar to the type declaration used for function parameters. In a path
expression, the node test element(book) finds only elements with the
same type as the globally declared book element, which must be found in
the schemas that have been imported into the query. By using this
instead of the name test book in the path expression, we can tell the
query processor the element definition that will be associated with $b,
which means that the static type system can guarantee us that a $b will
contain title elements; see Listing 1.26.

Listing 1.26 Type Tests in Path Expressions

import schema "urn:examples:xmp:bib" at "c:/dev/schemas/eg/bib.xsd"
default element namespace = "urn:examples:xmp:bib"

define function books-by-author($a as element(author))
as element(title)*

{
for $b in doc("books.xml")/bib/element(book)
where some $ba in $b/author satisfies

($ba/last=$a/last and $ba/first=$a/first)
order by $b/title
return $b/title

}

Sequence Types

The preceding examples include several queries in which the names of
types use a notation that can describe the types that arise in XML docu-
ments. Now we need to learn that syntax in some detail. Values in
XQuery, in general, are sequences, so the types used to describe them are
called sequence types. Some types are built in and may be used in any
query without importing a schema into the query. Other types are
defined in W3C XML Schemas and must be imported into a query
before they can be used.

60 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 60

Built-in Types

If a query has not imported a W3C XML Schema, it still understands the
structure of XML documents, including types like document, element,
attribute, node, text node, processing instruction, comment, ID, IDREF,
IDREFS, etc. In addition to these, it understands the built-in W3C XML
Schema simple types.

Table 1.4 lists the built-in types that can be used as sequence types.

In the notation for sequence types, occurrence indicators may be used
to indicate the number of items in a sequence. The character ? indicates
zero or one items, * indicates zero or more items, and + indicates one or
more items. Here are some examples of sequence types with occurrence
indicators:

element()+ One or more elements
xs:integer? Zero or one integers
document-node()* Zero or more document nodes

TABLE 1.4 Built-in Types That Can Be Used as Sequence Types

Sequence Type Declaration What It Matches

element() Any element node

attribute() Any attribute node

document-node() Any document node

node() Any node

text() Any text node

processing-instruction() Any processing instruction node

Any processing instruction node whose target is
xml-stylesheet

comment() Any comment node

empty() An empty sequence

item() Any node or atomic value

QName An instance of a specific XML Schema built-in
type, identified by the name of the type; e.g.,
xs:string, xs:boolean, xs:decimal,

xs:float, xs:double, xs:anyType,

xs:anySimpleType

processing-instruction("xml-

stylesheet")

TYPES IN XQUERY 61

Katz_C01.qxd 7/23/03 2:45 PM Page 61

When mapping XML documents to the XQuery data model, any element
that is not explicitly given a simple or complex type by schema validation
has the type xs:anyType. Any attribute that is not explicitly given a simple
or complex type by schema validation has the type xdt:untypedAtomic. If
a document uses simple or complex types assigned by W3C XML
Schema, these are preserved in the data model.

Types from Imported Schemas

Importing a schema makes its types available to the query, including the
definitions of elements and attributes and the declarations of complex
types and simple types. We now present a schema for bibliographies,
defining types that can be leveraged in the queries we use in the rest of
this chapter. To support some of the examples, we have added an attribute
that contains the ISBN number for each book, and have moved the publi-
cation year to an element. Listing 1.27 shows this schema—its relevant
portions are explained carefully later in this section.

Listing 1.27 An Imported Schema for Bibliographies

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:bib="urn:examples:xmp:bib"
targetNamespace="urn:examples:xmp:bib"
elementFormDefault="qualified">

<xs:element name="bib">
<xs:complexType>
<xs:sequence>
<xs:element ref="bib:book" minOccurs="0"

maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="book">
<xs:complexType>
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element ref="bib:creator" minOccurs="1"

maxOccurs="unbounded"/>
<xs:element name="publisher" type="xs:string"/>
<xs:element name="price" type="currency"/>
<xs:element name="year" type="xs:gYear"/>

</xs:sequence>
<xs:attribute name="isbn" type="bib:isbn"/>

</xs:complexType>
</xs:element>

62 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 62

Listing 1.27 An Imported Schema for Bibliographies (continued)

<xs:element name="creator" type="person" abstract="true" />
<xs:element name="author" type="person"
substitutionGroup="bib:creator"/>
<xs:element name="editor" type="personWithAffiliation"
substitutionGroup="bib:creator"/>

<xs:complexType name="person">
<xs:sequence>
<xs:element name="last" type="xs:string"/>
<xs:element name="first" type="xs:string"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="personWithAffiliation">
<xs:complexContent>
<xs:extension base="person">
<xs:sequence>
<xs:element name="affiliation" type="xs:string"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:simpleType name="isbn">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]{9}[0-9X]"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="currency">
<xs:restriction base="xs:decimal">

<xs:pattern value="\d+.\d{2}"/>
</xs:restriction>

</xs:simpleType>

</xs:schema>

Here is an example of a bibliography element that conforms to this new
definition:

<bib xmlns="urn:examples:xmp:bib">
<book isbn="0201563177">
<title>Advanced Programming in the Unix Environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>
<year>1992</year>

</book>
</bib>

TYPES IN XQUERY 63

Katz_C01.qxd 7/23/03 2:45 PM Page 63

We do not teach the basics of XML Schema here—those who do not
know XML Schema should look at XML Schema primer [SCHEMA].
However, to understand how XQuery leverages the type information
found in a schema, we need to know what the schema says. Here are some
aspects of the previous schema that affect the behavior of examples used
in the rest of this chapter:

� All elements and types in this schema are in the namespace
urn:examples:xmp:bib (for local elements, this was accom-
plished by using the elementFormDefault attribute at the top
level of the schema). All attributes are in the null namespace.

� The following declaration says that the isbn type is a user-defined
type derived from the string type by restriction and consists of
nine digits followed either by a digit or by the character x:
<xs:simpleType name="isbn">
<xs:restriction base="xs:string">
<xs:pattern value="[0-9]{9}[0-9X]"/>

</xs:restriction>
</xs:simpleType>

� The following declaration says that the “currency” type is derived
from the decimal type by restriction, and must contain two places
past the decimal point:
<xs:simpleType name="currency">
<xs:restriction base="xs:decimal">

<xs:pattern value="\d+.\d{2}"/>
</xs:restriction>

</xs:simpleType>

� The following declarations say that creator is an abstract ele-
ment that can never actually be created, and the author and edi-
tor elements are in the substitution group of creator:
<xs:element name="creator" type="person" abstract="true" />
<xs:element name="author" type="person"
substitutionGroup="bib:creator"/>
<xs:element name="editor" type="personWithAffiliation"
substitutionGroup="bib:creator"/>

� The content model for a book specifies a creator, but since creator
is an abstract element, it can never be created—it will always
match an author or an editor; see Listing 1.28.

64 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 64

Listing 1.28 Content Model for the Book Element

<xs:element name="book">
<xs:complexType>
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element ref="bib:creator" minOccurs="1"

maxOccurs="unbounded"/>
<xs:element name="publisher" type="xs:string"/>
<xs:element name="price" type="currency"/>
<xs:element name="year" type="xs:gYear"/>

</xs:sequence>
<xs:attribute name="isbn" type="bib:isbn"/>

</xs:complexType>
</xs:element>

� The following elements are globally declared: bib, book, cre-
ator, author, editor. The type of the bib and book elements is
“anonymous,” which means that the schema does not give these
types explicit names.

� All of the named types in this schema are global; in fact, in XML
Schema, all named types are global.

Now let us explore the sequence type notation used to refer to constructs
imported from the above schema. The basic form of an element test has
two parameters: the name of the element and the name of the type:

element(creator, person)

To match an element, both the name and the type must match. The
name will match if the element’s name is creator or in the substitution
group of creator; thus, in the above schema, the names author and
editor would also match. The type will match if it is person or any
other type derived from person by extension or restriction; thus, in
the above schema, personWithAffiliation would also match. The
second parameter can be omitted; if it is, the type is taken from the
schema definition. Because the schema declares the type of creator to
be person, the following declaration matches the same elements as the
previous declaration:

element(creator)

TYPES IN XQUERY 65

Katz_C01.qxd 7/23/03 2:45 PM Page 65

In XML Schema, element and attribute definitions may be local, avail-
able only within a specific element or type. A context path may be used to
identify a locally declared element or attribute. For instance, the follow-
ing declaration matches the locally declared price element, which is
found in the globally declared book element:

element(book/price)

Although this form is generally used to match locally declared elements, it
will match any element whose name is price and which has the same type
as the price element found in the globally declared book element. A simi-
lar form is used to match elements or attributes in globally defined types:

element(type(person)/last)

The same forms can be used for attributes, except that (1) attributes never
have substitution groups in XML Schema; (2) attributes are not nillable in
XML Schema; and (3) the element name is preceded by the @ symbol in
the XQuery syntax. For instance, the following declaration matches
attributes named price of type currency:

attribute(@price, currency)

The following declaration matches attributes named isbn of the type
found for the corresponding attribute in the globally declared book
element:

attribute(book/@isbn)

Table 1.5 summarizes the declarations made available by importing the
schema shown in Listing 1.27.

A sequence type declaration containing a name that does not match
either a built-in type or a type imported from a schema is illegal and
always raises an error.

There are no nillable elements in the sample schema. To indicate that an
element test will also match a nilled element, the type should be declared
nillable:

element(n, person nillable)

66 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 66

TABLE 1.5 The Effect of Importing the XML Schema in Listing 1.27

Sequence Type Declaration What It Matches

element(creator, person) An element named creator of type person

element(creator) Any element named creator of type xs:string—the
type declared for creator in the schema.

element(*, person) Any element of type person.

element(book/price) An element named price of type currency—the type
declared for price elements inside a book element.

element(type(person)/last) An element named last of type xs:string—the type
declared for last elements inside the person type.

attribute(@price, currency) An attribute named price of type currency.

attribute(book/@isbn) An attribute named isbn of type isbn—the type
declared for isbn attributes in a book element.

attribute(@*, currency) Any attribute of type currency.

bib:currency A value of the user-defined type currency"

The above declaration would match either an n element of type person
or an n person which is nilled, such as this one, which uses xsi:nil:

<n xsi:nil=”true” />

Working with Types

This section introduces various language features that are closely related
to types, including function signatures, casting functions, typed variables,
the instance of operator, typeswitch, and treat as.

Function Signatures

Parameters in a function signature may be declared with a sequence type,
and the return type of a function may also be declared. For instance, the
following function returns the discounted price of a book:

import schema namespace bib="urn:examples:xmp:bib"
define function discount-price($b as element(bib:book))
as xs:decimal

TYPES IN XQUERY 67

Katz_C01.qxd 7/23/03 2:45 PM Page 67

{
0.80 * $b//bib:price

}

It might be called in a query as follows:

for $b in doc("books.xml")//bib:book
where $b/bib:title = "Data on the Web"
return
<result>
{
$b/bib:title,
<price>{ discount-price($b/bib:price) }</price>

}
</result>

In the preceding query, the price element passed to the function exactly
matches the declared type of the parameter. XQuery also defines some
conversion rules that are applied if the argument does not exactly match
the type of the parameter. If the type of the argument does not match and
cannot be converted, a type error is raised. One important conversion
rule is that the value of an element can be extracted if the expected type is
an atomic type and an element is encountered. This is known as atomiza-
tion. For instance, consider the query in Listing 1.29.

Listing 1.29 Atomization

import schema namespace bib="urn:examples:xmp:bib"

define function discount-price($p as xs:decimal)
as xs:decimal

{
0.80 * $p//bib:price

}

for $b in doc("books.xml")//bib:book
where $b/bib:title = "Data on the Web"
return
<result>
{
$b/bib:title,
<price>{ discount-price($b/bib:price) }</price>

}
</result>

When the typed value of the price element is extracted, its type is
bib:currency. The function parameter expects a value of type xs:decimal,

68 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 68

but the schema imported into the query says that the currency type is
derived from xs:decimal, so it is accepted as a decimal.

In general, the typed value of an element is a sequence. If any value in the
argument sequence is untyped, XQuery attempts to convert it to the
required type and raises a type error if it fails. For instance, we can call
the revised discount-price() function as follows:

let $w := <foo>12.34</foo>
return discount-price($w)

In this example, the foo element is not validated, and contains no type
information. When this element is passed to the function, which expects
a decimal, the function first extracts the value, which is untyped. It then
attempts to cast 12.34 to a decimal; because 12.34 is a legitimate lexical
representation for a decimal, this cast succeeds. The last conversion rule
for function parameters involves type promotion: If the parameter type
is xs:double, an argument whose type is xs:float or xs:decimal will
automatically be cast to the parameter type; if the parameter type is
xs:float, an argument whose type is xs:decimal will automatically be
cast to the parameter type.

The parameter type or the return type may be any sequence type declara-
tion. For instance, we can rewrite our function to take a price element,
which is a locally declared element, by using a context path in the
sequence type declaration:

import schema namespace bib="urn:examples:xmp:bib"

define function discount-price($p as element(bib:book/bib:price))
as xs:decimal

{
0.80 * $p

}

If the price element had an anonymous type, this would be the only
way to indicate a price element of that type. Since our schema says a
price element has the type bib:currency, the preceding function is
equivalent to this one:

import schema namespace bib="urn:examples:xmp:bib"

define function discount-price($p as element(bib:price, bib:currency))

TYPES IN XQUERY 69

Katz_C01.qxd 7/23/03 2:45 PM Page 69

as xs:decimal
{
0.80 * $p

}

The same conversion rules that are applied to function arguments are
also applied to function return values. Consider the following function:

define function decimate($p as element(bib:price, bib:currency))
as xs:decimal

{
$p

}

In this function, $p is an element named bib:price of type bib:currency.
When it is returned, the function applies the function conversion rules,
extracting the value, which is an atomic value of type bib:currency, then
returning it as a valid instance of xs:decimal, from which its type is derived.

Casting and Typed Value Construction

Casting and typed value construction are closely related in XQuery. Con-
structor functions can be used to do both. In XQuery, any built-in type is
associated with a constructor function that is found in the XML Schema
namespace and has the same name as the type it constructs. This is the
only way to create some types, including most date types. Here is a con-
structor for a date:

xs:date("2000-01-01")

Constructor functions check a value to make sure that the argument is a
legal value for the given type and raise an error if it is not. For instance, if
the month had been 13, the constructor would have raised an error.

Constructor functions are also used to cast values from one type to
another. For instance, the following query converts an integer to a string:

xs:string(12345)

Some types can be cast to each other, others cannot. The set of casts that
will succeed can be found in [XQ-FO]. Constructor functions are also
created for imported simple types—this is discussed in the section on
imported schemas.

70 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 70

When a schema is imported and that schema contains definitions for
simple types, constructor functions are automatically created for these
types. Like the built-in constructor functions, these functions have the
same name as the type that is constructed. For instance, the currency
type in our bibliography schema limits values to two digits past the deci-
mal, and the isbn type restricts ISBN numbers to nine digits followed
by either another digit or the letter X. Importing this schema creates
constructor functions for these two types. The following expression cre-
ates an atomic value of type isbn:

import schema namespace bib="urn:examples:xmp:bib"
bib:isbn("012345678X")

The constructor functions for types check all the facets for those types.
For instance, the following query raises an error because the pattern in
the type declaration says that an ISBN number may not end with the
character Y:

import schema namespace bib="urn:examples:xmp:bib"
bib:isbn("012345678Y")

Typed Variables

Whenever a variable is bound in XQuery, it can be given a type by using
an as clause directly after the name of the variable. If a value that is
bound to a typed variable does not match the declared type, a type error
is raised. For instance, in the query shown in Listing 1.30, the let clause
states that $authors must contain one or more author elements.

Listing 1.30 Declaring the Type of a Variable

import schema namespace bib="urn:examples:xmp:bib"

for $b in doc("books.xml")//bib:book
let $authors as element(bib:author)+ := $b//bib:author
return
<result>
{
$b/bib:title,
$authors

}
</result>

TYPES IN XQUERY 71

Katz_C01.qxd 7/23/03 2:45 PM Page 71

Since the schema for a bibliography allows a book to have editors but no
authors, this query will raise an error if such a book is encountered. If a
programmer simply assumed all books have authors, using a typed vari-
able might identify an error in a query.

The instance of Operator

The instance of operator tests an item for a given type. For instance, the
following expression tests the variable $a to see if it is an element node:

$a instance of element()

As you recall, literals in XQuery have types. The following expressions
each return true:

<foo/> instance of element()

3.14 instance of xs:decimal

"foo" instance of xs:string

(1, 2, 3) instance of xs:integer*

() instance of xs:integer?
(1, 2, 3) instance of xs:integer+

The following expressions each return false:

3.14 instance of xdt:untypedAtomic

"3.14" instance of xs:decimal

3.14 instance of xs:integer

Type comparisons take type hierarchies into account. For instance, recall
that SKU is derived from xs:string. The following query returns true:

import schema namespace bib="urn:examples:xmp:bib"
bib:isbn("012345678X") instance of xs:string

The typeswitch Expression

The typeswitch expression chooses an expression to evaluate based on
the dynamic type of an input value—it is similar to the CASE statement

72 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 72

found in several programming languages, but it branches based on the
argument’s type, not on its value. For instance, suppose we want to write
a function that creates a simple wrapper element around a value, using
xsi:type to preserve the type of the wrapped element, as shown in List-
ing 1.31.

Listing 1.31 Function Using the typeswitch Expression

define function wrapper($x as xs:anySimpleType)
as element()

{
typeswitch ($x)

case $i as xs:integer
return <wrap xsi:type="xs:integer">{ $i }</wrap>

case $d as xs:decimal
return <wrap xsi:type="xs:decimal">{ $d }</wrap>

default
return error("unknown type!")

}

wrapper(1)

The case clause tests to see if $x has a certain type; if it does, the case clause
creates a variable of that type and evaluates the associated return clause. The
error function is a standard XQuery function that raises an error and aborts
execution of the query. Here is the output of the query in Listing 1.31:

<wrap xsi:type="xs:integer">1</wrap>

The case clauses test to see if $x has a certain type; if it does, the case
clause creates a variable of that type and evaluates the first return clause
that matches the type of $x. In this example, 1 is both an integer and a
decimal, since xs:integer is derived from xs:decimal in XML
Schema, so the first matching clause is evaluated. The error function is
a standard XQuery function that raises an error and aborts execution of
the query.

The typeswitch expression can be used to implement a primitive form
of polymorphism. For instance, suppose authors and editors are paid dif-
ferent percentages of the total price of a book. We could write the func-
tion shown in Listing 1.32, which invokes the appropriate function to
calculate the payment based on the substitution group hierarchy.

TYPES IN XQUERY 73

Katz_C01.qxd 7/23/03 2:45 PM Page 73

Listing 1.32 Using typeswitch to Implement Simple Polymorphism

import schema namespace bib="urn:examples:xmp:bib"

define function pay-creator(
$c as element(bib:creator),
$p as xs:decimal)

{
typeswitch ($c)

case $a as element(bib:author)
return pay-author($a, $p)

case $e as element(bib:editor)
return pay-editor($e, $p)

default
return error("unknown creator element!")

}

The treat as Expression

The treat as expression asserts that a value has a particular type, and
raises an error if it does not. It is similar to a cast, except that it does not
change the type of its argument, it merely examines it. Treat as and
instance of could be used together to write the function shown in List-
ing 1.33, which has the same functionality as the function in Listing 1.32.

Listing 1.33 Using treat as and instance of to Implement Simple Polymorphism

import schema namespace bib="urn:examples:xmp:bib"

define function pay-creator(
$c as element(bib:creator),
$p as xs:decimal)

{
if ($c instance of element(bib:author))
then pay-author($a, $p)
else if ($c instance of element(bib:editor))
then pay-editor($e, $p)
else error("unknown creator element!")
}

In general, typeswitch is preferable for this kind of code, and it also pro-
vides better type information for processors that do static typing.

74 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 74

Implicit Validation and Element Constructors

We have already discussed the fact that validation of the elements con-
structed in a query is automatic if the declaration of an element is global
and is found in a schema that has been imported into the query. Elements
that do not correspond to a global element definition are not validated. In
other words, element construction uses XML Schema’s lax validation
mode. The query in Listing 1.34 creates a fully validated book element,
with all the associated type information.

Listing 1.34 Query That Creates a Fully Validated Book Element

import schema namespace bib="urn:examples:xmp:bib"

<bib:book isbn="0201633469">
<bib:title>TCP/IP Illustrated</bib:title>
<bib:author>
<bib:last>Stevens</bib:last>
<bib:first>W.</bib:first>

</bib:author>
<bib:publisher>Addison-Wesley</bib:publisher>
<bib:price>65.95</bib:price>
<bib:year>1994</bib:year>

</bib:book>

Because element constructors validate implicitly, errors are caught early,
and the types of elements may be used appropriately throughout the
expressions of a query. If the element constructor in Listing 1.34 had
omitted a required element or misspelled the name of an element, an
error would be raised.

Relational programmers are used to writing queries that return tables
with only some columns from the original tables that were queried.
These tables often have the same names as the original tables, but a dif-
ferent structure. Thus, a relational programmer is likely to write a query
like the following:

import schema namespace bib="urn:examples:xmp:bib"

for $b in doc("books.xml")//bib:book
return

TYPES IN XQUERY 75

Katz_C01.qxd 7/23/03 2:45 PM Page 75

<bib:book>
{
$b/bib:title,
$b//element(bib:creator)

}
</bib:book>

This query raises an error, because the bib:book element that is returned
has a structure that does not correspond to the schema definition. Validation
can be turned off using a validate expression, as shown in Listing 1.35,
which uses skip.

Listing 1.35 Using validate to Disable Validation

import schema namespace bib="urn:examples:xmp:bib"

for $b in doc("books.xml")//bib:book
return
validate skip
{
<bib:book>
{
$b/bib:title,
$b//element(bib:creator)

}
</bib:book>

}

The validate expression can also be used to specify a validation con-
text for locally declared elements or attributes. For instance, the price
element is locally declared:

import schema namespace bib="urn:examples:xmp:bib"

validate context bib:book
{
<bib:price>49.99</bib:price>
}

If an element’s name is not recognized, it is treated as an untyped element
unless xsi:type is specified. For instance, the following query returns a
well-formed element with untyped content, because the bib:mug ele-
ment is not defined in the schema:

import schema namespace bib="urn:examples:xmp:bib"
<bib:mug>49.99</bib:mug>

76 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 76

A query can specify the type of an element using the xsi:type attribute;
in this case, the element is validated using the specified type:

import schema namespace bib="urn:examples:xmp:bib"
<bib:mug xsi:type="xs:decimal">49.99</bib:mug>

If a locally declared element is not wrapped in a validate expression that
specifies the context, it will generally be treated as a well-formed element
with untyped content, as in the following query:

import schema namespace bib="urn:examples:xmp:bib"
<bib:price>49.99</bib:price>

To prevent errors like this, you can set the default validation mode to
strict, which means that all elements must be defined in an imported
schema, or an error is raised. This is done in the prolog. The following
query raises an error because the bib:price element is not recognized in
the global context:

import schema namespace bib="urn:examples:xmp:bib"
validation strict
<bib:price>49.99</bib:price>

The validation mode may be set to lax, which is the default behavior,
strict, as shown above, or skip if no validation is to be performed in
the query.

Summary

XQuery is not only a query language, but also a language that can do
fairly general processing of XML. It is a strongly typed language that
works well with data that may be strongly or weakly typed. Because the
types used in XQuery are the same types used in XML and XML
Schema, the type system is a better match for the data that is being
processed. If the XML is governed only by a DTD or has no schema, the
appropriate types are document, element, attribute, node, text node, pro-
cessing instruction, comment, ID, IDREF, IDREFS, and so on. A
strongly typed language that does not support these types tends to get in
the way, because it is a poor match for the data being processed, and the
language insists on the wrong things. If W3C XML Schema types are

SUMMARY 77

Katz_C01.qxd 7/23/03 2:45 PM Page 77

present in the data, these types are observed as well. Implementations and
users of XQuery can work at various levels of typing by deciding whether
to import schemas, whether to use static typing, and whether to set the
validation mode to strict, lax, or skip.

XQuery was designed to be compact and compositional, and to be well
suited for views of data that is not physically stored as XML. Both data
integration and general purpose XML processing are likely to be impor-
tant applications of XQuery. In practice, queries written in XQuery tend
to be well suited to the kinds of tasks for which XML is generally used.

78 CHAPTER 1 � XQUERY: A GUIDED TOUR

Katz_C01.qxd 7/23/03 2:45 PM Page 78

