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1 Introduction

1.1 Relational DB’s and Classical Logic

Classical Many-Sorted First-order Logic : A foundation for Relational Databases.

• It can express: Data, Schema, Queries and Constraints.

• It is a foundation for query languages : Relational many-sorted “tuple”

languages (on which SQL is founded).

• Classical problems for databases: Query Containment and Constraint

Implication:

QC : Is the set of the answers for query Q1 included in the set for query Q2?

CI : Does the constraint C1 implies the constraint C2?

• These are deduction problems (here: in classical logic):

Q1(x)→ Q2(x) is valid?

C1 → C2 is valid?
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Toy example of a Relational Database.

Film

Title MovieDirector Actor Producer

nf1 r1 a1 p1

nf1 r1 a2 p1

nf2 r2 a1 p2

nf3 r2 a1 p2

Projection

Title Cinema Time

nf1 nc1 h1

nf1 nc2 h2

nf2 nc1 h3

nf3 nc2 h1

Loves

Title Spectator

nf1 s1

nf1 s2

nf2 s1

nf3 s3
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• In the example, the signature Σ of a many-sorted language (with sorted

equalities) L consists of:

– Basic Sorts : Title, Cinema, Time, MovieDirector, Spectator Actor,

Producer (The attributes).

– Sorted constants: nf1:Title, r1:MovieDirector,etc.(the atomic values in

attribute columns).

– Sorted Relational symbols :

Film, having sort: Title × MovieDirector × Producer

Projection, having sort: Title ×Cinema × Time

Love, having sort: Title × Spectator.

(The names of the relations, with their profiles).

• Terms are either sorted variables ranging over tuples of atomic values or

sorted constants.

The sort of a term is a list of basic sorts. We write: t : s1 · · · sn
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• Here, Data : Closed Formulae of L :

Film(nf1, r1, a1, p1), where nf1:Title, r1:Movie Director, etc...

A DB may be seen as a Herbrand interpretation of L.

• The Schema: the set of sorted relations of the signature.

• The Integrity Constraints: closed formulae of L.

E.g.: the functional dependency for the table Projection :

T itle Cinema⇒ T ime is expressed by

∀t : T itle Cinema T ime ∀t′ : T itle Cinema T ime

(t.T itle Cinema = t′.T itle Cinema→ t.T ime = t′.T ime)

• The Queries: formulae of L.

E.g.: At 3p.m where one can see a film, and which one ?

{x : T itle Cinema | Projection(x.T itle x.Cinema 3.pm}
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1.2 Which logic(s) for Semi-structured Databases?

Semi-structured Databases: widely used to integrate data having different

formats, e.g. biological data (mediator).

The Web can be seen as a giant Semi-structured Database.

Central Question of this tutorial: is there a logic able to provide a foundation for

semi-structured Database ?

Several proposals using modal logics have been made in recent years.

No claim to be exhaustive.

Accent on deductive problems.
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A toy example of semi-structured database represented as a graph with labelled

edges where one could ask the query:

Which are the authors of the book whose title is “Data on the Web”?

⇒
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cites

biblio

book

book

journal

title

auth auth

auth

title

title

auth

IBSN

title

root

b1

b2

j1

Data

on the Web
Abiteboul Abiteboul

Suciu

Internet et

Intenet

Gardarin

2−09069−2

Querying Semistructured DB’s Abiteboul

j1
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In the corresponding XML-document:

• Each group of infos on a book is an XML-element whose tag is book.

• It is a complex element, having several sub-elements:

one or more authors, a title, and, possibly, anXS IBSN number.

• Any element may have a XML-attribute describing a property: in particular,

an attribute may identify an element, or point (reference) to another

element. Here, cites is a referential attribute.

• Leaves correspond to atomic elements.

In the figure:

In red: node names (identifiers).

In magenta: arc labels (XML-tags, but for “cites” which is a reference).

In black: data.
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A XML document for our example

<biblio>

<book key=’’b1’’ cite=’’j1’’>

<title> Data on the Web </title>

<author> Abiteboul </author>

<author> Bunemann </author>

<author> Suciu </Abiteboul>

</book>

<book key=’’b2’’>

<title> Iternet et Intranet </title>

<author> Gardarin </author>

<IBSN> 2-09069-2 </Abiteboul>

</book>

<journal key=j1>

<title> Querying Semi-structured Databases </title>

<author> Abiteboul </author>

</journal>

</biblio>

N.B.: key and cite are XML-attributes with different roles : the first allows one

to name nodes, the second to point to a named node (reference links ⇒ cycles).
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Two sorts of schemas for XML-DB’s : DTD’s (Data Type Definitions) and

XML-Schemas (richer typing system).
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A DTD w.r.t. our example is “valid”

<!DOCTYPE biblio [

<!Element biblio (book*,journals*)>

<!Element book (title,author*,IBSN?)>

<!ATTLIST book key ID REQUIRED>

<!ATTLIST book cite IDREFS IMPLIED>

<!Element journal (title,author*)>

<!ATTLIST journal key ID REQUIRED>

<!Element title #PCDATA>

<!Element author #PCDATA>

<!Element IBSN #PCDATA>

]>

ID is the type of attributes identifying (naming) nodes, IDREFS the type of

“pointer (reference) attributes”.

REQUIRED means that the attribute is mandatory, IMPLIED that it is optional.

14



2 Using Propositional Dynamic Logics

2.1 The logic PDLpath

• A pioneer work on modal logics and Path Constraints: [1](N. Alechina, S.

Demri and M. de Rijk, 2003)

• It uses a version of PDL to model semi-structured DB’s.

• Centered on path constraints.

• Knowledge about integrity constraints is essential to querying any DB!
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Focus on 3 classes of path-constraints:

x y x y

x y z

Lollipop Constraint

p

q

p

q
p

Inclusion Constraint

Backward Constraint

r
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Let L be a countable set of labels.

Syntax of transition expressions of PDLpath:

t ::= l ∈ L | ǫ | # | t; t | t+ t | t∗ | t−1

Elements of L will be used to label arcs (but tags are not attached).
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Semantics of transition expressions (a):

Transition expressions evaluated on L-structures. A L-structure G : a tuple of

the form 〈V, rt, (Ra)a∈L〉 such that V is a set of nodes, rt is a distinguished

element of V (the root of G) and (Ra)a∈L is a family of binary relations on V .

Let’s note Cl(r) the reflexive transitive closure of a binary relation r.
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Semantics of transition expressions (b):

Given an L-structure, the interpretation of a transition expression t is denoted by

tr(t) and is defined by:

tr(a) = Ra for a ∈ L tr(ǫ) = {〈v, v〉 | v ∈ V }

tr(#) =
S

a∈L
Ra tr(t∗) = Cl(tr(t))

tr(t1; t2) = {〈u, v〉 | ∃z(tr(t1)(u, z) ∧ tr(t2)(z, v))} tr(t1 + t2) = tr(t1) ∪ tr(t2)

tr(t1
−1) = {〈u, v〉 | 〈v, u〉 ∈ tr(t)}
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Syntax of path formulae of PDLpath:

φ ::= T |⊥| root | ¬φ | φ ∧ φ | 〈t〉φ | [t]φ

where t is any transition expression. NB: T,⊥ and root are he unique atomic

formulae.

Semantics of path formulae of PDLpath:

The usual multi-modal one, but the nominal root is true only at rt (the root of

the L-structure G, i.e. the edge labeled graph G) and the accessibility relation

associated to 〈t〉 and [t] is tr(t).

A PDLpath formula is true at G if it is true at its root. It is valid if it is true at

each G.
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Inclusion constraints and Backward Constraints can be expressed in PDLpath:

x y x y

x y z

Lollipop Constraint

p

q

p

q
p

Inclusion Constraint

Backward Constraint

r

Inclusion: [p] < (q)−1 > root Backward:[p] < q > root

Lollipop constraint cannot. Why ?
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The validity problem for PDLPath is decidable.

The containment problem for lollipop constraints is undecidable [3]

Use of “references” may create lollipop constraints !

root book1

book2

cites

citedby
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• The web can be assimilated to a giant semi-structured database (rooted edge

labeled graph).

• An L edge labeled graph is deterministic if for every node u and label a there

is at most one node v such that 〈u, v〉 ∈ tr(a).

“In the case of the web it is reasonable to expect a graph to be

deterministic”.[1]

• The tables below present the complexity results of [1] w.r.t. to deterministic

and non-deterministic graphs. By “constraint”, tout court, one means any

type of path constraint.
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Constraint Evaluation Problem

non-det. graphs det-graps

Inclusion c. NLOGSPACE-complete NLOGSPACE-complete

Backward c. NLOGSPACE-complete NLOGSPACE-complete

constraints NLOGSPACE-complete NLOGSPACE-complete

Constraint Containment Problem

non-det. graphs det-graps

Inclusion c. PSPACE-hard, in EXPTIME open*

Backward c. PSPACE-hard, in EXPTIME in EXPTIME for finite L

constraints undecidable undecidable
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Remark

The use of T , ⊥ and root as the only atomic formulae prevents one to model:

• information attached to an XML-internal node (values for XML-attributes).

• In particular, unique identifiers for internal nodes

• Data on leaves.
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2.2 Using other variants of PDL

In [6] M. Marx (2003) proposes 2 variants of PDL logic to model XML-data. In

both cases, labels are not attached to edges but to nodes (of the tree/graph).
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2.2.1 A modal logic for finite trees : LK

Here, references are not taken into account.

P : a non-empty, finite or countably finite set of atoms.

Transition expression

t ::=→|←|↑|↓| π;π | π + π | π∗ |?φ

where φ is a path formula.

Path formulae

φ ::= p ∈ P | T | ¬φ | φ ∧ φ |< t > φ | [t]φ
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LK is interpreted on finite ORDERED trees, i.e. tuples T=〈T,R→, R↓〉 where T

is the set of nodes and R→, R↓, are respectively, the left-brother and the child

relation. No references! To get an interpretationM, one adds, as usual,

valuations for atoms.

The interpretation of a transition expression t, denoted by tr(t), is defined by:

tr(↓) = R↓ tr(↑) = (R↓)
−1

tr(→) = R→ tr(←) = (R→)−1

tr(t∗) = Cl(tr(t)) tr(t1; t2) = concatenation

tr(t1 + t2) = union tr(?φ) = (w, w) | w ∈ T ∧ M, w |= φ

Given this def. of transition expressions, the interpretation of formulae is

straightforward.
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Abbreviations

• root :¬ <↑> T

• leaf : ¬ <↓> T

• first : ¬ <←> T

• last : ¬ <→> T

Query Languages for XML : XPATH, XQUERY (extension of XPATH), Lorel,...

XPATH queries are easily translated into formulae of this logic.
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Translation of a DTD into LK

<!ELEMENT Collection (Painter+)>

<!ELEMENT Painter (Name, Painting*)>

<!ELEMENT Name CDATA>

<!ELEMENT Painting CDATA>

Collection ; 〈↓; ?first; ?Painter; (→?Painter)∗ > last

Painter ; 〈↓; ?first;Name; (→?Painting)∗ > last

Name ; 〈↓; ?first; ?CDATA > last

Painting ; 〈↓; ?first; ?CDATA > last
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2.2.2 A modal logic for finite DAG’s : LP

So far, references have not been taken into account. A restriction on the syntax

of LP and a modification of the semantics allows one to do it, provided that

references do not create cycles (e.g. b1
cites
−→ j1

cites
−→ b1 is forbidden).

• Syntax: the brotherhood axes → and → are removed, nominals are added.

• Semantics: interpretation not on any graph, but on finite DAG’s.

• The hybrid @ operator is definable in LP :

@iφ =def<↑
∗> (root∧ <↓∗ (i ∧ φ) >

• An algorithm deciding the consequence problem of this logic is given.

It uses mosaic style proof techniques (idea: existence of a model is equivalent

to existence of a finite set of partial models).

EXPTIME complexity.

Remark: In LP DTD’s cannot be always expressed:

<ELEMENT! Collection(Painter,Painting)+> cannot be formalized.
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3 Using Hybrid Logics

3.1 The “standard” multi-modal hybrid logic HL(@, ↓)

Syntax

• A non-empty set L of labels.

• Nom = set of propositional letters called nominals. X = set of variables.

Nom ∪X= state expressions.

• P = set of propositional letters disjoint from Nom. A = Nom ∪ P= set of

atoms.

• A grammar for the Formulae of HL(@, ↓):

φ := p | ¬φ | φ ∧ φ | [l]φ | < l > φ | @sφ | ↓ x.φ

where p ∈ A, l ∈ L, s is a state expression and x ∈ X .
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Semantics, preliminaries

• An interpretationM is any edge labeled graph (an L-structure having W as

set of nodes), equipped with an evaluation function I assigning a set of states

to each p ∈ P and a function N assigning a unique state to each n ∈ Nom.

• A subset rl of W ×W is associated to each label l ∈ L (labelled transition).

• LetM be an interpretation and g a variable-evaluation function X →W .

For each state expression e, its interpretationMg(e) is N(e) if e ∈ Nom and

is g(e) if e ∈ X .

• Notation: if w is a state, gx
w denotes the x-variant of g whose value for the

variable x is w.
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Semantics, full definitions

1. M, w, g |= p if w ∈ I(p), for p ∈ P .

2. M, w, g |= e ifMg(e) = w, if e is a state expression.

3. M, w, g |= ¬φ ifM, w, g 6|= φ.

4. M, w, g |= φ ∧ ψ ifM, w, g |= φ andM, w, g |= ψ.

5. M, w, g |= [l]φ if for each w′ such that w rl w
′, M, w′, g |= φ.

6. M, w, g |=< l > φ if there exists w′ such that w rl w
′, andM, w′, g |= φ.

7. M, w, g |= @eφ ifM,Mg(e), g |= φ

8. M, w, g |=↓ x.φ ifM, w, gx
w |= φ

A formula φ is satisfiable if there existM, w and g such thatM, w, g |= φ.
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3.2 An early attempt to model semi-structured-DB

V. Thion’s PHd’s thesis (2004) and [2] (Bidoit, Cerrito, Thion) constitute a first

step towards using hybrid logic as a uniform framework to express data, schema,

constraints an queries for semi-structured DB’s. A DB is seen as an edge labeled

graph s.t. when references are omitted a tree is left. Cycles created by references

are allowed.
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V. Thion’s PHd’s thesis:

* Nominals express node identifiers, propositional letters in P express data when

they are attached to leaves and XML-attributes when they are attached to

internal nodes. root: a special nominal.

* The set of labels L is partitioned in 2 classes : T which expresses “ordinary

transitions” (DTD’s tags) and REF , which expresses reference links.

* An additional modal operator < F > is used: the associated transition is the

transitive closure of
⋃

rt t ∈ T .

* An enriched notion of schema is defined which allows one to “well type”

reference targets (e.g. a person cannot be a father of a dog).

* Any schema is formalizable, via a general algorithm A.
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In Thion’s thesis:

• Examples of constraints: (label cites ∈ REF )

“if x cites y, then y cites x”:

@root(@x[cites] < cites > x)

“if x cites y and y cites z, then x cites z:

@root(@x[cites][cites] ↓ z.(@x < cites > z)

• Example of query: “Which are the authors of the book whose name is “Data

on the Web” ? :

one looks for values of x satisfying

@root < biblio >< book > (< title > DataOnTheWeb ∧ < author > x)
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Positive features of Thion’s work

:-) One of the first works trying to use HL to model semi-structured DB’s.

:-) Uniformity of language

:-) Rather rich expressivity

:-) Good typing of references.

Weakenesses

:-( The formalized notion of schema is not really DTD, but a bit more

awkward one (“pattern grammar”) which should be simplified.

:-( Semantics is given by unordered graps ; proposed notion of schema does

not allows one to distinguish between collection (painter,painting)+ and

collection(painting,painter)+.

:-( Logical foundations of query evaluation and optimization are not studied.

:-( Semantically interesting classes of queries/constraints such that query

containment and constraint implication problems are decidable are not yet

studied.
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3.3 Hybrid Model Checking and Evaluation

• Problem of global model checking for hybrid languages: given an

interpretationM, find the states where φ is satisfied. If only 1 free variable

appears in φ, the output is a set of nodes.

• In [5] (Massimo Franceschet and Maarten de Rijke 2005) hybrid operators

are added to several modal logics (temporal, dynamic..). Moreover, a large

set of hybrid operators besides @ et ↓ are considered.

• A variety of model checkers are considered, and their complexity is studied,

w.r.t.: number of nodes, number of the (labeled) edges of the graph, length

of φ, nesting degree of binders in φ. One goes from linear complexity to

PSPACE-complexity (unrestricted use of binders).

• The model checkers are used to evaluate (translations of) classes of queries

expressed in Lorel.
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An example in [5]

Which are the papers which have at least two authors?

In Lorel:

select X

from biblio.paper X, X. author Y, X.author Z

where Y !=Z

(In Xquery:

for $X in biblio.paper, let $N:= X.author let $M:= X.author

where $N!=$M

return $X

)

Formalization into a variant of hybrid dynamic logic with converse operator:

↓ x. < biblio.paper >−1 root∧ < author >↓ y.@ ↓ z. y 6= z

which can be model-checked.
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An other example in [5]

Which are the papers which cite themselves?

In Lorel:

select X

from biblio.paper X, X.cite Y where X=Y

Formalization into a variant of hybrid dynamic logic with converse operator:

↓ x. < biblio.paper >−1 root∧ < cite >↓ y. x = y

which can be model-checked.
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3.4 Containment/implication problems in hybrid logic

formalization.

A study of the tractability of these deductive problems can benefit from the

knowledge of the following results for HL(@, ↓) proven in [4] (B. ten Cate and M.

Franceshet 2005). (The multi-modality does not play any role.)

1. Satisfiability of HL(↓) is undecidable.

2. Satisfiability of HL(@) is decidable.

3. Satisfiability of HL(@, ↓) \ (2 ↓) is decidable.

4. Satisfiability of HL(@, ↓) \ (↓ 2) is decidable.

5. Satisfiability and validity of HL(@, ↓) \ (2 ↓ 2,3 ↓ 3) are decidable.
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4 Concluding Remarks

Two questions:

1. Some of the presented works attempt to formalize DTD’s. What about

XML-schemas, which have a richer typing structure ?

2. Several ideas come from different works and/or different modal logics to

provide a formal semantics to semistructured-databases:

non-atomic edge labels, converse operator, regular expressions for paths from

dynamic logics, nominals as node identifiers, possibility to use binders from

hybrid logics, etc.

Each work presented here has advantages and drawbacks. Could one bring

together all these ideas so as to define a really unified modal logic capable to

found semi-structured databases as well as possible ?
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