Modal logics and Semi-structured Databases S. Cerrito, Lab. IBISC, Univ. d'Evry Val d'Essonne, FRANCE july 2007

Contents

1	Intr	oduction	3
	1.1	Relational DB's and Classical Logic	3
	1.2	Which $logic(s)$ for Semi-structured Databases?	7
2	Usi	ng Propositional Dynamic Logics	15
	2.1	The logic PDL^{path}	15
	2.2	Using other variants of PDL	26
		2.2.1 A modal logic for finite trees : \mathcal{L}_K	28
		2.2.2 A modal logic for finite DAG's : \mathcal{L}_P	32
3	Usi	ng Hybrid Logics	33
	3.1	The "standard" multi-modal hybrid logic $HL(@,\downarrow)$	33

3.2	An early attempt to model semi-structured-DB	36
3.3	Hybrid Model Checking and Evaluation	40
3.4	Containment/implication problems in hybrid logic formalization. $% \left({{{\left[{{\left[{\left[{\left[{\left[{\left[{\left[{\left[{\left[$	43

4 Concluding Remarks

 $\mathbf{44}$

1 Introduction

1.1 Relational DB's and Classical Logic

Classical Many-Sorted First-order Logic : A foundation for Relational Databases.

- It can express: Data, Schema, Queries and Constraints.
- It is a foundation for query languages : Relational many-sorted "tuple" languages (on which SQL is founded).
- Classical problems for databases: Query Containment and Constraint Implication:

QC : Is the set of the answers for query Q_1 included in the set for query Q_2 ? CI : Does the constraint C_1 implies the constraint C_2 ?

• These are deduction problems (here: in classical logic): $Q_1(x) \rightarrow Q_2(x)$ is valid? $C_1 \rightarrow C_2$ is valid?

Film			
Title	MovieDirector	Actor	Producer
nf1	r1	a1	p1
nf1	r1	a2	p1
nf2	r2	a1	p2
nf3	r2	a1	p2

Toy example of a Relational Database.

Projection			Loves	
Title	Cinema	Time	Title	Spectator
nf1	nc1	h1	nf1	s1
nf1	nc2	h2	nf1	s2
nf2	nc1	h3	nf2	s1
nf3	nc2	h1	nf3	s3

- In the example, the signature Σ of a many-sorted language (with sorted equalities) \mathcal{L} consists of:
 - Basic Sorts : Title, Cinema, Time, MovieDirector, Spectator Actor, Producer (The attributes).
 - Sorted constants: nf1:Title, r1:MovieDirector,etc.(the atomic values in attribute columns).
 - Sorted Relational symbols:
 Film, having sort: Title × MovieDirector × Producer
 Projection, having sort: Title × Cinema × Time
 Love, having sort: Title × Spectator.
 (The names of the relations, with their profiles).
- Terms are either sorted variables ranging over <u>tuples</u> of atomic values or sorted constants.

The sort of a term is a <u>list</u> of basic sorts. We write: $t : s_1 \cdots s_n$

- Here, Data : Closed Formulae of L : Film(nf1, r1, a1, p1), where nf1:Title, r1:Movie Director, etc... A DB may be seen as a Herbrand interpretation of L.
- The Schema: the set of sorted relations of the signature.
- The Integrity Constraints: closed formulae of *L*.
 E.g.: the functional dependency for the table Projection : *Title Cinema* ⇒ *Time* is expressed by
 ∀t : *Title Cinema Time* ∀t' : *Title Cinema Time* (t.Title Cinema = t'.Title Cinema → t.Time = t'.Time)
- The Queries: formulae of *L*.
 E.g.: At 3p.m where one can see a film, and which one ?

 $\{x: Title Cinema \mid Projection(x.Title x.Cinema 3.pm\}$

1.2 Which logic(s) for Semi-structured Databases?

Semi-structured Databases: widely used to integrate data having different formats, e.g. biological data (mediator).

The Web can be seen as a giant Semi-structured Database.

Central Question of this tutorial: is there a logic able to provide a foundation for semi-structured Database ?

Several proposals using modal logics have been made in recent years.

No claim to be exhaustive.

Accent on deductive problems.

A toy example of semi-structured database represented as a graph with labelled edges where one could ask the query:

Which are the authors of the book whose title is "Data on the Web"?

\Rightarrow

In the corresponding XML-document:

- Each group of infos on a book is an *XML-element* whose *tag* is **book**.
- It is a <u>complex</u> element, having several sub-elements: one or more authors, a title, and, possibly, anXS IBSN number.
- Any element may have a *XML-attribute* describing a property: in particular, an attribute may identify an element, or point (reference) to another element. Here, **cites** is a referential attribute.
- Leaves correspond to atomic elements.

In the figure:

In red: node names (identifiers).

In magenta: arc labels (XML-tags, but for "cites" which is a reference). In black: data.

A XML document for our example

<biblio> <book key=''b1'' cite=''j1''> <title> Data on the Web </title> <author> Abiteboul </author> <author> Bunemann </author> <author> Suciu </Abiteboul> </book> <book key=''b2''> <title> Iternet et Intranet </title> <author> Gardarin </author> <IBSN> 2-09069-2 </Abiteboul> </book> <journal key=j1> <title> Querying Semi-structured Databases </title> <author> Abiteboul </author> </journal> </biblio>

N.B.: key and cite are *XML-attributes* with different roles : the first allows one to name nodes, the second to point to a named node (reference links \Rightarrow cycles).

Two sorts of schemas for XML-DB's : **DTD**'s (*Data Type Definitions*) and **XML-Schemas** (richer typing system).

A DTD w.r.t. our example is "valid"

<!DOCTYPE biblio [
<!Element biblio (book*,journals*)>
<!Element book (title,author*,IBSN?)>
<!ATTLIST book key ID REQUIRED>
<!ATTLIST book cite IDREFS IMPLIED>
<!Element journal (title,author*)>
<!ATTLIST journal key ID REQUIRED>
<!Element title #PCDATA>
<!Element author #PCDATA>
<!Element IBSN #PCDATA>
]>

ID is the type of attributes identifying (naming) nodes, IDREFS the type of "pointer (reference) attributes". REQUIRED means that the attribute is mandatory, IMPLIED that it is optional.

2 Using Propositional Dynamic Logics

2.1 The logic PDL^{path}

- A pioneer work on modal logics and Path Constraints: [1](N. Alechina, S. Demri and M. de Rijk, 2003)
- It uses a version of PDL to model semi-structured DB's.
- Centered on path constraints.
- Knowledge about integrity constraints is essential to querying any DB!

Focus on 3 classes of path-constraints:

Inclusion Constraint

Backward Constraint

Let L be a countable set of labels.

Syntax of transition expressions of PDL^{path} :

$$t ::= l \in L \mid \epsilon \mid \# \mid t; t \mid t + t \mid t^* \mid t^{-1}$$

Elements of L will be used to label arcs (but tags are not attached).

Semantics of transition expressions (a):

Transition expressions evaluated on *L*-structures. A *L*-structure G: a tuple of the form $\langle V, rt, (R_a)_{a \in L} \rangle$ such that *V* is a set of nodes, rt is a distinguished element of *V* (the root of *G*) and $(R_a)_{a \in L}$ is a family of binary relations on *V*. Let's note Cl(r) the reflexive transitive closure of a binary relation *r*.

Semantics of transition expressions (b):

Given an *L*-structure, the interpretation of a transition expression t is denoted by tr(t) and is defined by:

$tr(a) = R_a \text{ for } a \in L$	$tr(\epsilon) = \{ \langle v, v \rangle \ v \in V \}$
$tr(\#) = \bigcup_{a \in L} R_a$	$tr(t^*) = Cl(tr(t))$
$tr(t_1; t_2) = \{ \langle u, v \rangle \mid \exists z(tr(t_1)(u, z) \land tr(t_2)(z, v)) \}$	$tr(t_1 + t_2) = tr(t_1) \cup tr(t_2)$
$tr(t_1^{-1}) = \{ \langle u, v \rangle \mid \langle v, u \rangle \in tr(t) \}$	

Syntax of path formulae of PDL^{path} :

$$\phi ::= T \mid \perp \mid root \mid \neg \phi \mid \phi \land \phi \mid \langle t \rangle \phi \mid [t] \phi$$

where t is any transition expression. NB: T, \perp and root are he unique atomic formulae.

Semantics of path formulae of PDL^{path} :

The usual multi-modal one, but the nominal root is true only at rt (the root of the *L*-structure *G*, i.e. the edge labeled graph *G*) and the accessibility relation associated to $\langle t \rangle$ and [t] is tr(t).

A PDL^{path} formula is true at G if it is true at its root. It is valid if it is true at each G.

Inclusion constraints and Backward Constraints can be expressed in PDL^{path} :

Inclusion Constraint

Inclusion: $[p] < (q)^{-1} > root$

Backward:[p] < q > root

Lollipop constraint cannot. Why?

The validity problem for PDL^{Path} is decidable.

The containment problem for lollipop constraints is undecidable [3] Use of "references" may create lollipop constraints !

- The web can be assimilated to a giant semi-structured database (rooted edge labeled graph).
- An L edge labeled graph is *deterministic* if for every node u and label a there is at most one node v such that ⟨u, v⟩ ∈ tr(a).
 "In the case of the web it is reasonable to expect a graph to be deterministic".[1]
- The tables below present the complexity results of [1] w.r.t. to deterministic and non-deterministic graphs. By "constraint", *tout court*, one means any type of path constraint.

Constraint Evaluation Problem

	non-det. graphs	det-graps			
Inclusion c.	NLOGSPACE-complete	NLOGSPACE-complete			
Backward c.	NLOGSPACE-complete	NLOGSPACE-complete			
constraints	NLOGSPACE-complete	NLOGSPACE-complete			

Constraint Containment Problem

	non-det. graphs	det-graps
Inclusion c.	PSPACE-hard, in EXPTIME	open*
Backward c.	PSPACE-hard, in EXPTIME	in EXPTIME for finite L
constraints	undecidable	undecidable

Remark

The use of T, \perp and *root* as the only atomic formulae prevents one to model:

- information attached to an XML-internal node (values for XML-attributes).
- In particular, unique identifiers for internal nodes
- Data on leaves.

2.2 Using other variants of PDL

In [6] M. Marx (2003) proposes 2 variants of PDL logic to model XML-data. In both cases, *labels are not attached to edges but to nodes* (of the tree/graph).

2.2.1 A modal logic for finite trees : \mathcal{L}_K

Here, references are not taken into account.

P: a non-empty, finite or countably finite set of atoms.Transition expression

$$t ::= \rightarrow |\leftarrow|\uparrow|\downarrow| \ \pi; \pi \mid \pi + \pi \mid \pi^* \mid ?\phi$$

where ϕ is a path formula.

Path formulae

$$\phi ::= p \in P \mid T \mid \neg \phi \mid \phi \land \phi \mid < t > \phi \mid [t]\phi$$

 \mathcal{L}_K is interpreted on finite ORDERED trees, i.e. tuples $\mathbf{T} = \langle T, R_{\rightarrow}, R_{\downarrow} \rangle$ where T is the set of nodes and $R_{\rightarrow}, R_{\downarrow}$, are respectively, the left-brother and the child relation. No references! To get an interpretation \mathcal{M} , one adds, as usual, valuations for atoms.

The	interpret	tation	of a	transition	expression	t.	denoted	bv	r tr((t)	. is	defined	by	v:
0			0 - 00			~ 7		···· •/	<u>۲</u> ۰ ۱	~ /	7 -~			, -

$tr(\downarrow)=R_\downarrow$	$tr(\uparrow) = (R_{\downarrow})^{-}1$
$tr(\rightarrow) = R_{\rightarrow}$	$tr(\leftarrow) = (R_{\rightarrow})^{-}1$
$tr(t^*) = Cl(tr(t))$	$tr(t_1; t_2) = concatenation$
$tr(t_1 + t_2) = \text{union}$	$tr(?\phi) = (w, w) \mid w \in T \land \mathcal{M}, w \models \phi$

Given this def. of transition expressions, the interpretation of formulae is straightforward.

Abbreviations

- $root : \neg <\uparrow > T$
- $leaf: \neg < \downarrow > T$
- $first: \neg < \leftarrow > T$
- $last : \neg < \rightarrow > T$

Query Languages for XML : XPATH, XQUERY (extension of XPATH), Lorel,...

XPATH queries are easily translated into formulae of this logic.

Translation of a DTD into \mathcal{L}_K

<!ELEMENT Collection (Painter+)> <!ELEMENT Painter (Name, Painting*)> <!ELEMENT Name CDATA>

<!ELEMENT Painting CDATA>

 $\begin{array}{l} \text{Collection} \rightsquigarrow \langle \downarrow;?first;?Painter;(\rightarrow?Painter)* > last\\ \text{Painter} \rightsquigarrow \langle \downarrow;?first;Name;(\rightarrow?Painting)* > last\\ \text{Name} \rightsquigarrow \langle \downarrow;?first;?CDATA > last\\ \text{Painting} \rightsquigarrow \langle \downarrow;?first;?CDATA > last \end{array}$

2.2.2 A modal logic for finite DAG's : \mathcal{L}_P

So far, references have not been taken into account. A restriction on the syntax of \mathcal{L}_P and a modification of the semantics allows one to do it, provided that references do not create cycles (e.g. b1 \xrightarrow{cites} j1 \xrightarrow{cites} b1 is forbidden).

- Syntax: the brotherhood axes \rightarrow and \rightarrow are removed, nominals are added.
- Semantics: interpretation not on *any* graph, but on finite DAG's.
- The hybrid @ operator is definable in \mathcal{L}_P : $@_i \phi =_{def} <\uparrow^* > (root \land <\downarrow^* (i \land \phi) >$
- An algorithm deciding the consequence problem of this logic is given. It uses *mosaic style* proof techniques (idea: existence of a model is equivalent to existence of a finite set of partial models).
 EXPTIME complexity.

Remark: In \mathcal{L}_P DTD's cannot be always expressed: <ELEMENT! Collection(Painter, Painting)+> cannot be formalized.

3 Using Hybrid Logics

3.1 The "standard" multi-modal hybrid logic $HL(@,\downarrow)$

Syntax

- A non-empty set L of labels.
- Nom = set of propositional letters called nominals. X = set of variables.
 Nom ∪ X = state expressions.
- $P = \text{set of propositional letters disjoint from Nom. } A = Nom \cup P = \text{set of atoms.}$
- A grammar for the Formulae of $HL(@,\downarrow)$:

 $\phi := p \mid \neg \phi \mid \phi \land \phi \mid [l]\phi \mid < l > \phi \mid @_s\phi \mid \downarrow x.\phi$

where $p \in A$, $l \in L$, s is a state expression and $x \in X$.

Semantics, preliminaries

- An interpretation \mathcal{M} is any edge labeled graph (an *L*-structure having W as set of nodes), equipped with an evaluation function I assigning a set of states to each $p \in P$ and a function N assigning a unique state to each $n \in Nom$.
- A subset r_l of $W \times W$ is associated to each label $l \in L$ (labelled transition).
- Let \mathcal{M} be an interpretation and g a variable-evaluation function $X \to W$. For each state expression e, its interpretation $\mathcal{M}_g(e)$ is N(e) if $e \in Nom$ and is g(e) if $e \in X$.
- Notation: if w is a state, g^x_w denotes the x-variant of g whose value for the variable x is w.

Semantics, full definitions

1.
$$\mathcal{M}, w, g \models p$$
 if $w \in I(p)$, for $p \in P$.

2. $\mathcal{M}, w, g \models e$ if $\mathcal{M}_g(e) = w$, if e is a state expression.

- 3. $\mathcal{M}, w, g \models \neg \phi \text{ if } \mathcal{M}, w, g \not\models \phi.$
- 4. $\mathcal{M}, w, g \models \phi \land \psi$ if $\mathcal{M}, w, g \models \phi$ and $\mathcal{M}, w, g \models \psi$.
- 5. $\mathcal{M}, w, g \models [l]\phi$ if for each w' such that $w r_l w', \mathcal{M}, w', g \models \phi$.
- 6. $\mathcal{M}, w, g \models < l > \phi$ if there exists w' such that $w r_l w'$, and $\mathcal{M}, w', g \models \phi$.

7.
$$\mathcal{M}, w, g \models @_e \phi \text{ if } \mathcal{M}, \mathcal{M}_g(e), g \models \phi$$

8. $\mathcal{M}, w, g \models \downarrow x.\phi \text{ if } \mathcal{M}, w, g^x_w \models \phi$

A formula ϕ is *satisfiable* if there exist \mathcal{M} , w and g such that $\mathcal{M}, w, g \models \phi$.

3.2 An early attempt to model semi-structured-DB

V. Thion's PHd's thesis (2004) and [2] (Bidoit, Cerrito, Thion) constitute a first step towards using hybrid logic as a uniform framework to express data, schema, constraints an queries for semi-structured DB's. A DB is seen as an edge labeled graph s.t. when references are omitted a tree is left. Cycles created by references are allowed.

V. Thion's PHd's thesis:

* Nominals express node identifiers, propositional letters in P express data when they are attached to leaves and XML-attributes when they are attached to internal nodes. *root*: a special nominal.

* The set of labels L is partitioned in 2 classes : T which expresses "ordinary transitions" (DTD's tags) and REF, which expresses reference links.

* An additional modal operator $\langle F \rangle$ is used: the associated transition is the transitive closure of $\bigcup_{r_{t}} t \in T$.

* An enriched notion of schema is defined which allows one to "well type" reference targets (e.g. a person cannot be a father_of a dog).

* Any schema is formalizable, via a general algorithm \mathcal{A} .

In Thion's thesis:

```
• Examples of constraints: (label cites \in REF)

"if x cites y, then y cites x":

@_{root}(@_x[cites] < cites > x)
```

```
"if x cites y and y cites z, then x cites z:

@_{root}(@_x[cites][cites] \downarrow z.(@_x < cites > z))
```

Example of query: "Which are the authors of the book whose name is "Data on the Web" ? :

 one looks for values of x satisfying
 @_{root} < biblio >< book > (< title > DataOnTheWeb ∧ < author > x)

Positive features of Thion's work

- :-) One of the first works trying to use HL to model semi-structured DB's.
- :-) Uniformity of language
- :-) Rather rich expressivity
- :-) Good typing of references.

Weakenesses

- :-(The formalized notion of schema is not really DTD, but a bit more awkward one ("pattern grammar") which should be simplified.
- :-(Semantics is given by <u>unordered</u> graps \rightsquigarrow proposed notion of schema does not allows one to distinguish between collection (painter, painting)+ and collection(painting, painter)+.
- :-(Logical foundations of query evaluation and optimization are not studied.
 :-(Semantically interesting classes of queries/constraints such that query containment and constraint implication problems are decidable are not yet studied.

3.3 Hybrid Model Checking and Evaluation

- Problem of global model checking for hybrid languages: given an interpretation \mathcal{M} , find the states where ϕ is satisfied. If only 1 free variable appears in ϕ , the output is a set of nodes.
- In [5] (Massimo Franceschet and Maarten de Rijke 2005) hybrid operators are added to several modal logics (temporal, dynamic..). Moreover, a large set of hybrid operators besides @ et ↓ are considered.
- A variety of model checkers are considered, and their complexity is studied, w.r.t.: number of nodes, number of the (labeled) edges of the graph, length of φ, nesting degree of binders in φ. One goes from linear complexity to PSPACE-complexity (unrestricted use of binders).
- The model checkers are used to evaluate (translations of) classes of queries expressed in Lorel.

An example in [5]

Which are the papers which have at least two authors? In Lorel:

select X
from biblio.paper X, X. author Y, X.author Z
where Y !=Z
(In Xquery:
for \$X in biblio.paper, let \$N:= X.author let \$M:= X.author
where \$N!=\$M
return \$X

)

Formalization into a variant of hybrid dynamic logic with converse operator:

 $\downarrow x. < biblio.paper >^{-1} root \land < author > \downarrow y. @ \downarrow z. y \neq z$

which can be model-checked.

An other example in [5]

Which are the papers which cite themselves? In Lorel:

```
select X
from biblio.paper X, X.cite Y where X=Y
```

Formalization into a variant of hybrid dynamic logic with converse operator:

$$\downarrow x. < biblio.paper >^{-1} root \land < cite > \downarrow y. \ x = y$$

which can be model-checked.

3.4 Containment/implication problems in hybrid logic formalization.

A study of the tractability of these deductive problems can benefit from the knowledge of the following results for $HL(@,\downarrow)$ proven in [4] (B. ten Cate and M. Franceshet 2005). (The multi-modality does not play any role.)

- 1. Satisfiability of $HL(\downarrow)$ is undecidable.
- 2. Satisfiability of HL(@) is decidable.
- 3. Satisfiability of $HL(@,\downarrow) \setminus (\Box \downarrow)$ is decidable.
- 4. Satisfiability of $HL(@, \downarrow) \setminus (\downarrow \Box)$ is decidable.
- 5. Satisfiability and validity of $HL(@,\downarrow) \setminus (\Box \downarrow \Box, \diamondsuit \downarrow \diamondsuit)$ are decidable.

4 Concluding Remarks

Two questions:

- 1. Some of the presented works attempt to formalize DTD's. What about XML-schemas, which have a richer typing structure ?
- 2. Several ideas come from different works and/or different modal logics to provide a formal semantics to semistructured-databases: non-atomic edge labels, converse operator, regular expressions for paths from dynamic logics, nominals as node identifiers, possibility to use binders from hybrid logics, etc.
 - Each work presented here has advantages and drawbacks. Could one bring together all these ideas so as to define a really unified modal logic capable to found semi-structured databases as well as possible ?

References

- [1] N. Alechina, S. Demri, and M. de Rijke. A modal perspective on path constraints, 2003.
- [2] N. Bidoit, S. Cerrito, and V. Thion. A first step toward modelling semistructured data in hybrid multi-modal logic. *JANCL*, 14(4), 2004.
- [3] Peter Buneman, Wenfei Fan, and Scott Weinstein. Path constraints on semistructured and structured data. pages 129–138, 1998.
- [4] M. Franceschet and B. ten Cate. On the complexity of hybrid logics with binders. In CSL, pages 339–354, 2005.
- [5] Massimo Franceschet and Maarten de Rijke. Model checking for hybrid logics. *Journal of Applied Logic*, 2005.
- [6] M. Marx. Xpath and modal logics of finite dags. In M. Cialdea Mayer and F. Pirri, editors, Automated Reasoning with Analytic Tableaux and Related Methods, International Conference, TABLEAUX 2003, Rome, Italy,

September 9-12, 2003. Proceedings, volume 2796 of Lecture Notes in Computer Science. Springer, 2003.