

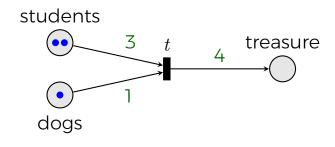
Network Medicine Petri Nets: Properties

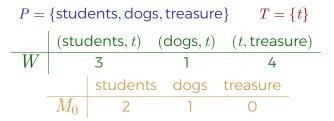
Sergiu Ivanov

sergiu.ivanov@univ-evry.fr

https://www.ibisc.univ-evry.fr/~sivanov/en/pn-biomodelling.html

Petri Nets: Reminder





The Spirit of the Lecture

What? Formal descriptions of what we (would like to) see.

Why? To properly formulate queries to computers.

Feels like? A kind of mind games.

Outline

Behavioural Properties

2. Structural Properties

Outline

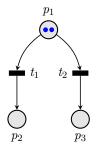
1. Behavioural Properties

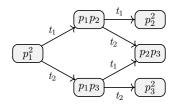
2. Structural Properties

Properties of the state graph.

- ▶ how does the net evolve?
- which markings may it attain?

May depend on the evolution mode.



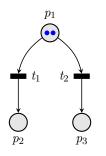


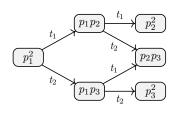
the state graph under asynchronous mode

Reachability

Given a marking (state) M, can the net reach it from its initial marking M_0 ?

Depends on the mode.





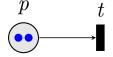
asynchronous mode

Markings p_1^2 , p_1p_2 , p_1p_3 , p_2^2 , p_2p_3 , p_3^2 are reachable.

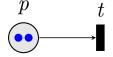
Are there any markings this net cannot reach under asyn?

$$p_1^3$$
, $p_1^2p_2$, $p_2^2p_3$, etc.

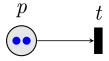
Reachability set = all states listed in the state graph



Reachability set = all states listed in the state graph

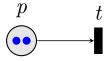


Reachability set = all states listed in the state graph



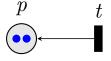
Answer: $\{p^2, p^1, p, \lambda\} \leftarrow \lambda$ is the empty marking

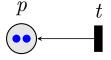
Reachability set = all states listed in the state graph



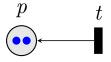
Answer: $\{p^2, p^1, p, \lambda\} \leftarrow \lambda$ is the empty marking

Does the choice of the evolution mode matter?





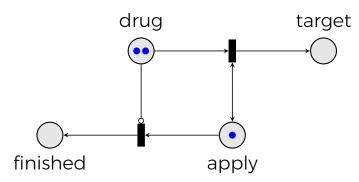
What is the reachability set? $\frac{2}{3}$



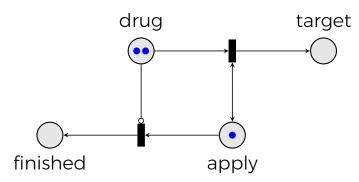
Answer: $\{p^k \mid k \in \mathbb{N}, k \geq 2\}$

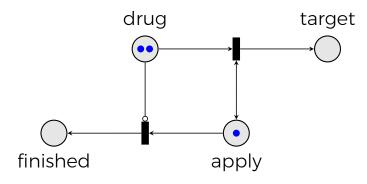
Does the choice of the evolution mode matter?

What is the reachability set? ³/₃



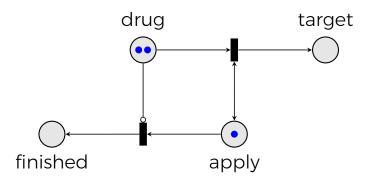
What is the reachability set? ³/₃





Answer: $\{d^2a, dat, at^2, ft^2\}$

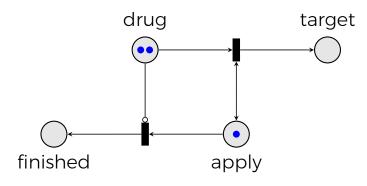
 $3/_{3}$



Answer: $\{d^2a, dat, at^2, ft^2\}$

What is the activity/phenomenon this net models?

 $3/_{3}$



Answer: $\{d^2a, dat, at^2, ft^2\}$

What is the activity/phenomenon this net models?

Does the choice of the evolution mode matter?

 $3/_{3}$

Sidenote: Asyn is Often Used in Modelling

The asynchronous mode well represents arbitrary interleaving of process interactions.

Ensuring a certain behaviour under the asynchronous mode means proper synchronisation.

Reachability is Hard

Reachability is decidable.

▶ ∃ a Turing machine deciding whether a marking is reachable or not.

Reachability is EXPSPACE-hard.

- ► A Turing machine needs at least exponential space on the band in order to decide whether a marking is reachable or not.
- Essentially, one needs to look over almost all of the reachability graph.

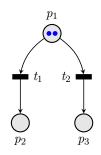
Coverability: "Lighter" Reachability

Given a marking M, can the net reach a marking M' such that M' covers M?

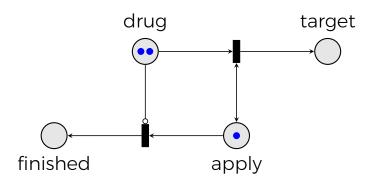
▶ M' covers M if all places in M' contain at least as many tokens as in M ($M' \ge M$).

Markings p_2 and p_3

- are coverable under both syn and asyn
- not reachable under syn



Is a Marking Coverable?

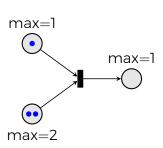


Which of these markings are coverable: dt, af, df?

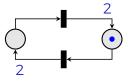
Boundedness

A Petri net is bounded if the number of tokens in every place never exceeds a fixed constant.

Bounded



Unbounded



The number of tokens in the net increases at every step.

Unboundedness ⇒ Cycles?

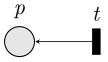
Do all unbounded Petri nets have cycles?

Unboundedness ⇒ Cycles?

Do all unbounded Petri nets have cycles?

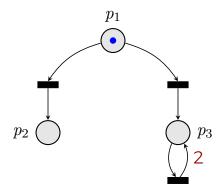
Unboundedness ⇒ Cycles?

Do all unbounded Petri nets have cycles?

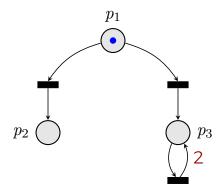


t produces new tokens all the time.

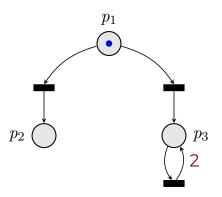
Is This Net Unbounded? 1/2



Is This Net Unbounded? 1/2



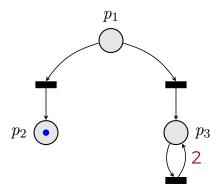
Is This Net Unbounded? 1/2



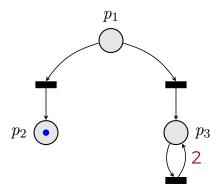
Answer: Yes

The token may get into p_3 .

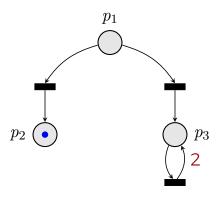
Is This Net Unbounded? 2/2



Is This Net Unbounded? 2/2



Is This Net Unbounded? 2/2



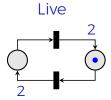
Answer: No

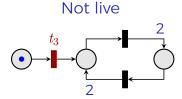
No tokens ever get into p_3 .

Liveness

A Petri net is live if, starting from any reachable marking, any transition in the net can be eventually fired.

 $\forall M \in \mathsf{Reachable}(M_0), \, \forall t \in \mathsf{Transitions}, \\ \exists M' \in \mathsf{Reachable}(M) \, \mathsf{such that} \, \, t \, \, \mathsf{is enabled at} \, \, M'.$

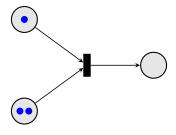




 t_3 may only fire once.

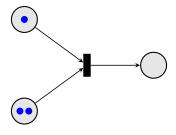
Deadlocks

Is this net live?



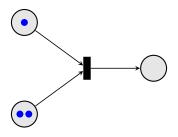
Deadlocks

Is this net live?



Deadlocks

Is this net live?



Answer: No

Deadlock = a state in which no transitions are enabled.

What are the deadlocks of this net?

Summary of Behavioural Properties

- Reachability and coverability
 - Can a given marking be reached/covered?
- ▶ Boundedness
 - Is there a fixed upper bound on the number of tokens in all places?
- Liveness and deadlocks
 - Can any transition fire arbitrarily often?

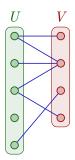
Outline

Behavioural Properties

2. Structural Properties

Bipartite Graphs

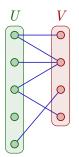
A graph is bipartite if its vertices can partitioned into two sets U and V such that every edge connects a vertex from U to a vertex from V (or a vertex from V).

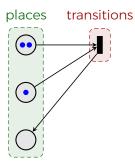


no edges within U or V

Bipartite Graphs

A graph is bipartite if its vertices can partitioned into two sets U and V such that every edge connects a vertex from U to a vertex from V (or a vertex from V).





Petri nets are bipartite graphs.

https://en.wikipedia.org/wiki/Bipartite_graph

Static Properties

Structural Properties

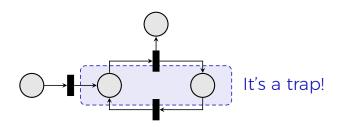
Properties depending only on the graph structure.

- ▶ independent of the dynamic states
- ▶ induced by loops, cycles, SCC, etc.

Properties that hold independently of the initial marking.

Traps

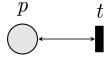
Trap = a subset of places S such that all transitions consuming tokens from S also put tokens into S.



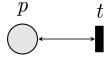
Once a trap contains tokens, it will always contain tokens.

Traps do not include transitions.

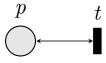
Where Is the Trap? 1/2



Where Is the Trap? 1/2



Where Is the Trap? 1/2



Answer: $\{p\}$

Where Is the Trap? 2/2

Where Is the Trap? 2/2

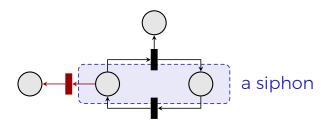
Where Is the Trap? $\frac{2}{2}$

Answer: $\{p_1\}$, $\{p_2\}$, $\{p_1, p_2\}$

The property of being a trap is satisfied vacuously.

Siphons

Siphon = a subset of places S such that all transitions putting tokens into S also consume tokens from S.



Siphons are duals (the opposite) of traps.

Once a siphon contains no tokens, it will never contain tokens again.

Answer: $\{p_1\}$, $\{p_2\}$, $\{p_1, p_2\}$

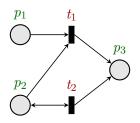
Answer: $\{p_1\}$, $\{p_2\}$, $\{p_1, p_2\}$

Can you think of other examples of siphons?

The incidence matrix M of a Petri net contains

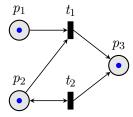
- one row per place
- one column per transition

Cell (p, t) contains the value by which the number of tokens in p changes when t fires.



$$M = \begin{array}{c|cc} & t_1 & t_2 \\ \hline p_1 & -1 & 0 \\ p_2 & -1 & 0 \\ p_3 & 1 & 1 \end{array}$$

Petri Nets as Linear Operators: Dynamics

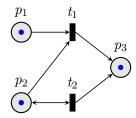


$$M = \begin{array}{c|cc} & t_1 & t_2 \\ \hline p_1 & -1 & 0 \\ p_2 & -1 & 0 \\ p_3 & 1 & 1 \end{array}$$

Current marking:
$$p_1^1 p_2^1 p_3^1 \mapsto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

The firing vector: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} - t_1$ fires once, t_2 does not fire

Petri Nets as Linear Operators: Dynamics



$$M = \begin{array}{c|cc} & t_1 & t_2 \\ \hline p_1 & -1 & 0 \\ p_2 & -1 & 0 \\ p_3 & 1 & 1 \end{array}$$

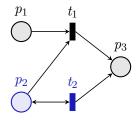
Current marking: $p_1^1 p_2^1 p_3^1 \mapsto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

The firing vector: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} - t_1$ fires once, t_2 does not fire

Next marking:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ -1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

Petri Nets ≠ Linear Operators



$$M = \begin{array}{c|cc} & t_1 & t_2 \\ \hline p_1 & -1 & 0 \\ p_2 & -1 & 0 \\ p_3 & 1 & 1 \end{array}$$

Note: t_2 cannot fire if p_2 is empty.

Cells (p_1, t_2) , (p_2, t_2) both contain 0, but t_2 actually depends on the number of tokens in p_2 !

Petri nets cannot be completely reduced to linear operators.

Two Matrix-based Structural Properties

Transition invariant = a firing vector F such that $M \cdot F = 0$.

- F describes how to fire transitions such that the contents of the places does not change.
- for any marking!

Place invariant = a vector Y such that $M^T \cdot Y = 0$

Structural Properties and Behaviour

Structural properties = strong properties

- derived from the structure of the network
- holding for any possible state

For some types of Petri nets, behavioural properties can be described purely structurally:

- place invariants may describe boundedness
- traps and siphons may describe liveness

Structural properties are easier to handle.

no need to look at the state graph

Summary of Structural Properties

- ▶ Traps
 - Once non-empty, always non-empty.
- ► Siphons
 - Once empty, always empty.
- Matrix-based
 - Properties of the incidence matrix.