Object-oriented Programming for Biomodelling

Sergiu Ivanov
sergiu.ivanov@univ-grenoble-alpes.fr

Université Grenoble Alpes

February 10, for RMoD
My Previous Research on Formal Models

Rewriting

Machines
My Previous Research on Formal Models

Rewriting

string rewriting

A B → B a

multiset rewriting

- a
- b
- c
- d

Register machines

Turing machines

Apply to complex biological systems
My Previous Research on Formal Models

Rewriting

string rewriting
A B → B a

multiset rewriting

Machines

Register machines

Turing machines

\[
\begin{array}{c}
R_1 \\
R_2 \\
\vdots \\
R_n \\
\end{array}
\]

\[
\begin{array}{c}
\cdots \ a \ b \ 1 \ \cdots \\
\end{array}
\]

\[
q_i
\]
My Previous Research on Formal Models

Rewriting

string rewriting
A B → B a

multiset rewriting

Machines

Register machines
R1
R2
...
Rn

Turing machines
...
q1
a b 1

Apply to complex biological systems
In the Meantime, Much Programming

- applications in research
- side projects
In the Meantime, Much Programming

- applications in research
- side projects

Functional programming

- Haskell
 - solvers
 - simulators
 - teaching

Object-oriented programming

- Python
 - category theory module for SymPy
 - postdoc

C++ [no logo :-(]
In the Meantime, Much Programming

- applications in research
- side projects

Functional programming

- Haskell
 - solvers
 - simulators
 - teaching

Object-oriented programming

- Python
 - category theory module for SymPy
 - postdoc

Postdoc: OOP apply biomodelling

https://openclipart.org/
Postdoc: OOP \(\text{apply}\) biomodelling

Modelling framework

- generic
- extensible
- parallel

Goal:

Develop a biomechanical model of microtubules
- mass-spring-based

https://openclipart.org/
Outline

1. Microtubules: Biology and Modelling
2. Grid Registers
3. Grid Register Transformers
4. Real Coordinates
Outline

1. Microtubules: Biology and Modelling
2. Grid Registers
3. Grid Register Transformers
4. Real Coordinates
Microtubules

- tubular polymers of tubuline
- support the shape of the cell
- support the cellular transport

A

The characteristic shape and size of a microtubule.

B

Microtubules form dense structures.
Microtubules as Mass-spring Systems

Modelling microtubules as a system of masses connected with springs gives good results.
Outline

1. Microtubules: Biology and Modelling
2. Grid Registers
3. Grid Register Transformers
4. Real Coordinates
What We Want: Masses and Springs
What We Want: Masses and Springs

![Diagram of masses and springs connected by springs]
What We Want: Masses and Springs

Discretise on a grid

- to simulate the diffusion of reactants
What We Want: Grid Registers of Agents

\[\text{agent} = \text{payload} + \text{cursor} \]

The **cursors** handle (abstract away) the **mouvement**.
What We Want: Grid Registers of Agents

\[\text{agent} = \text{payload} + \text{cursor} \]

The \textit{cursors} handle (abstract away) the \textit{mouvement}.

Register (grid of cursors)

https://openclipart.org/
What We Want: Grid Registers of Agents

\[\text{agent} = \text{payload} + \text{cursor} \]

The \textit{cursors} handle (abstract away) the \textit{mouvement}.

Register (grid of cursors)

https://openclipart.org/
Grid Registers of Cursors: Implementation

```
Grid3DRegister

Payload, Size

Cursor

register: Grid3DRegister

cursor: Cursor

move true/false

move true/false

https://perso.ensta-paristech.fr/~kielbasi/tikzuml/
```
Outline

1. Microtubules: Biology and Modelling
2. Grid Registers
3. Grid Register Transformers
4. Real Coordinates
Grid Register Transformers

Register

Changes the way the cursors move

Superposition of behaviour

Transformers can be superposed

Haskell and monad transformers

https://openclipart.org/
Grid Register Transformers

- a kind of a register
- changes the way the cursors move
- superposition of behaviour
 - transformers can be superposed
Grid Register Transformers

- a kind of a register
- changes the way the cursors move
- superposition of behaviour
 - transformers can be superposed

wink-wink Haskell and monad transformers ;-)
Grid Register Transformers: Examples

Obstacles

Adaptors

- connect several registers
- connect a register to itself

http://openclipart.org/
Grid Register Transformers: Implementation

Explode Grid3DRegister:

```
Grid3DRegister

DefaultGrid3DRegister

Transformer
```

https://perso.ensta-paristech.fr/~kielbasi/tikzuml/
Grid Register Transformers: Implementation

Explode Grid3DRegister:

Transformers are transparent to cursors:

https://perso.ensta-paristech.fr/~kielbasi/tikzuml/
Outline

1. Microtubules: Biology and Modelling
2. Grid Registers
3. Grid Register Transformers
4. Real Coordinates
Cursors with Real Coordinates

RealCursor

Handle the discretisation.

Cursor

Real coordinates influence grid coordinates

https://perso.ensta-paristech.fr/~kielbasi/tikzuml/
Cursors with Real Coordinates

RealCursor

Cursor

Handles the discretisation.

Real coordinates influence grid coordinates

- unnecessary dependence
- difficult to maintain

https://perso.ensta-paristech.fr/~kielbasi/tikzuml/
Real Coordinates + Transformers = ?

Transformer ◀ «don't know» ◁ RealCursor

Real Coordinates $+$ Transformers $=$?

Transformer

- - - «don't know» - - →

RealCursor

Cast is you friend. 🍌

- only at cursor creation
- everything works with casts

https://perso.ensta-paristech.fr/~kielbasi/tikzuml/
https://openclipart.org/
Real Coordinates + Transformers = ?

Cast is your friend.

- only at cursor creation
- everything works with casts

Conclusions and Open Questions

- OOP \textit{apply} biomodelling

- \textit{agent} = \textit{payload} + \textit{cursor}

- \textbf{Transformer} for compositional behaviour

- ? \textbf{Transformer} + \textbf{RealCursor}