P Systems with Reactive Membranes

Artiom Alhazov Rudolf Freund Sergiu Ivanov David Orellana-Martín Antonio Ramírez-de-Arellano José Antonio Rodríguez Gallego

> The Extended Moldovan Team The Sevillian Team

> > CMC 2023

P systems vs. Life

Inspired by the eukaryotic cell Decentralized computing

Use P systems as a tool for thinking about Life.

Emergence of Life

- \mapsto Emergence of multiple elements:
 - organic compounds
 - catalytic cycles
 - milieu separations
 - genetic code

Roadmap:

Capture the emergence of membranes.

O further.

Problem

First-class membranes

Membranes are *already* in the definition.

How to do emergence of membranes?

Very simple membranes \longrightarrow More complex membranes

Emergence of space

- Symbols carry space.
- Regions emerge from symbol interaction.

Evolution rules

$$u
ightarrow v$$
 $u, v \in V^*$

Uniformity: Same rules in all membranes. Locality: All symbols in *u* must belong to the same membrane.

Reactive membranes

Formal definitions

P systems with reactive membranes

$$\Pi = (\boldsymbol{O}, \boldsymbol{T}, \boldsymbol{W}_0, \boldsymbol{R}, \delta)$$

- O: the alphabet of objects
- $T \subseteq O$: the alphabet of terminal objects
- $W_0 \subseteq \mathcal{P}_{fin}(O^\circ)$: the initial finite set of multisets
- $R \subseteq O^{\circ} \times O^{\circ}$: the set of evolution rules
- δ : the derivation mode

$$\forall u \to v \in R: \ u \neq \lambda \ \lor \ v \neq \lambda$$

Salient features

• No explicit membrane structure: $W_0 \subseteq \mathcal{P}_{fin}(O^\circ)$

- membrane \sim individual multisets
- no membrane nesting
- One set of rules for all membranes.

Computation

Configuration:
$$W_i \subseteq \mathcal{P}_{fin}(O^\circ)$$

Computation step:

- Splitting & merging stage —
- \bigcirc Evolution stage \rightharpoonup

Non-deterministically partition *W_i*:

$$W_i = M_i \cup S_i \cup I_i$$

- *M_i*: the multisets to merge
- *S_i*: the multisets to split
- *I_i*: the multisets to keep intact

• $|M_i|$ is even

•
$$S_i \cap M_i = S_i \cap I_i = M_i \cap I_i = \emptyset$$

Partition M_i into a set of disjoint pairs, and merge each of the pairs.

2

• Non-deterministically pick a bijection $\varphi : [1..|M_i|] \rightarrow M_i.$

Set
$$\hat{\mathcal{M}}_i = \{(\varphi(2k-1), \varphi(2k)) \mid 1 \le k \le |\mathcal{M}_i|/2\}.$$

3 Set
$$M'_i = \{ w_1 \cup w_2 \mid (w_1, w_2) \in \hat{M}_i \}.$$

- The set of all possible ways to split a multiset: $split(w) = \{(w_1, w_2) \mid w_1 \cup w_2 = w, w_1, w_2 \in O^\circ\}.$
- The set of all possible ways to split the multisets in S_i:

$$\hat{S}_i = \prod_{w \in S_i} \operatorname{split}(w).$$

3

Son-deterministically pick
$$S'_i \in \hat{S}_i$$
.

Collect the results of splitting and merging:

$$W'_i = M'_i \cup \text{flatten}(S'_i) \cup I_i$$

4

• flatten
$$(S'_i) = \{w_1, w_2 \mid (w_1, w_2) \in S'_i\}$$

Evolution $W'_i \rightarrow W_{i+1}$

$$W_{i+1} = \{ w \mid \underline{w' \stackrel{\delta, R}{\Longrightarrow} w}, w' \in W'_i \}$$

derive a multiset w' from w by applying the rules from R according to the mode δ

Halting

W_i is halting if no more rules are applicable after any splitting & merging:

$$\forall W'_i: W_i \to W'_i \quad \forall w' \in W'_i: w' \not\Longrightarrow^{\delta, \mathcal{R}}$$

A halting computation ends in a halting configuration.

Result of a computation

Restrict everything in a halting configuration W_n to the terminal alphabet T:

$$\left(\bigcup_{w\in W_n} w\right)\bigg|_T = \bigcup_{w\in W_n} w\big|_T$$

$$w|_B(a) = \begin{cases} w(a) & \text{if } a \in B \\ 0 & \text{otherwise} \end{cases}$$

Examples

Example 1

max

•
$$\{a, b, c\} \rightarrow \{a, b, c\} \xrightarrow{r_3} \{e, b, c\}$$
 Result: $\bigwedge_{\stackrel{/}{\longrightarrow}}$
No other rules ever applicable. Result: $\bigwedge_{\stackrel{/}{\longrightarrow}}$

$$a, b, c \} \rightarrow \{ab, c\} \xrightarrow{r_1} \{d, c\}$$
 Result: d
 $r_3 \ \{eb, c\}$ Result: Λ

Example 1

max

- r_2 never applicable with $W_0 = \{a, b, c\}$
 - ► Two mergers are required, but *a* is necessarily consumed before by *r*₃ or *r*₁.

Notations

Conclusion: The number of initial parts $|W_0|$ matters.

- $Re_n OP(\delta, \tau)$: The P systems with reactive membranes with $|W_0| = n$, running under the mode δ , and using rules of type $\tau \in \{coo, ncoo\}.$
- $NRe_nOP(\delta, \tau)$: The number languages generated by $Re_nOP(\delta, \tau)$.

*PsRe*_n**OP**(δ, τ): The multiset languages generated by *Re*_n**OP**(δ, τ).

Example 2 max

$$r_{1,2,3}: a_i \rightarrow a'_i \quad r_{4,5,6}: a'_i \rightarrow a''_i \quad r_7: a''_1a''_2a''_3 \rightarrow f$$

 $a_1a_2a_3 \qquad T = \{a''_1, a''_2, a''_3, f\}$
 $a_1a_2a_3 \xrightarrow{r_{4,5,6}} \{a_1a_2a_3\} \xrightarrow{r_{1,2,3}} \{a'_1a'_2a'_3\} \xrightarrow{-}$
 $a_1a_2a_3 \xrightarrow{r_{4,5,6}} \{a''_1a''_2a''_3\} \xrightarrow{r_{7}} \{f\}$
 $a_1a_2a_3 \xrightarrow{r_{4,5,6}} \{a''_1a''_2a''_3\} \xrightarrow{r_{7}} \{f\}$
 $a_1a_2a_3 \xrightarrow{r_{4,5,6}} \{a''_1, a''_2, a''_3\}$

Splitting & merging may prevent the applicability of a rule with $|LHS| \ge 3$.

Computational power

W_0 can be extended by any number of additional Λ -vesicles:

Lemma

For every $\Pi \in Re_1 OP(\delta, \tau)$ there exists an equivalent $\Pi' \in Re_n OP(\delta, \tau)$ system, for every n > 1.

Proof sketch From $\Pi = (O, T, \{w\}, R, \delta)$ construct $\Pi' = (O, T, \{w, w_2 = \Lambda, \dots, w_n = \Lambda\}, R, \delta).$ No additional rule applications in w_2, \dots, w_n .

$$\forall i \in [2..n] : w \cup w_i = w.$$

Halting and ncoo

Remark

Configuration W is halting \iff

no more rules are applicable to flatten(W).

All rules are non-cooperative, i.e., only one symbol on the left-hand side of rules \Rightarrow splitting and merging need not be considered.

Splitting & merging and ncoo

Theorem 1

For any $\delta_1, \delta_2 \in \{asyn, seq, max, smax\}, Y \in \{N, Ps\},$ and any $n \ge 1$:

 $YRe_nOP(\delta_1, ncoo) = YOP_1(\delta_2, ncoo) = Y\mathcal{L}(REG).$

Proof sketch

$$YOP_1(\delta_2, ncoo) = Y\mathcal{L}(REG)$$
 is folklore

We argue that, for any $\delta_1 \in \{asyn, seq, max, smax\}$, $YRe_nOP(\delta_1, ncoo) = YOP_1(asyn, ncoo) = Y\mathcal{L}(REG)$.

Splitting & merging and ncoo

Theorem 1

$$YRe_nOP(\delta_1, ncoo) = YOP_1(\delta_2, ncoo) = Y\mathcal{L}(REG).$$

Proof sketch

- Prove $YRe_nOP(\delta_1, ncoo) = YOP_1(asyn, ncoo)$
- (⇒) For $\Pi' = (O, T, \{w_1, ..., w_n\}, R, \delta_1)$ construct $\Pi = (O, T, w_1 \cup ... \cup w_n, R, asyn) \in OP_1(asyn, ncoo).$
 - For δ₁ = seq, Π' may feature some kind of smax, but it does not matter because of ncoo.

Splitting & merging and *ncoo* Theorem 1 $YRe_nOP(\delta_1, ncoo) = YOP_1(\delta_2, ncoo) = Y\mathcal{L}(REG).$

Proof sketch

Prove $YRe_nOP(\delta_1, ncoo) = YOP_1(asyn, ncoo)$.

(
$$\Leftarrow$$
) For $\Pi = (O, T, w, R, asyn)$ construct
 $\Pi' = (O, T, \{w\}, R, asyn) \in Re_1 OP(asyn, ncoo).$

• Π' cannot apply more rules than Π .

Partially Blind Register Machines PBRM

Registers machines with two types of instructions:

- (p, ADD(r), q, s): in state p increment register r and jump to state q or state s.
- (p, SUB(r), q): in state p try to decrement register r; if successful, jump to state q, otherwise abort the computation without producing a result.

PsPBRM: The multiset languages generated by PBRMs.

$PsBRM \subseteq Reactive membranes + coo$

Theorem 2 $PsPBRM \subseteq PsRe_1OP(\delta, coo), \delta \in \{asyn, seq, max, smax\}.$

Proof idea

Simulate (p, ADD(r), q, s) by $p \rightarrow qa_r$ and $p \rightarrow sa_r$. Simulate (p, SUB(r), q) by $pa_r \rightarrow q$, $p \rightarrow p$, $a_r \rightarrow a_r$.

p and a_r are in the same membrane \Rightarrow decrement.

- No more a_r anywhere, unit rule $p \rightarrow p$ is applied \Rightarrow no halting.
- ▶ *p* and a_r in different membranes: unit rules are applied in branches in which they do not meet, but \exists a branch in which *p* and a_r did not get separated in the first place; in this branch the decrement happens.

Extensions

Limiting the membrane size

Forbid membranes containing more than *K* symbols.

Possible semantics:

- Prohibit rule applications adding more symbols.
- Porce the membrane to split.

Probably no impact if $K > \max_{LHS} |LHS|$.

Rules travel like objects

• Make $\mathcal{C} \subseteq \mathcal{P}_{fin} ((O \cup R)^\circ)$.

- Objects and rules are split and merged.
- In the evolution substep, evolve the atomic symbols from each w ∈ C by the rules present in w, according to the mode δ.

Splitting and merging of rules

A rule $u \to v$ can split into $u \to \alpha$ and $\alpha \to v$.

Two rules $u \to \alpha$ and $\alpha \to v$ can merge into $u \to v$.

• $u, v, \alpha \in O^{\circ}$

Origins of Life?

Discussion

Splitting & merging

Easy to imagine, difficult to define and work with.

Modulate computational power in interesting ways.

P systems with reactive membranes are not a model as understood in biological modelling.

P systems with reactive membranes are a formal vehicle for thinking about the origins of Life.

Relationship to other P system variants

- active membranes
- mobile membranes
- vesicles of multisets

Difference: compulsory splitting and merging. \mapsto emergence of a basic form of space.

TopologyGeometry|VS.|Space = neighborhoodsSpace = coordinates

Open questions

Back to the origins

Next steps in thinking about the origins of Life:

Implement catalytic cycles.

Implement self-replication.

More on computational power

Splitting & merging has no effect on ncoo.

Can splitting & merging augment the computational power? in which cases?

Halting vs. retrieving the result

Halting relies on binary mergers.

Retrieving the result flattens (merges) everything.

Asymmetry

The computational power depends on the definition of halting and the procedure for retrieving the result.

 $\forall \delta_1, \delta_2, \delta \in \{asyn, seq, max, smax\}, \forall Y \in \{N, Ps\}, \forall n \ge 1:$ Th 1: $YRe_nOP(\delta_1, ncoo) = YOP_1(\delta_2, ncoo) = Y\mathcal{L}(REG).$ Th 2: $PsPBRM \subseteq PsRe_1OP(\delta, coo).$

Not a model	Topology	Geometry
A formal vehicle	Space = neighborhoods	Space = coordinates
Computing pow	er? Catalytic cycles?	Self-replication?
Thank you Chema! Thank you BWMC organizers!		

A.Alhazov R.Freund S.Ivanov D.Orellana-Martín A.Ramírez-de-Arellano J.A.Rodríguez Gallego P Systems with Reactive Membranes best slide