Queens of the Hill

Artiom Alhazov Sergiu Ivanov
David Orellana-Martín

Institutul de Matematică și Informatică Université d'Évry
Universidad de Sevilla

CMC 2023

Core Wars

Core Wars is a programming game in which two or more programs run in a simulated computer with the goal of terminating every other program and surviving as long as possible.

MARS: the Core Wars environment

Common memory space

Only instructions
\hookrightarrow data is part of the instructions

Language: Redcode

$\cdots \cdot$
MOV 0, 1
$\cdots \cdot$
ADD \#4, 3
MOV 2, @2
JMP -2
DAT \#0, \#0
\cdots

The Imp: the simplest warrior

MOV 0, 1

Relative memory addresses:
$\longrightarrow 0$ current, 1 next.

Program: copy the current instruction to the next address.

Result: The Imp copies itself all over memory.

The Imp does not win

The Imp is good at survival, but bad at killing. \hookrightarrow it kills no processes.

The DAT instruction kills the current process.
To kill a process, insert DAT and make it execute it.

The Dwarf

Bomb the memory with regularly spaced DAT.
$0:$ ADD \#4, 3

1: MOV 2, @2
2: JMP -2
3: DAT \#0, \#0

Add 4 to instruction 3.
\hookrightarrow its 2nd argument
Move instruction $1+2$ to the value of its @2nd argument.
Jump back 2 instructions.

The Dwarf

Bomb the memory with regularly spaced DAT.

$$
\begin{aligned}
& 0: A D D \# 4,3 \\
& \text { 1: MOV 2, @2 } \\
& \text { 2: JMP -2 } \\
& \text { 3: DAT \#0, \#4 } \\
& \text { 4: } \\
& \text { 7: DAT \#0, \#4 }
\end{aligned}
$$

Add 4 to instruction 3.
\hookrightarrow its 2nd argument
Move instruction $1+2$ to the value of its @2nd argument.
Jump back 2 instructions.

DAT at addresses not dangerous to the Dwarf.

Core Wars Tournaments

King of the hill mode:

- 10-30 warriors
- sequentially interleaving runs
- score $=f($ number of killed rivals $)$

Highest score: current king of the hill
Lowest score:
© push off the hill
(2) replace by the next contestant

So what?

P systems vs. Life

Inspired by the eukaryotic cell Decentralized computing

Use P systems as a tool for thinking about Life.

P systems vs. Evolution

RMing
 Queens of the Hill

Run tournaments between P systems

Valkyries

Valkyries: expectations of the formalism

- Ease of interaction in a group of valkyries.
- Ease of programming individual valkyries.

$$
\Downarrow
$$

Transition P systems with communication and anti-matter.

Valkyrie P systems

$$
\Pi=\left(O, \mu, w_{1}, \ldots, w_{n}, R_{1}, \ldots, R_{n}\right)
$$

- $O=\Sigma \cup \Delta_{k}$: the finite alphabet of objects
- $\Delta_{k}=\left\{\delta_{t}, \bar{\delta}_{t} \mid 1 \leq t \leq k\right\} \cup\{\delta\}, k \in \mathbb{N}$:
the dissolution timers
- μ : the hierarchical membrane structure
- w_{i} : the initial multiset in membrane i
- R_{i} : the finite set of rules in membrane i

Rule types

(1) Full cooperation: $a b c \rightarrow x y z$
(2) Target indications: Tar $=\{$ in, here, out $\}$:

$$
a b \rightarrow(c, \text { out })(d, \text { in })
$$

(3) Membrane dissolution: $a b \rightarrow \delta$

- all objects and the inner membranes fall through to the parent membrane
(9) Dissolution timers: $\delta_{t} \rightarrow \delta_{t-1}, \delta_{1} \rightarrow \delta$
(3) Anti-matter annihilation for $\Delta_{k}: \delta_{t} \bar{\delta}_{t} \rightarrow \lambda$.
- weak priority for annihilation
- Δ_{k} forbidden in normal LHS.

Computations and not halting

Usual semantics:
(Apply the rules in the maximally parallel manner.
(2) Perform the dissolutions.

Halting configurations: no more applicable rules.

Don't care about halting: continuous computation
\hookrightarrow like in VAS, Lindenmayer systems, and Core Wars

Example

- double some a and eject c
- dissolve the membrane
- b progressively erases c

$$
\begin{aligned}
& \begin{array}{l}
d \rightarrow d \\
d \rightarrow d\left(\delta_{2}, \text { in }\right) \\
d
\end{array} \\
& \underbrace{b c \rightarrow b} \begin{array}{c}
a \rightarrow a a(c, \text { out }) \\
b \bar{\delta}_{1}
\end{array} \\
& \begin{array}{l}
a \rightarrow \delta \\
a \rightarrow \delta
\end{array} \\
&
\end{aligned}
$$

- maintain d
- maintain d and inject δ_{2}

Example

$$
\begin{aligned}
& d \rightarrow d \\
& d \rightarrow d\left(\delta_{2}, i n\right) \\
& \quad d
\end{aligned}
$$

$$
\begin{gathered}
b c \rightarrow b \\
b \bar{\delta}_{1}
\end{gathered} \underbrace{a \rightarrow a a(c, \text { out })}_{3} \begin{gathered}
a \rightarrow \delta \\
a
\end{gathered}
$$

- First δ_{2} in membrane 2 will become δ_{1} and annihilate with $\bar{\delta}_{1}$.
- Second δ_{2} will dissolve membrane 2.

Example

$$
\begin{aligned}
& d \rightarrow d \\
& d \rightarrow d\left(\delta_{2}, i n\right)
\end{aligned}
$$

$$
\begin{gathered}
b c \rightarrow b \\
b \bar{\delta}_{1}
\end{gathered} \underbrace{a \rightarrow a a(c, \text { out })}_{3} \begin{gathered}
a \rightarrow \delta \\
a
\end{gathered}
$$

Possible evolutions:

		w_{1}	W_{2}	w_{3}
	\emptyset	d	$b \bar{\delta}_{1} c^{*}$	$a^{2^{k}}$
	2	$d b c^{*}\left\{\delta_{2}, \delta_{1}, \lambda\right\}$		$a^{2^{k}}$
	3	d	$b \bar{\delta}_{1} c^{*} a^{*}$	
		$d b c^{*} a^{*}\left\{\delta_{2}, \delta_{1}, \lambda\right\}$		

Tournaments

Formal definition inspired by P colonies

- Common alphabet $O=\Sigma \cup \Delta_{k}$ for all Π_{i}.
- Membrane i in $\Pi_{j} \rightsquigarrow$ membrane (j, i).

Tournament semantics

Same semantics for \mathcal{Q} as for individual valkyries.

Dissolving the skin of a valkyrie is allowed \Rightarrow killing.
The skin bounces all symbols back.
\hookrightarrow including δ_{k} and $\bar{\delta}_{k}$
The symbols may end up in another valkyrie
\Rightarrow communication by non-determinism.

Tournament organization

(1) Run all valkyries in max mode for N steps, resolving non-determinism probabilistically.
(2) Repeat (1) M times.
(3) Compute the score of the valkyrie Π_{j} based on how many of its membranes were dissolved.

Tournament scoring

- $\operatorname{diss}_{i}\left(\Pi_{j}\right)$: number of membranes of Π_{j} that were dissolved during i-th run of (1)
- $\left|\Pi_{j}\right|$: total number of membranes in Π_{j}

Computing the score: an example

$$
\operatorname{score}\left(\Pi_{j}\right)=\frac{1}{\left|\Pi_{j}\right|}\left(\left|\Pi_{j}\right|-\frac{1}{M} \sum_{i=1}^{M} \operatorname{diss}_{i}\left(\Pi_{j}\right)\right)
$$

Let $\left|\Pi_{j}\right|=5, M=3$, and suppose 2,3 , and 4 membranes were dissolved:

$$
\begin{gathered}
\operatorname{diss}_{1}\left(\Pi_{j}\right)=2 \quad \operatorname{diss}_{2}\left(\Pi_{j}\right)=3 \quad \operatorname{diss}_{3}\left(\Pi_{j}\right)=4 \\
\operatorname{score}\left(\Pi_{j}\right)=\frac{1}{5}\left(5-\frac{2+3+4}{3}\right)=\frac{2}{5}
\end{gathered}
$$

Tournament parameters

m 10-20 The number of entrants.
N 1000 The length of a computation.
M 50 The total number of computations.
$k \quad 5 \quad$ The maximal value of the index t in δ_{t}. The number of working symbols.

Values derived from similar experiments with multi-agent systems \Rightarrow Test and improve!

Computational complexity

Quickly.

Valkyries are computationally complete

Simulate $(p, \operatorname{ADD}(r), q)$ by $p \rightarrow q a_{r}$.
Simulate $(p, \operatorname{SUB}(r), q, s)$:

Decrement
 1. $p \rightarrow \bar{p}_{1} \hat{p}_{1}$
 $p \rightarrow \tilde{p}_{1} \dot{p}_{1}$
 2. $\bar{p}_{1} a_{r} \rightarrow \bar{p}_{2}, \hat{p}_{1} \rightarrow \hat{p}_{2}$
 $\dot{p}_{1} a_{r} \rightarrow \#, \tilde{p}_{1} \rightarrow \tilde{p}_{2}$
 3. $\hat{p}_{2} \bar{p}_{2} \rightarrow q, \hat{p}_{2} \bar{p}_{1} \rightarrow \# \quad \tilde{p}_{2} \dot{p}_{1} \rightarrow s$

The language is rich enough.

Tournaments are not computations

The proof relies on non-determinism and halting.
No halting in tournaments.

The non-determinism is resolved probabilistically.
\Rightarrow Partial biased coverage of the computation tree.

Efficiency $>$ Expressive power

First valkyries

The Bomber

Bomb around with δ_{t}.

$$
\left\{a \rightarrow a\left(\delta_{t}, \text { out }\right) \mid 1 \leq t \leq k\right\}
$$

Number of valkyries \downarrow Efficiency \downarrow

- With 2 valkyries, δ_{t} may come back into the Bomber.

The Bar Bomber

Bomb around with δ_{t}, but also stock up $\bar{\delta}_{t}$.

$$
\left\{a \rightarrow a \bar{\delta}_{t}\left(\delta_{t}, \text { out }\right) \mid 1 \leq t \leq k\right\}
$$

Protects against other Bombers.
Overwhelmed when too many Bombers around.

The Anti-Bomber

Bomb around with δ_{t}, but also eject $\bar{\delta}_{t}$.

$$
\left\{a \rightarrow a\left(\bar{\delta}_{t}, \text { out }\right)\left(\delta_{t}, \text { out }\right) \mid 1 \leq t \leq k\right\}
$$

Protects this valkyrie, but also the other valkyries.

The Delta Wall

If the number of entrants m is known:
\hookrightarrow or the upper bound on m

Stock up "enough" copies of $\bar{\delta}_{1}$.
$\hookrightarrow r$ defines "enough"

The 2-layer Onion

Wrap the core valkyrie in layers.

How to emit δ_{t} without dissolving membrane 1?
Destabilize other valkyries by pushing other symbols.

The Bombshell

Release multiple valkyries from a common skin.
\hookrightarrow multiple charges

Brings potential cooperation.

Costs a membrane dissolution on the score.

Discussion and future work

Tournaments in class

(1) Students design valkyries. \hookrightarrow group work
(2) We run tournaments.
(3) Students get grades.

A classic in teaching multi-agent systems.

Teaching and research benefits

(Design P systems.
(2) Revise probabilities.
(3) Think about survival in an adversarial environment. \hookrightarrow Potential for thinking about the origins of Life.
(0) Promote various formalisms and simulation engines. \longrightarrow cP systems, kernel P systems, numerical P systems, spiking neural P systems, etc.

Scoring

$$
\operatorname{score}\left(\Pi_{j}\right)=\frac{1}{\left|\Pi_{j}\right|}\left(\left|\Pi_{j}\right|-\frac{1}{M} \sum_{i=1}^{M} \operatorname{diss}_{i}\left(\Pi_{j}\right)\right)
$$

Other scoring functions?

- Better capture the results.
- Avoid trivial edge cases.
- Measure the production of certain symbols?
\hookrightarrow forget dissolution

Core Wars vs. Queens of the Hill

Core Wars

Queens of the Hill

Data Secondary Important
Erasure Instruction-based Dissolution
Programs Mutable Immutable (fixed rules)
$\begin{array}{ll}\text { Determinism Deterministic } & \begin{array}{l}\text { Non-deterministic } \\ \text { (probabilistic) }\end{array}\end{array}$

$\stackrel { \boxed { Q } } { \mathscr { Q } } = \longdiv { \Pi _ { 1 } } \cdots \longdiv { \Pi _ { m } }$

$$
\begin{gathered}
a \rightarrow a\left(\delta_{t}, \text { out }\right) \\
a
\end{gathered}
$$

$a \rightarrow a \bar{\delta}_{1}^{r(m-1)}$

$$
a \rightarrow a(b, \text { out })
$$

$a \bar{\delta}_{1}^{r(m-1)}$

$$
\begin{gathered}
a \rightarrow a \bar{\delta}_{t}\left(\delta_{t}, \text { out }\right) \\
a
\end{gathered}
$$

$$
a
$$

$$
\{a \rightarrow(a, \text { out }) \mid a \in \Sigma\}
$$

$\delta \quad$ Subvalkyrie $_{1}$
Subvalkyrie ${ }_{2}$
Subvalkyrie $_{3}$

Thank you BWMC organizers!

