Queens of the Hill

Artiom Alhazov Sergiu Ivanov David Orellana-Martín

Institutul de Matematică și Informatică Université d'Évry Universidad de Sevilla

CMC 2023

Core Wars

Core Wars is a programming game in which two or more programs run in a simulated computer with the goal of terminating every other program and surviving as long as possible.

corewars.org

MARS: the Core Wars environment

- Common memory space
- **Only instructions**
- \mapsto data is part of the instructions
- Language: Redcode

• • •			
MOV 0, 1			
• • •			
ADD #4, 3			
MOV 2, @2			
JMP -2			
DAT #0, #0			
• • •			

The Imp: the simplest warrior

MOV 0, 1

Relative memory addresses: $\rightarrow 0$ current, 1 next.

Program: copy the current instruction to the next address.

Result: The Imp copies itself all over memory.

The Imp does not win

The Imp is good at survival, but bad at killing. \mapsto it kills no processes.

The DAT instruction kills the current process.

To kill a process, insert **DAT** and make it execute it.

The Dwarf

Bomb the memory with regularly spaced DAT.

- 0: ADD #4, 3
- 1: MOV 2, @2
- 2: JMP -2
- 3: DAT #0, #0

- Add 4 to instruction 3. \rightarrow its 2nd argument Move instruction 1+2 to the value of its @2nd argument.
- Jump back 2 instructions.

The Dwarf

Bomb the memory with regularly spaced DAT.

- 0: ADD #4, 3
- 1: MOV 2, @2
- 2: JMP -2
- 3: DAT #0, #4
- 4: • •
- 5: . . .
- 7: DAT #0, #4

- Add 4 to instruction 3. \rightarrow its 2nd argument
- Move instruction 1+2 to the value of its @2nd argument.
- Jump back 2 instructions.

DAT at addresses not dangerous to the Dwarf.

Core Wars Tournaments

King of the hill mode:

- 10-30 warriors
- sequentially interleaving runs
- score = f(number of killed rivals)

Highest score: current king of the hill

Lowest score:

- push off the hill
- replace by the next contestant

So what?

P systems vs. Life

Inspired by the eukaryotic cell Decentralized computing

Use P systems as a tool for thinking about Life.

Queens of the Hill

Run tournaments between P systems

Valkyries: expectations of the formalism

- Ease of interaction in a group of valkyries.
- Ease of programming individual valkyries.

Transition P systems with communication and anti-matter.

Valkyrie P systems

$$\Pi = (\boldsymbol{O}, \boldsymbol{\mu}, \boldsymbol{w}_1, \dots, \boldsymbol{w}_n, \boldsymbol{R}_1, \dots, \boldsymbol{R}_n)$$

- $O = \Sigma \cup \Delta_k$: the finite alphabet of objects
- $\Delta_k = \{\delta_t, \overline{\delta}_t \mid 1 \le t \le k\} \cup \{\delta\}, k \in \mathbb{N}$: the dissolution timers
- μ : the hierarchical membrane structure
- *w_i*: the initial multiset in membrane *i*
- *R_i*: the finite set of rules in membrane *i*

Rule types

- Full cooperation: $abc \rightarrow xyz$
- Target indications: $Tar = \{in, here, out\}$: $ab \rightarrow (c, out)(d, in)$
- Membrane dissolution: $ab \rightarrow \delta$
 - all objects and the inner membranes fall through to the parent membrane
- Dissolution timers: $\delta_t \to \delta_{t-1}, \, \delta_1 \to \delta$
- Solution Anti-matter annihilation for $\Delta_k: \delta_t \overline{\delta}_t \to \lambda$.
 - weak priority for annihilation
 - Δ_k forbidden in normal LHS.

Computations and not halting

Usual semantics:

- Apply the rules in the maximally parallel manner.
- Perform the dissolutions.

Halting configurations: no more applicable rules.

Don't care about halting: continuous computation \mapsto like in VAS, Lindenmayer systems, and Core Wars

Example annihilation rules not shown

- First δ_2 in membrane 2 will become δ_1 and annihilate with $\overline{\delta}_1$.
- Second δ_2 will dissolve membrane 2.

Example annihilation rules not shown

Possible evolutions:

3

Tournaments

Formal definition

inspired by P colonies

- Common alphabet $O = \Sigma \cup \Delta_k$ for all Π_i .
- Membrane *i* in $\Pi_i \rightsquigarrow$ membrane (j, i).

Tournament semantics

Same semantics for Q as for individual valkyries.

Dissolving the skin of a valkyrie is allowed \Rightarrow killing.

The skin bounces all symbols back. \mapsto including δ_k and $\overline{\delta}_k$

The symbols may end up in another valkyrie \Rightarrow communication by non-determinism.

Tournament organization

- Run all valkyries in *max* mode for *N* steps, resolving non-determinism probabilistically.
- Repeat Mitimes.
- Compute the score of the valkyrie Π_j based on how many of its membranes were dissolved.

$$\operatorname{score}(\Pi_j) = \frac{1}{|\Pi_j|} \left(|\Pi_j| - \frac{1}{M} \sum_{i=1}^{M} \operatorname{diss}_i(\Pi_j) \right)$$

Tournament scoring

$$\operatorname{score}(\Pi_j) = \frac{1}{|\Pi_j|} \left(|\Pi_j| - \frac{1}{M} \sum_{i=1}^{M} \operatorname{diss}_i(\Pi_j) \right)$$

- diss_i(Π_j): number of membranes of Π_j that were dissolved during *i*-th run of
- $|\Pi_j|$: total number of membranes in Π_j

Computing the score: an example

$$\operatorname{score}(\Pi_j) = \frac{1}{|\Pi_j|} \left(|\Pi_j| - \frac{1}{M} \sum_{i=1}^{M} \operatorname{diss}_i(\Pi_j) \right)$$

Let $|\Pi_j| = 5$, M = 3, and suppose 2, 3, and 4 membranes were dissolved:

$$\operatorname{diss}_1(\Pi_j) = 2 \qquad \operatorname{diss}_2(\Pi_j) = 3 \qquad \operatorname{diss}_3(\Pi_j) = 4$$

$$\operatorname{score}(\Pi_j) = \frac{1}{5} \left(5 - \frac{2+3+4}{3} \right) = \frac{2}{5}$$

Tournament parameters

- *m* 10–20 The number of entrants.
- *N* 1000 The length of a computation.
- M 50 The total number of computations.
- *k* 5 The maximal value of the index *t* in δ_t .
- $|\Sigma|$ 10 The number of working symbols.

Values derived from similar experiments with multi-agent systems \Rightarrow Test and improve!

Computational complexity Quickly.

Valkyries are computationally complete

Simulate (p, ADD(r), q) by $p \rightarrow qa_r$.

Simulate (p, SUB(r), q, s):

The language is rich enough.

Tournaments are not computations

The proof relies on non-determinism and halting. No halting in tournaments.

The non-determinism is resolved probabilistically.

 \Rightarrow Partial biased coverage of the computation tree.

Efficiency > Expressive power

First valkyries

The Bomber

Bomb around with δ_t .

$$\begin{bmatrix} \{a \to a(\delta_t, out) \mid 1 \le t \le k\} \\ a \end{bmatrix}$$

Number of valkyries \downarrow Efficiency \downarrow

• With 2 valkyries, δ_t may come back into the Bomber.

The Bar Bomber

Bomb around with δ_t , but also stock up $\overline{\delta}_t$.

$$\underbrace{ \{a \to a \,\overline{\delta}_t \, (\delta_t, out) \mid 1 \le t \le k\} }_{a}$$

Protects against other Bombers.

Overwhelmed when too many Bombers around.

The Anti-Bomber

Bomb around with δ_t , but also eject $\overline{\delta}_t$.

$$\begin{bmatrix}
\{a \to a \, (\bar{\delta}_t, out) \, (\delta_t, out) \mid 1 \le t \le k\} \\ a
\end{bmatrix}_{1}$$

Protects this valkyrie, but also the other valkyries.

The Delta Wall

If the number of entrants m is known: \rightarrow or the upper bound on m

$$\begin{bmatrix} a \to a\bar{\delta}_1^{r(m-1)} \\ a\bar{\delta}_1^{r(m-1)} \end{bmatrix}_1$$

Stock up "enough" copies of $\bar{\delta}_1$. $\mapsto r$ defines "enough"

The 2-layer Onion

Wrap the core valkyrie in layers.

How to emit δ_t without dissolving membrane 1? Destabilize other valkyries by pushing other symbols.

The Bombshell

Release multiple valkyries from a common skin. \mapsto multiple charges

Brings potential cooperation.

Costs a membrane dissolution on the score.

Discussion and future work

Tournaments in class

Students design valkyries.

 \mapsto group work

We run tournaments.

Students get grades.

A classic in teaching multi-agent systems.

Teaching and research benefits

- Design P systems.
- Revise probabilities.
- Think about survival in an adversarial environment.
 → Potential for thinking about the origins of Life.
- Promote various formalisms and simulation engines.
 → cP systems, kernel P systems, numerical P systems, spiking neural P systems, etc.

Scoring

$$\operatorname{score}(\Pi_j) = \frac{1}{|\Pi_j|} \left(|\Pi_j| - \frac{1}{M} \sum_{i=1}^{M} \operatorname{diss}_i(\Pi_j) \right)$$

Other scoring functions?

- Better capture the results.
- Avoid trivial edge cases.
- Measure the production of certain symbols?

 → forget dissolution

Core Wars vs. Queens of the Hill

	Core Wars	Queens of the Hill
Data	Secondary	Important
Erasure	Instruction-based	Dissolution
Programs	Mutable	Immutable (fixed rules)
Determinism	Deterministic	Non-deterministic (probabilistic)

Thank you BWMC organizers!