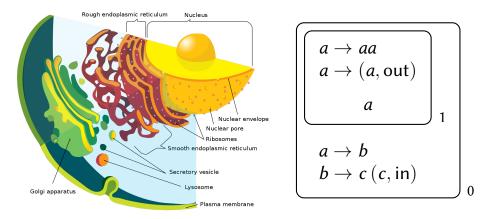
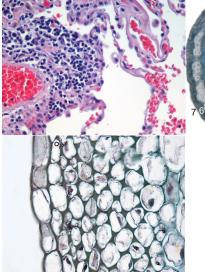
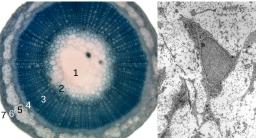

The Many Shapes of Polymorphism

Sergiu Ivanov

Artiom Alhazov, Rudolf Freund, Yurii Rogozhin, Francis George Cabarle, The Sevillan Team, ...

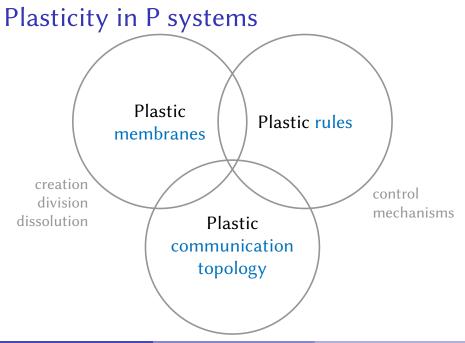

[E+A] CMC 2022

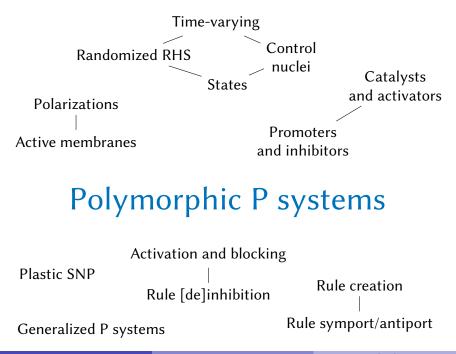

Polymorphic P Systems: A Survey.

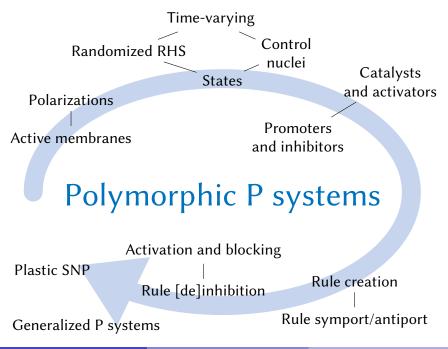

Bulletin of the International Membrane Computing Society (IMCS). Number 2, December 2016: 79–101.

P systems are inspired by eukaryotes

https://en.wikipedia.org/wiki/Eukaryote#Internal_membranes


Life is plastic


https://en.wikipedia.org/wiki/File:Emphysema_H_and_E.jpg https://en.wikipedia.org/wiki/File:Stem-histology-cross-section-tag.svg https://en.wikipedia.org/wiki/File:MSC_high_magnification.jpg https://en.wikipedia.org/wiki/File:Plant_cell_type_collenchyma.png


Sergiu Ivanov et al.

The Many Shapes of Polymorphism

[E+A] CMC 2022 3/52

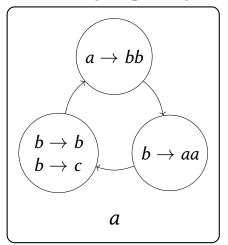
Sergiu Ivanov et al.

The Many Shapes of Polymorphism

Active membranes and polarizations

membrane division

$$[a]_h \rightarrow [b]_{h'} [c]_{h''}$$

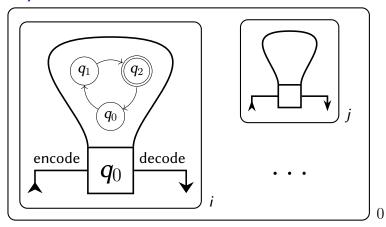

Replicate (or separate) membrane contents. Replicate (or separate) computers.

$$[a]_h^+ \rightarrow [b]_h^-$$

Membrane polarization determines available rules.

Sergiu Ivanov et al.

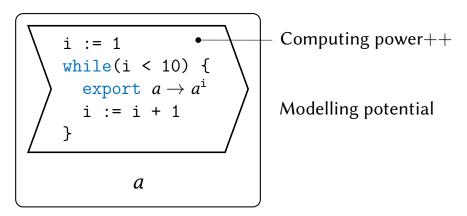
Time-varying P systems


The set of available rules varies cyclically with time.

Artiom Alhazov, Rudolf Freund, Hilbert Heikenwälder, Marion Oswald, Yurii Rogozhin, Sergey Verlan: Sequential P Systems with Regular Control. Int. Conf. on Membrane Computing 2012: 112-127

Sergiu Ivanov et al.

The Many Shapes of Polymorphism


P systems with states

Potentially complex and infinite state transitions.

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Marion Oswald: Observations on P Systems with States. Multidisciplinary Creativity, Marian Gheorghe, Ion Petre, Mario J. Pérez-Jiménez, Grzegorz Rozenberg, and Arto Salomaa, eds. p. 17-28, Editura Spandugino, 2015.

Control nuclei

 Ştefănescu, G., Şerbănuţa, T., Chira, C., Roşu, G.: P Systems with Control Nuclei. In: Preproceedings of the Tenth Workshop on Membrane Computing (WMC10), Curtea de Argeş, 361–365 (2009)

Randomized right-hand sides

$$\begin{array}{c}
a \rightarrow aa \\
c \rightarrow b \\
a
\end{array}$$

Random permutation

at every step.

- identity allowed
- increases the power

$$N = \{2^n \mid n \in \mathbb{N}\}$$

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov: P systems with randomized right-hand sides of rules. Theor. Comput. Sci. 805: 144-160 (2020)

Promoters and inhibitors

$$\begin{array}{c|c}
a \to aa \mid_{b} \\
b \to b \\
b \to \lambda \\
a
\end{array}$$

$$N = \{2^n \mid n \in \mathbb{N}\}$$

Sergiu Ivanov et al

Catalytic P systems

Control the parallelism

$$a \rightarrow aa \mid_p$$

multiply by 2

 $ca \rightarrow caa$

increment

Purely catalytic: bound the parallelism

• all rules are catalytic

P systems with activators

$$\begin{array}{c}
 \hline
 r_1: (a: b \rightarrow aa) \\
 r_2: (b: a \rightarrow \lambda) \\
 a^3 b^5
\end{array}$$

a activates r₁ 3 times *b* activates r₂ 5 times *a* evolves by r₂ *b* evolves by r₁

Artiom Alhazov: A Note on P Systems with Activators. In: Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini: RGNC report 01/2004, Second Brainstorming Week on Membrane Computing, Sevilla, 2004, 16-19.

Rule creation

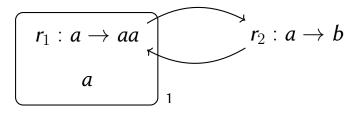
$$r: a \rightarrow w/z, z \in RuleLabels^*$$

consume applied rules

reintroduce the rules in z

• Rule reintroduction rather than rule creation

• Similar to time-varying


Fernando Arroyo, Angel Baranda, Juan Castellanos, Gheorghe Păun: Membrane Computing: The Power of (Rule) Creation. Journal of Universal Computer Science, vol. 8, no. 3 (2002), 369-381

Sergiu Ivanov et al.

The Many Shapes of Polymorphism

Symport/antiport of rules

 $(\mathbf{r}_2, \mathbf{in}; \mathbf{r}_1, \mathbf{out})$

$N = \{2^n \mid n \in \mathbb{N}\}$

Cavaliere, M., Genova, D.: P systems with Symport/Antiport of Rules. Journal of Universal Computer Science, vol. 10, 5, 540–558 (2004)

Inhibiting/de-inhibiting rules $r: a \to w \langle r_1 \dots r_n \rangle$ toggle the inhibition of $r_1 \dots r_n$

$$\begin{bmatrix} r_1 : a \to aa & r_2 : a \to aa \langle r_1 r_2 r_3 \rangle \\ r_3 : a \to b & a \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ &$$

Matteo Cavaliere, Mihai Ionescu, Tseren-Onolt Ishdorj: Inhibiting/ De-inhibiting
 Rules in P Systems. Workshop on Membrane Computing 2004: 224-238

Sergiu Ivanov et al.

The Many Shapes of Polymorphism

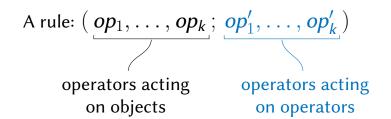
Activation/Blocking of rules Activation graph $r_1: a \rightarrow aa \quad r_2: a \rightarrow b$ $r_3: c \rightarrow c \quad r_4: c \rightarrow d$ ca $r_1 \quad r_2$ $r_3 \quad r_4$

$$N = \{2^n \mid n \in \mathbb{N}\}$$

 \ldots + blocking + delays ≤ 2 = PsRE

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov: Variants of P systems with activation and blocking of rules. Nat. Comput. 18(3): 593-608 (2019)

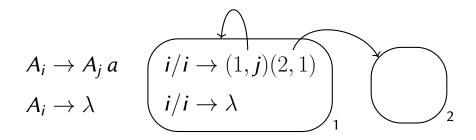
Sergiu Ivanov et al.


The Many Shapes of Polymorphisn

Generalized P systems

P systems with operators:

- control symbols
- object transfer operators • operator transfer operators rewriting


operatorception

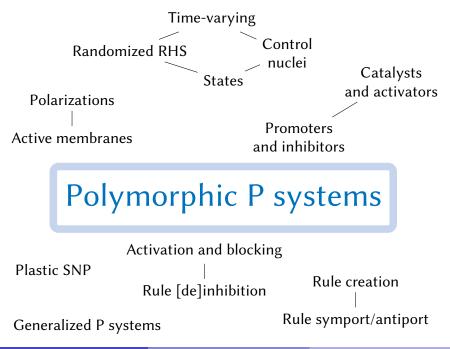
Rudolf Freund: Generalized P-Systems with Splicing and Cutting/Recombination. Grammars 2(3): 189-199 (1999)

Extended Spiking Neural P Systems ESNP

Generate any semilinear language in a*:

Artiom Alhazov, Rudolf Freund, Marion Oswald, Marija Slavkovik: Extended Spiking Neural P Systems. Workshop on Membrane Computing 2006: 123-134

Sergiu Ivanov et al.


The Many Shapes of Polymorphism

ESNP with structural plasticity

simplified $\sigma_i: E/a^c \to \alpha N$

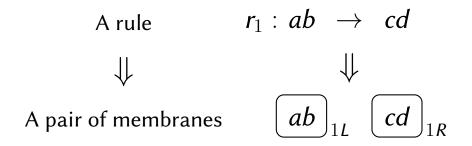
 $\alpha = + \implies \text{connect } \sigma_i \text{ to the neurons in } N.$ $\alpha = - \implies \text{disconnect } \sigma_i \text{ from the neurons in } N.$ + usual ESNP rules

Francis George C. Cabarle, Henry N. Adorna, Mario J. Pérez-Jiménez, Tao Song:
 Spiking neural P systems with structural plasticity. Neural Comput. Appl. 26(8):
 1905-1917 (2015)

Sergiu Ivanov et al.

Code is data.

- John von Neumann

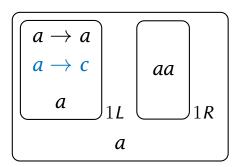

https://en.wikipedia.org/wiki/John_von_Neumann

Sergiu Ivanov et al

The Many Shapes of Polymorphisn

[E+A] CMC 2022 22/52

Polymorphic rules


Rule LHS and RHS become membrane contents.

Outline

- The power of polymorphism: first glance
- The power of polymorphism: second glance
- The power of polymorphism: third glance

Discussion

Generate non-semilinear languages with halting

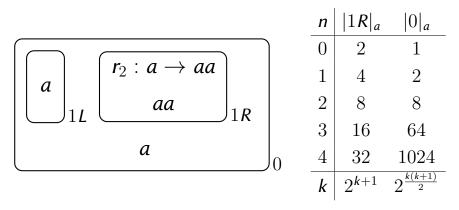
Graphical convention: a c drawn as $a \rightarrow c$.

 $a \rightarrow c$ switches off rule 1.

Nested rules!

$$N = \{2^n \mid n \in \mathbb{N}\}$$

n! in O(n) steps


$\boxed{a_{1L} a_{1R}}$		n	$ 1\mathbf{R} _{a}$	$ 0 _{a}$
		0	1	1
$r_2: b ightarrow bd$		1	2	1
$r_3: b \rightarrow (c, in_{1L})$		2	3	2
$r_4: d \rightarrow (a, in_{1R})$		3	4	6
abd		4	5	24
	0	k	k+1	<i>k</i> !

- *r*₂ continues the multiplication
- r_3 disables $r_1 : (1L, 1R)$
- *r*⁴ increments the factor

no nested rules!

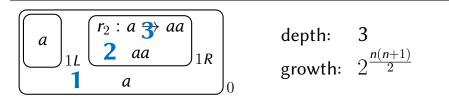
target indications

Superexponential growth

$$|0|_a = 2^0 \times 2^1 \times 2^2 \times \cdots \times 2^k = 2^{\frac{k(k+1)}{2}}$$

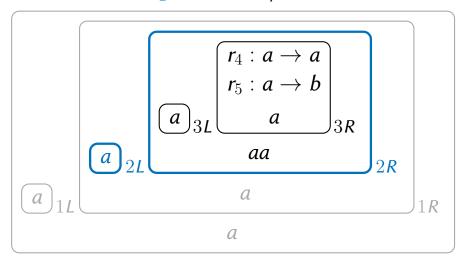
Outline

- The power of polymorphism: first glance
- The power of polymorphism: second glance
- The power of polymorphism: third glance

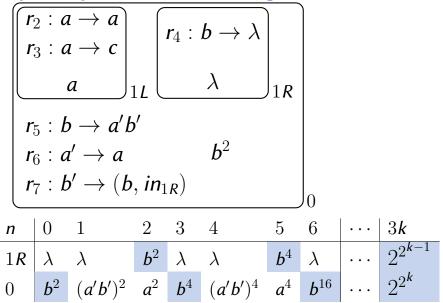

Discussion

The growth rate

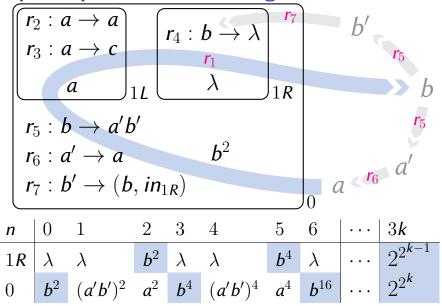
no target indications


 $I c^{p(n)}$

- *I* : the size of the initial configuration
- *c* : max RHS of invariable rules
- p(n) : a polynomial of a degree \leq depth -1



Sergiu Ivanov: Polymorphic P Systems with Non-cooperative Rules and No Ingredients. Int. Conf. on Membrane Computing 2014: 258-273


Generate superexponentials with halting Make the RHS of $r_2 : a \rightarrow a^2$ dynamic.

Superexponentials & target indications

Superexponentials & target indications

Outline

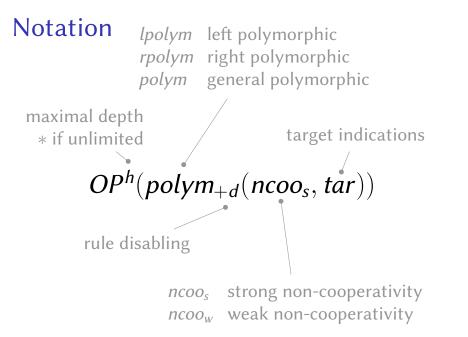
- The power of polymorphism: first glance
- The power of polymorphism: second glance
- The power of polymorphism: third glance

Discussion

Establish sharper results

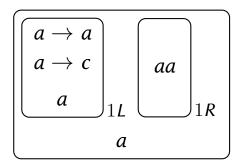
Weak & strong non-cooperativity

$$\bigcup_{iL} \bigvee_{iR}$$

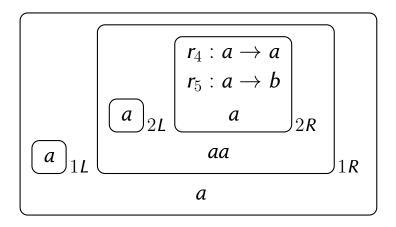

Strong: $|u| \le 1$ at any moment. Weak: |u| = 1 whenever rule *i* is applied.

Convention: $u = \lambda \implies$ rule *i* is disabled.

Left & right polymorphism


$$\bigcup_{iL} \bigvee_{iR}$$

Left polymorphism: v = const, $\forall i$ Right polymorphism: u = const, $\forall i$ General polymorphism otherwise.


Left polymorphism > semilinear

$$\{2^n \mid n \in \mathbb{N}\} \in NOP^*(lpolym(ncoo))$$

Right polymorphism > semilinear

$$\{2^n \mid n \in \mathbb{N}, n > 2\} \in NOP^*(rpolym(ncoo))$$

The power of strong

 $PsOP^*(polym_{+d}(ncoo_s)) = PsOP^*(polym_{+d}(ncoo_w))$

$$\begin{bmatrix} u \end{bmatrix}_{iL} \begin{bmatrix} v \end{bmatrix}_{iR}$$

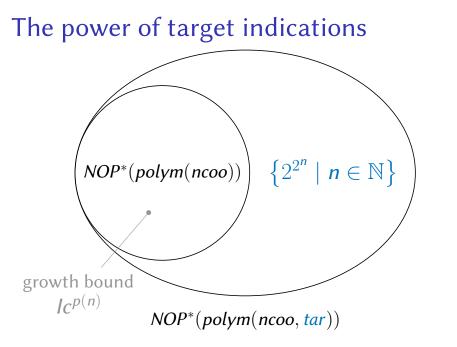
- *iL*: only non-cooperative rules \implies regular behavior.
- Solution Replace by a finite automaton $\implies |u| \le 1$. + details

Corollary: Shallow left-hand sides

$$depth(iL) \leq 2$$
, $\forall i, ncoo, tar$

$$\bigcup_{iL} \bigvee_{iR}$$

- *iL* is constant \implies depth(*iL*) = 1.
- *iL* is variable

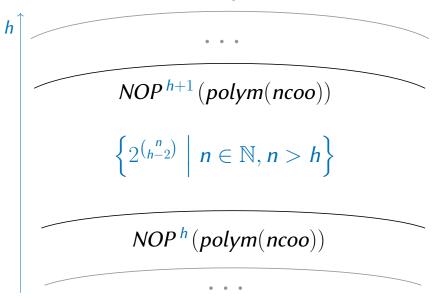

 \implies replace with a finite automaton \implies depth(*iL*) = 2.

Corollary: No rule disabling

$PsOP^{*}(polym_d(ncoo)) = PsOP^{*}(polym_d(ncoo))$

$$\begin{bmatrix} u \end{bmatrix}_{iL} \begin{bmatrix} v \end{bmatrix}_{iR}$$

Replace λ in *u* with a fresh symbol.


Targets separate $ncoo_s$ and $ncoo_w$? Known: $\{n! \mid n \in \mathbb{N}\} \in NOP^*(polym(ncoo_w, tar)).$

$$\begin{bmatrix}
a_{1L} & a_{1R} \\
r_2 : b \to bd \\
r_3 : b \to (c, in_{1L}) \\
r_4 : d \to (a, in_{1R}) \\
abd
\end{bmatrix}_0$$
 $r_3 \implies r_1 \text{ is } ncoo_W.$

Conjecture

$$\{n! \mid n \in \mathbb{N}\} \notin NOP^*(polym(ncoo_s, tar)).$$

An infinite hierarchy

Open questions

 Artiom Alhazov, Rudolf Freund, Sergiu Ivanov: Polymorphic P Systems: A Survey. Bulletin of the International Membrane Computing Society (IMCS).
 Number 2, December 2016: 79–101.

Computational power

- NOP*(rpolym(ncoo)) Source NOP*(polym(ncoo)) Easy: NOP^h(lpolym(ncoo)) Source NOP^h(polym(ncoo)) by growth rate
- **Over a set of a set**
- Better characterize target indications.

Better target indications

Polymorphism + per-symbol target indications?

Opposite the second second

• Polymorphic tissue P systems?

Dissolution and division

O Define dissolution

- dissolve membrane containing polymorphic rules
- dissolve rule sides?
- Define division
 - divide rule sides?

Further ingredients?

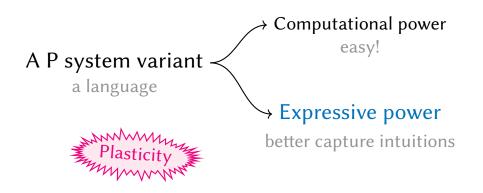
Only target indications have been considered so far.

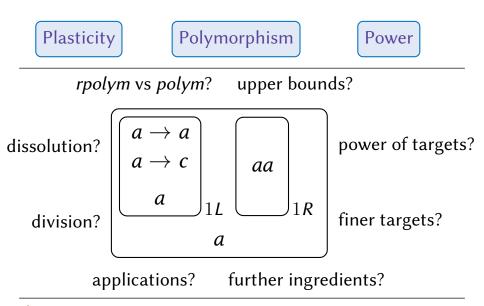
• polarizations?

• rule symport/antiport?

••••

Applications


- Is polymorphism easy to simulate? how?
- Solve complex problems faster?
- What type of target applications?


Back to plasticity

The meaning of plasticity

Everything counts?.. Meh!

The Turing MachineTM: doing everything since 1936.

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov: Polymorphic P Systems: A Survey. Bulletin of the International Membrane Computing Society (IMCS). Number 2, December 2016: 79–101.