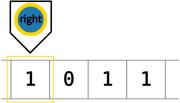
The Busy Beaver Game for Reaction Systems

Artiom Alhazov Rudolf Freund Sergiu Ivanov Sergey Verlan

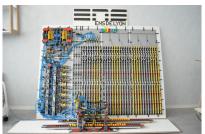
2025-11-21

The Turing machine

"an abstract machine that manipulates symbols on a strip of tape according to a table of rules"





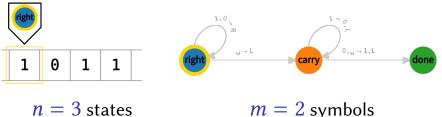


http://rubens.ens-lyon.fr/

The busy beaver game

BB(n, m) = max number of steps taken by a halting n-state, m-symbol Turing machine starting from all 0.

bbchallenge.org



Binary increment \Rightarrow not a champion : BB(2,3) = 38.

Reaction systems

alphabet of symbols finite background set of species

inhibitors
$$a:(R_a, I_a, P_a)$$
 reactants

$$R_a, I_a, P_a \subseteq \overset{\downarrow}{S}$$

reactants products

a is enabled in $W \subseteq S$ iff $R_a \subseteq W$ and $I_a \cap W = \emptyset$.

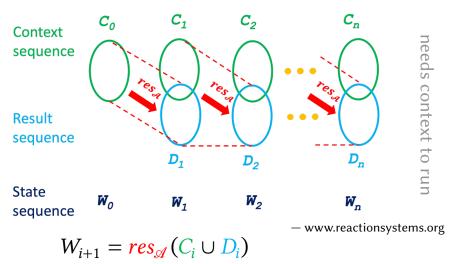
Application: $res_a(W) = P_a$.

- a species is either absent or present in ∞ amounts
- species disappear by default

Reaction system:
$$\mathcal{A} = (S, A = \{a_1, a_2, \dots\})$$
finite set of reactions

Interactive processes

Driven by a context sequence: $C_0, C_1, \dots, C_n \subseteq S$.



Reaction systems only have $2^{|S|}$ states.

The busy beaver game for reaction systems??

Generalized busy beaver game

The plan

Observe nonlocal properties on an interactive process.

Context sequence

Result sequence D_1 D_2 D_n

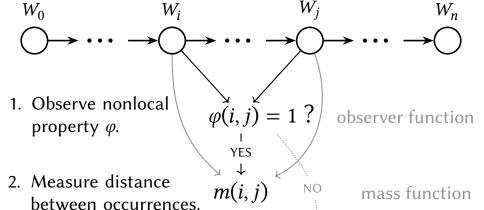
State sequence

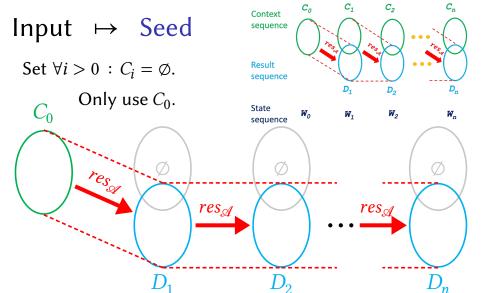
 W_0

 W_1

"2

 W_n

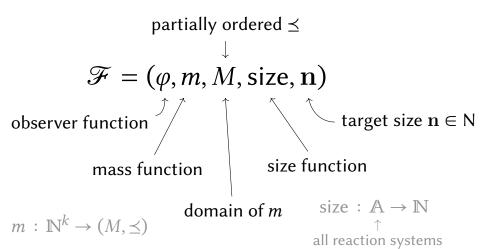




- $\sigma(C_0)$: all seeds obtained from C_0
 - all context sequences $(C_0, \emptyset, ..., \emptyset)$ of any length

Busy beaver frame

Collects the essential ingredients for defining the generalized busy beaver game.



A note on size

all reaction systems

Let $\mathcal{A} = (S, A) \in \mathbb{A}$. Multiple options for size:

•
$$\operatorname{size}(\mathcal{A}) = |S|$$

number of species

•
$$\operatorname{size}(\mathscr{A}) = |A|$$

number of reactions

•
$$size(\mathcal{A}) = max\{ |R_a|, |I_a|, |P_a| \mid a = (R_a, I_a, P_a) \in A \}$$

• ...

Generalized busy beaver game

read this way

$$\mu_{\mathcal{F}} = \max_{\mathcal{A} \in \mathcal{RS}(\mathbf{n})} \max_{C_0 \subseteq S_{\mathcal{A}}} \min_{\gamma \in \sigma(C_0)} \{ m(\lambda) \mid \lambda \in \varphi(\pi_{\gamma}) \}$$

compute this way

Generalized busy beaver game

read this way the interactive process driven by y positions at which φ is observed a measure on λ $\mu_{\mathcal{F}} = \max_{\mathbf{M} \in \mathcal{R} \, \mathcal{S}(\mathbf{n})} \max_{C_0 \subseteq S_{\mathbf{M}}} \min_{\gamma \in \sigma(C_0)} \left\{ m(\lambda) \mid \lambda \in \varphi(\pi_{\gamma}) \right\}$

a reaction system a context of \mathcal{A} a seed starting with C_0 of size \mathbf{n}

compute this way

$\mu_{\mathcal{F}}$ breakdown

because reaction systems don't halt

• Fix \mathscr{A} and a C_0 , minimize m over $\sigma(C_0)$:

$$\mu_{\mathcal{F}}(\mathcal{A}, C_0) = \min_{\gamma \in \sigma(C_0)} \{ m(\lambda) \mid \lambda \in \varphi(\pi_{\gamma}) \}$$

o For \mathcal{A} , take C_0 maximizing $\mu_{\mathcal{F}}(\mathcal{A}, C_0)$:

$$\mu_{\mathcal{F}}(\mathcal{A}) = \max_{C_0 \subseteq S_{\mathcal{A}}} \{ \mu_{\mathcal{F}}(\mathcal{A}, C_0) \}$$

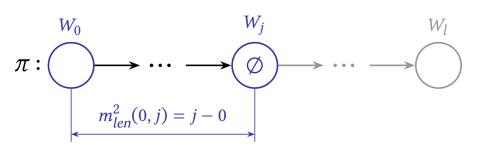
1 Pick \mathcal{A} maximizing $\mu_{\mathcal{F}}(\mathcal{A})$: the busy beaver champion

$$\mu_{\mathcal{F}} = \max_{\mathcal{A} \in \mathcal{R} \, \mathcal{S}(\mathbf{n})} \mu_{\mathcal{F}}(\mathcal{A})$$

Concrete busy beaver games

Longest runs to ∅

because reaction systems don't halt.



$$\mathcal{F}_{lr}(\text{size}, \mathbf{n}) = (\varphi_{lr}, m_{len}^2, \mathbb{Z}, \text{size}, \mathbf{n})$$

$$\varphi_{lr}(\pi, i, j) = \begin{cases} 1, & i = 0 < j \text{ and } W_j = \emptyset, \\ 0, & \text{otherwise.} \end{cases}$$

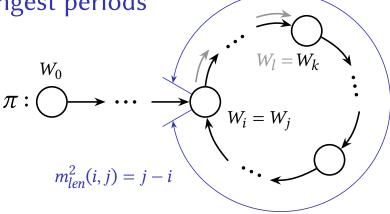
\mathcal{F}_{lr} breakdown

$$\mu_{\mathcal{F}_{lr}}(\mathcal{A}, C_0) = \min_{\gamma \in \sigma(C_0)} \{ m_{len}^2(\lambda) \mid \lambda \in \varphi_{lr}(\pi_{\gamma}) \}$$

② Find C_0 yielding the longest shortest time to \emptyset :

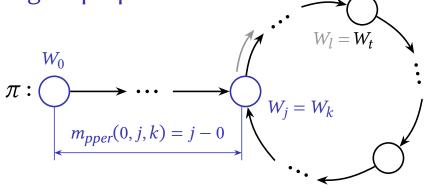
$$\mu_{\mathcal{F}_{lr}}(\mathcal{A}) = \max_{C_0 \subseteq S_{\mathcal{A}}} \{\mu_{\mathcal{F}_{lr}}(\mathcal{A}, C_0)\}$$

$$\mu_{\mathcal{F}_{lr}} = \max_{\mathcal{A} \in \mathcal{R} \, \mathcal{S}(\mathbf{n})} \mu_{\mathcal{F}_{lr}}(\mathcal{A})$$



$$\mathcal{F}_{per}(\text{size}, \mathbf{n}) = (\varphi_{rpt}, m_{len}^2, \mathbb{Z}, \text{size}, \mathbf{n})$$

$$\varphi_{rpt}(\pi, i, j) = \begin{cases} 1, & i < j \le l \text{ and } W_i = W_j, \\ 0, & \text{otherwise.} \end{cases}$$



$$\mathcal{F}_{pper}(\text{size}, \mathbf{n}) = (\varphi_{pper}, m_{pper}, \mathbb{Z}, \text{size}, \mathbf{n})$$

$$\varphi_{pper}(\pi, i, j, k) = \begin{cases} 1, & i = 0 < j < k \text{ and } W_j = W_k, \\ 0, & \text{otherwise.} \end{cases}$$

the preperiod the period

Find the shortest time to a repetition of states:

$$\mu_{\mathcal{F}_{pper}}(\mathcal{A}, C_0) = \min_{\gamma \in \sigma(C_0)} \{ m_{pper}(\lambda) \mid \lambda \in \varphi_{pper}(\pi_{\gamma}) \}$$

2 Find C_0 yielding the longest preperiod:

$$\mu_{\mathcal{F}_{pper}}(\mathcal{A}) = \max_{C_0 \subseteq S_{\mathscr{A}}} \{\mu_{\mathcal{F}_{pper}}(\mathcal{A}, C_0)\}$$

$$\mu_{\mathscr{F}_{pper}} = \max_{\mathscr{A} \in \mathscr{R} \, \mathcal{S}(\mathbf{n})} \mu_{\mathscr{F}_{pper}}(\mathscr{A})$$

Some further variants

- Use $res(W_j) = W_j$ instead of $W_j = \emptyset$.
 - · adult halting
- ② Use $|W_i \cap W_j| \neq \emptyset$ instead of $W_i = W_j$.
 - partial equality
- **Observe a local property** $p: 2^S \rightarrow \{0, 1\}$:

$$\varphi_{loc}(p, \pi, i, j) = \begin{cases} 1, & i < j, \ p(i) = 1 \text{ and } p(j) = 1, \\ 0, & \text{otherwise.} \end{cases}$$

$\operatorname{size}(\mathscr{A}) = |S_{\mathscr{A}}|$

t-bit cyclic binary counter

a classic

$$S_{01} = \{1_i \mid 0 \le i < t\}$$
 (1101)₂ $\mapsto \{1_3, 1_2, 1_0\}$

$$keep_{ij}: (\{1_i\}, \{1_j\}, \{1_i\})$$

$$t > i > j \ge 0$$

keep 1_i if 1_j is set

$$\dots$$
 1 \dots 6 least significant bit position i position j

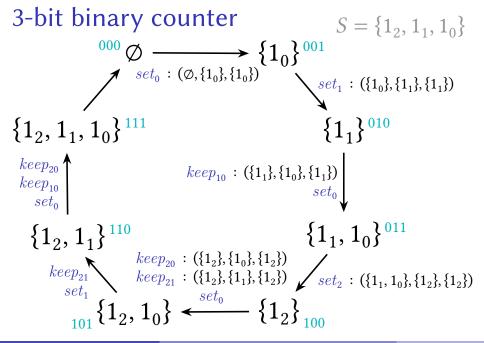
$$set_i : (\{1_j \mid 0 \le j < i\}, \{1_i\}, \{1_i\})$$

set 1_i if all 1_i are set

$$t > i \ge 0$$

0.0011...

$$\mathcal{A}_{01} = (S_{01}, \{keep_{ij}, set_i\})$$



Longest periods

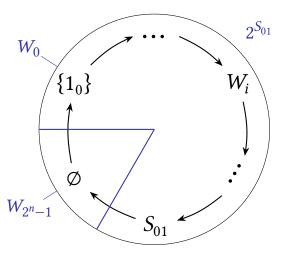
$$n = \operatorname{size}(\mathcal{A}) = |S_{\mathcal{A}}|$$

 \mathcal{A}_{01} has one period traversing the entire $2^{S_{\mathcal{A}}}$

 \mathcal{A}_{01} has the longest period of length 2^n

Longest runs to ∅

$$n = \operatorname{size}(\mathcal{A}) = |S_{\mathcal{A}}|$$



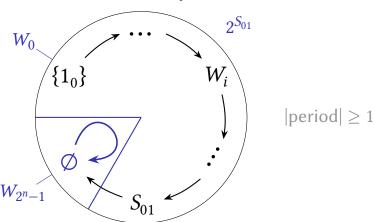
 \mathcal{A}_{01} has the longest run to \emptyset of length $2^n - 1$.

Longest preperiods

$$n = \operatorname{size}(\mathscr{A}) = |S_{\mathscr{A}}|$$

Turn ∅ into a fixed point:

$$\operatorname{set}_0 : (\emptyset, \{1_0\}, \{1_0\}) \longmapsto \operatorname{set}_0^x : (\{x\}, \{1_0\}, \{1_0\}), x \in S_{01}$$



 \mathcal{A}'_{01} has the longest preperiod of length $2^n - 1$.

\mathcal{A}_{enum} : explicit traversal

alternative

Order the subsets of $S: W_1, W_2, \dots, W_{2^{|S|}}$

$$(W_i, S \setminus W_i, W_{i+1})$$
 $1 \le i < 2^{|S|}$ $(W_{2^{|S|}}, S \setminus W_{2^{|S|}}, W_1)$

 \mathcal{A}_{enum} has the longest period of length $2^{|S|}$.

Number of reactions used for traversing all $2^{|S|}$:

$$\mathcal{A}_{enum}$$
 $2^{|S|}$ \mathcal{A}_{01} $O(|S|^2)$

$\operatorname{size}(\mathscr{A}) = |S_{\mathscr{A}}|$

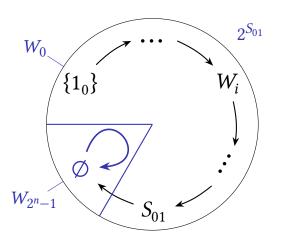
but no empty sets ¬∅

 $(R, I, P) : R \neq \emptyset, I \neq \emptyset, P \neq \emptyset$

Preperiods and runs $n = \text{size}(\mathcal{A}) = |S_{\mathcal{A}}|, \neg \emptyset$

$$n = \operatorname{size}(\mathscr{A}) = |S_{\mathscr{A}}|, \neg \mathscr{Q}$$

 \mathcal{A}'_{01} does not have set₀ : $(\emptyset, \{1_0\}, \{1_0\})$.



|Longest preperiod| = |longest run| = $2^n - 1$.

Periods

$$n = \operatorname{size}(\mathcal{A}) = |S_{\mathcal{A}}|, \neg \emptyset$$

No empty sets

 $\operatorname{res}(\emptyset) = \emptyset$ no reactions enabled in \emptyset

$$\operatorname{res}(S_{\mathscr{A}}) = \emptyset$$
all reactions inhibited in $S_{\mathscr{A}}$

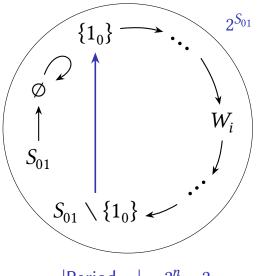
 \implies |Longest period_{$\neg \emptyset$}| $\leq 2^n - 2$.

Explicit enumeration: order $W_1, ..., W_{2^n-1}, W_i \notin \{\emptyset, S\}$

$$\mathcal{A}'_{enum}: \quad (W_i, S \setminus W_i, W_{i+1}) \quad (W_{2^{|S|}}, S \setminus W_{2^{|S|}}, W_1)$$

$$1 \le i < 2^{|S|} \quad |\mathsf{period}| = 2^n - 2$$

Counter skipping \emptyset , S_{01} $n = \text{size}(\mathscr{A}) = |S_{\mathscr{A}}|$, $\neg \emptyset$



$$|\mathsf{Period}_{\neg \emptyset}| = 2^n - 2$$

Counter skipping \emptyset , S_{01} $n = \text{size}(\mathscr{A}) = |S_{\mathscr{A}}|$, $\neg \emptyset$

$$set_0^x: (\{x\}, \{1_0\}, \{1_0\})$$

 $x \in S_{01}$

• introduce 1₀ when 1₀ is absent

$$set_i : (\{1_j \mid 0 \le j < i\}, \{1_i\}, \{1_i\})$$

0 < i < t

introduce 1_i when all less significant bits are set

$$keep_{ijk}: (\{1_i\}, \{1_j, 1_k\}, \{1_i\})$$

 $0 \le j < i < t$

• keep 1_i if at least one less sig- $0 \le k < t, k \notin \{i, j\}$ nificant bit 1_j is absent *and* one other bit 1_k is absent

$$keep'_{ij}: (\{1_i, 1_0\}, \{1_j\}, \{1_i\})$$

 $0 \le j < i < t$

keep 1_i in states only missing 1_j

 $keep'_{ij}$ cover the cases $keep_{ijk}$ don't.

$\operatorname{size}(\mathscr{A}) = |A|$

number of reactions

$$t = \operatorname{size}(\mathcal{A}) = |A|$$

Methods for achieving e.g. longest periods:

$$t=|A|$$
 \mathscr{A}_{01} binary counter $t(t+3)/2=O(t^2)$
 \mathscr{A}_{enum} explicit enumeration 2^t

Improve $O(t^2)$?

Effective state space

The set of all states reachable by $\mathcal{A} = (S_{\mathcal{A}}, A)$:

$$\exp(\mathscr{A}) = \{ \operatorname{res}_{\mathscr{A}}(W) \mid W \subseteq S_{\mathscr{A}} \}$$

Lemma

$$esp(A) \subseteq \left\{ \bigcup_{a \in A'} P_a \mid A' \subseteq A \right\}$$

Proof. All states in $esp(\mathscr{A})$ are unions of P_a . Not all possible subsets $A' \subseteq A$ can be enabled in a state $W \subseteq S_{\mathscr{A}}$. \square

Size of the effective state space

Lemma

$$|esp(\mathcal{A})| \le 2^{|A|}$$
 \leftarrow number of reactions

Proof. Follows from $esp(A) \subseteq \{\bigcup_{a \in A'} P_a \mid A' \subseteq A\}$.

When $|A| \ll |S_{\mathcal{A}}|$, |A| constraints $|\exp(\mathcal{A})|$ more strongly than $|S_{\mathcal{A}}|$.

$$\operatorname{size}(\mathcal{A}) = |S_{\mathcal{A}}|, \operatorname{size}(\mathcal{A}) = |A|, \text{ and } \infty$$

Fixed parameter Nb. reactions Nb. reaction systems

$$|S_{\mathscr{A}}| \qquad N_A = 2^{3|S_{\mathscr{A}}|} \qquad 2^{N_A}$$

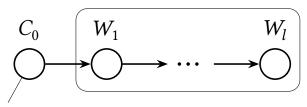
$$|A|$$
 $N_A = |A|$

Fixing |A| does not bound $|S_{\mathcal{A}}|$

 $\Rightarrow \infty$ many reactions systems with a fixed N_A .

Longest periods

$$n = \operatorname{size}(\mathcal{A}) = |A|$$



 C_0 may be out of $esp(\mathcal{A})$

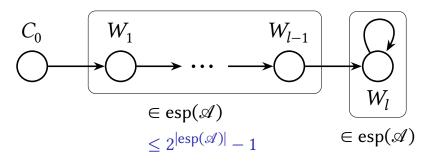
$$C_0 \notin \operatorname{esp}(\mathscr{A}) \Rightarrow C_0 \notin \operatorname{the period}$$

|Longest period| $\leq |esp(\mathcal{A})| \leq 2^n$

Longest preperiods

$$n = \operatorname{size}(\mathcal{A}) = |A|$$

The form of the longest preperiod:



|Longest preperiod| $\leq 1 + 2^{|\exp(\mathcal{A})|} - 1 \leq 2^n$ |Longest run to \emptyset | $\leq 2^n$

Lower bounds?

$$n = \operatorname{size}(\mathcal{A}) = |A|$$

Conjectures

- Periods, preperiods, runs of length *l* ⇒ at least log *l* reactions.
- Busy beaver champions are variants of the binary counter.

Conclusions + Future work

Main contributions

- Seeded interactive processes to mimic Turing machine runs.
- Busy beaver frames and the generalized busy beaver games.
- **Solution** Busy beaver champions (size(\mathscr{A}) = $|S_{\mathscr{A}}|$) and bounds (size(\mathscr{A}) = |A|).

Future work

- Further bounds and champions
 - more precision for $size(\mathcal{A}) = |A|$
 - other sizes, e.g. measuring individual components of the reactions
 - computational complexity of identifying champions
- Programmatic enumeration
 - inspired by bbchallenge.org
- Origins of Life

The Meaning of Life

Busy beaver champions ~ Fittest organisms?

Parallel with biology

Reaction systems are originally inspired by biochemical systems.

Everything is finite* in physics, biology, and reaction systems.

* may be debated

No halting, open interactive processes.

No structure, no space, no multiplicities

* variants exist

Very high-level image, not a model

Only a parallel: resource-consuming dynamical systems

No faithful representation of structure, processes, quantities, concentrations, etc.

Segretain, R., Trilling, L., Glade, N., Ivanov, S.: Who plays complex music? In: 21st IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2021 (2021)

Glade, N.: Le Vivant Rare, Faible et Amorphe Evolution depuis les Origines jusqu'à la Vie telle qu'elle nous Apparaît. Habilitation thesis (HDR), Grenoble (2022).

Alhazov, A., Ivanov, S., Orellana-Martín, D.: Queens of the hill. J. Membr. Comput. 6(3), 193–201 (2024)

◆ Alhazov, A., Freund, R., Ivanov, S., Orellana-Martín, D., Ramírez-de-Arellano, A., Rodríguez-Gallego, J.: P systems with reactive membranes. J. Membr. Comput. 6(2), 82–93 (2024)

Directions of interest

- Different competition criteria as a representation of natural selection
- Variations of complexity
 - structural complexity: e.g., reactions
 - algorithmic/decision complexity e.g., of identifying the champions
- Emergence of auto-catalytic loops