
Generalizing diagnosability definition and checking for open
systems: a Game structure approach

Tarek Melliti 1, Philippe Dague 2

1 IBISC, Univ. d’Evry Val d’Essonne, France
(Tel: 33 1 60 87 39 36; e-mail: tmelliti@ibisc.fr)

2 LRI, Univ. Paris-Sud, CNRS, and INRIA Saclay-Ile de France
(Tel: 33 1 69 72 92 59 93; e-mail: philippe.dague@lri.fr).

ABSTRACT
Diagnosability is the property of a partially ob-
servable system with a given set of possible
faults, that these faults can be detected with cer-
tainty with a finite observation. Usually, the def-
inition and the verification methods of diagnos-
ability ignore the nature of the system events,
controllable (by the system) or uncontrollable. In
this paper we show the influence of controllability
of events on the diagnosability definition and ver-
ification. We show that the classical diagnosabil-
ity is a special case where we consider the whole
system as controllable. Using Game Structure we
generalize the definition of diagnosability by the
mean of strategies. Then, Alternating-time Tem-
poral Logic is used in order to model check di-
agnosability in the case of uncontrollable events.
We show how the framework is suitable for one
system and also for a set of interacting systems.

1 INTRODUCTION
Diagnosis of systems is concerned by two activities:
(i) fault detection, i.e. ”did a fault happen?” and (ii)
fault identification i.e. ”which kind of fault did hap-
pen?”. In real life the operator in charge of diagnosing
a failed system, can do mainly two activities in order
to figure out what is wrong within a system: (scenario
1) she can try to make the diagnosis by only observing
the current state of the system (measuring) and/or its
history (passive diagnosis); (scenario 2) for some kind
of systems, she may try some commands on the sys-
tem and then she observes its reactions in order to es-
tablish her diagnosis (active diagnosis). According to
these two scenarios, we can classify the systems to be
diagnosed in mainly two categories: closed systems,
that allow only observation and open systems that al-
low some interaction with the system.
An important requirement, when designing a sys-

tem, is how accurate will be the diagnosis of some
This work is supported by the project PERvasive Service
cOmposition (PERSO) of the French National Agency for
Research.

faults. The notion of ”diagnosability” captures that re-
quirement. The system is diagnosable if we can estab-
lish a precise diagnosis for every given possible fault
from finite observation.
Model-based diagnosis aims at automating the pro-

cess of diagnosis and diagnosability checking by ana-
lyzing an abstract representation of the system called
the model.
In 1995, (Sampath et al., 1995) proposed a formal

definition of diagnosability for discrete event systems
modeled using automata. The automata used have two
types of events: observable and unobservable (contain-
ing fault events). This definition considers a system as
nondiagnosable if its model contains two infinite exe-
cutions producing the same observable trace and only
one of them contains the fault. This implicitly sup-
poses that the system has the total control on its exe-
cution making it possible to keep the ambiguity indef-
initely. So, the diagnosability is defined by supposing
that the diagnoser will only observe what happens in
the system with no control in order to try to resolve the
ambiguity (scenario 1).
But actually more and more applications are open

systems where components and devices interact. Di-
agnosability has to deal with this kind of systems.
In this work we generalize the definition of diagnos-

ability for any type of system (open or closed). We call
this active diagnosability. We also propose a method
to verify active diagnosability using a model checking
approach.
In the sequel of the paper, after some preliminar-

ies, we recall the classical definition of diagnosability
and we present the twin plant approach as a method
to check diagnosability. In section 3 we introduce the
notion of open and well-controllable systems, we also
define a suitable game structure for diagnosis and we
give the definition of active diagnosability. In section 4
we propose the use of alternating-time temporal logic
to model check active diagnosability and we give the
correspondent formula. We show also how we can ex-
tend active diagnosability to a set of interacting sys-
tems. Sections 5 and 6 compare our work to the liter-
ature and conclude by some future work. To illustrate
our work a toy example is used.

1

21st International Workshop on Principles of Diagnosis

2 BACKGROUND ON CLASSICAL
DIAGNOSABILITY

2.1 Preliminaries and notation
When dealing with discrete event systems diagnosis,
systems are most often modeled by the way of Labeled
Transition Systems (LTS).
Definition 1 (LTS) A labeled transition system A =
〈Q, q0, L, T 〉 is a tuple where
• Q represents a set of states
• q0 ∈ Q a state considered as initial
• L a set of events
• T ⊆ Q×L×Q is the finite branching transition
relation which represents a discrete dynamics of
a system. We note by q a→ q′ for (q, a, q′) ∈ T .

The set of events L is partitioned into two disjoint
sets Lo and Luo, which state for the set of observable
events and the set of non observable events. Moreover
among the set Luo we distinguish a non empty subset,
Lf , which represents the set of failure events.
Definition 2 Let A be a LTS, then
• A path in A is a sequence π = q0a0q1 . . . qn,
where n can be infinite, such that for all 0 ≤ i ≤
n−1 we have qi

ai→ qi+1. We denote by paths(q)
the set of all paths that start from the state q ∈ Q
and by paths(A) the set of all paths in A, i.e.
paths(A) = paths(q0). We write q ∈ π (resp
a ∈ π) for denoting that the state q (resp the
action a) belongs to the sequence q0a0q1 . . . qn.
Moreover, we identify the ith state in the path π
as π[i] and by |π| = n+1 the amount of states in
π. We use π[0...i] to denote the sub-path of π that
ends with the state qi.

• The trace σ of a path π, denoted trace(π), is the
sequence σ = a0a1 . . . an−1 of events in L occur-
ring in π. We write traces(A) = {trace(π) |π ∈
paths(A)} for the set of all traces inA. In case σ
is finite, with |σ| we denote the number of events
occurring in the trace σ, i.e. |σ| = n. We use
σ)L′, for some L′ ⊆ L, to represent the restric-
tion of the trace σ to the set of actions in L′.

• We extend the transition relation to traces, q σ→
q′ if the state q′ can be reached from state q via
the trace σ, i.e. if there is a path π ∈ paths(q)
ending at q′ such that trace(π) = σ. We write
q → q′, if there exists a trace σ such that q σ→ q′

and q →, if there exists a state q′ such that q →
q′.

• Given any trace σ ∈ traces(A), we denote by σ̂
its prefix-closure, and by σ̌ its postlanguage, i.e.
σ̌ = {ρ ∈ traces(A)

∣∣ σ ∈ ρ̂}. Moreover, for a
given natural number k ∈ N we denote by σ̌k its
postlanguage with only words with length longer
than k, i.e. σ̌k = {ρ ∈ σ̌

∣∣ |σ|+ k ≤ |ρ|}.

• Given a fault event f , we denote by tracesf (A)
the set of traces in A that end with a f event, i.e.
tracesf (A) = {σ ∈ traces(A)|σ ∈ L∗.f}

• Given a fault event f and a natural number k ∈
N we denote by tracesf,k(A), the set of traces
σ′ such that it exists another trace σ that ends
in f and σ′ is an extension of σ with length
longer or equal to the length of σ plus k, i.e.
tracesf,k(A) = {σ′ ∈ traces(A)

∣∣ ∃ σ ∈
tracesf (A) ∧ σ′ ∈ σ̌k}.

We say that a system A is alive if for any state there
exists a transition initiated in that state, and convergent
if it does not have infinite traces made up of unobserv-
able actions. In the remaining of the paper we consider
only systems which are alive and convergent.
Example 1 figure1 represents a system where Lo =
{a, b, c, d}, Luo = {u1, u2, f}, Lf = {f}

a

b

c

b

c

a

d

u1

u2

q0

q1 q2 q3

q4

q5 q6

f

Figure 1: A system containing one fault f

2.2 Diagnosability definition and verification
The classical diagnosability is a property defined on
the paths of the system. It states that each time a fault
may happen, it exists a finite window of observations
that allows us to decide wether this fault did happen or
not (Sampath et al., 1995).
Definition 3 (Diagnosability) Let A be a system and
fi ∈ Lf , then fi is diagnosable in A (or A is fi-
diagnosable) iff
∃ ni ∈ N : ∀ σ ∈ tracesfi(A) : ∀ ρ ∈ σ̌ni :
∀α ∈ traces(A): ρ)Lo = α)Lo implies fi ∈ α
Otherwise fi is said nondiagnosable in A (or A fi-
nondiagnosable). A system is said to be diagnosable if
all its faults are so and nondiagnosable otherwise.
If a fault is diagnosable then a diagnostic algorithm

can decide of its occurrence or not with certainty based
on a finite sequence of observations. Diagnosability
checking methods consist in proving that the system is
not nondiagnosable. This requires the search for infi-
nite traces ρ and ρ′, with ρ)Lo = ρ′)Lo such that f
appears only in one of them. The two traces ρ and ρ ′

are called a critical pair (Cimatti et al., 2003). Many
algorithms and technics are proposed to check diag-
nosability, we consider here the twin plant approach
(Cimatti et al., 2003) because it is the most appropriate
to present our work. The twin plan approach consists
in two steps: (i) building a diagnoser of the system;
(ii) then comparing two copies of the diagnoser by a
synchronous product. The diagnoser construction is
inspired by the observer of a system (Sampath et al.,
1995), by keeping only the states of the system which
are reachable by at least one observable event. These
states are enriched by the set of fault events encoun-
tered during the reaching process.

2

21st International Workshop on Principles of Diagnosis

Definition 4 Let A be a system to be diagnosed,its di-
agnoser is also a LTS noted A = 〈Q,L, q0, T 〉 with:
• Q ⊆ Qo × 2Lf , with Qo = {q0} ∪ {q|∃a ∈
Lo, q′ ∈ Q s.t. (q′, a, q) ∈ T }

• L = Lo

• q0 = (q0, ∅)
• T ⊆ Q × L × Q is the transition set (q,F)

a→
(q′,F ′) s.t. q

σa−−→ q′ with σ ∈ L∗
uo , a ∈ Lo,

F ′ = F ∪ {fi|fi ∈ σ}
Example 2 Figure 2 represents the diagnoser of the
system presented in figure 1.

a

b

c

b

c

a

a

a

q0, ∅

q5, ∅q6, ∅

q2, {f}

q3, {f}
d

q4, {f}

Figure 2: The diagnoser of the system in figure 1

The second step of the twin plant method is to build
a machine that compares every pair of paths (ρ, ρ ′)
in the system that have the same observable behav-
ior. Such comparison is done by computing the syn-
chronous product of two instances of the diagnoser
A. As in (Schumann and Pencolé, 2007) we denote
these two instances of A respectively by left (l : A)
and right (r : A) and we distinguish between their
states by using respectively the prefixes l : and r :.
The synchronous composition used for the twin plant
is the classical synchronous product of n > 1 au-
tomata, noted (A1...‖...An)\Σ. The states of the re-
sulted automaton form a subset of the cartesian prod-
uct ×

i=1...n
Qi. The transitions of the product are con-

structed by allowing only simultaneous transitions for
events in Σ and individual evolutions otherwise.
Proposition 1 (f-nondiagnosable state, system)
Let A be a system and l : A, r : A two copies of its
diagnoser.
f-nondiagnosable state A state (l : (qi,Fi), r :

(qj ,Fj)) in the synchronous product
(l : A‖r : A)\Lo is called f-nondiagnosable
iff f ∈ (Fi ∪ Fj) \ (Fi ∩ Fj). Otherwise the
state is f-diagnosable.

f-nondiagnosable system The system A is f-
nondiagnosable iff it exists in (l : A‖r : A)\Lo a
cycle composed only by f-nondiagnosable states.
Otherwise the system is f-diagnosable.

Example 3 Figure 3 represents the twin plant product
of the two instances of the diagnoser of the figure 2.
According to the proposition 1 we can see that the fault
f is nondiagnosable because we observe a cycle [(l :
q6, ∅), (r : q3, {f})]

b→ [(l : q5, ∅), (r : q2, {f})]
a→

[(l : q6, ∅), (r : q3, {f})]... of f-nondiagnosable states.
This proves the existence of two infinite paths that have
the same observable trace, (ab)∞, where only one of
them contains the fault f .

a

c

a

a

a

a

a

a

a

c

c

b

b

c

d

bb

r : q0, ∅
l : q0, ∅ l : q5, ∅

r : q5, ∅
l : q6, ∅
r : q6, ∅r : q2, {f}

l : q2, {f} l : q3, {f}
r : q3, {f}

r : q4, {f}
l : q4, {f}

r : q6, ∅
l : q3, {f}

r : q5, ∅
l : q4, {f}

l : q2, {f}
r : q5, ∅

l : q6, ∅
r : q3, {f}

l : q5, ∅
r : q2, {f}

r : q4, {f}
l : q5, ∅

Figure 3: The twin plant of the diagnoser of figure 2

Note that in the example 3 the synchronous product
is finite while the systems are alive. This, as proved in
(Cimatti et al., 2003), does not influence the decision.
In the same paper the authors propose an idea to deal
with these blocking states. We show in this paper that
we can handle this problem in a simple and elegant
way and also by benefiting from the blocking states.

3 DIAGNOSABILITY OF OPEN SYSTEMS
Let A be a system to be diagnosed. We split its actions
L into two disjoint subsets: the controllable actions
Lc and the uncontrollable actions Luc where Luo ⊆
Lc. The notion of controllable here is viewed from
the point of view of the system. A system controls an
action if it decides of its occurrences; at the opposite
an action is uncontrollable if the system undergoes its
occurrences. A system with Luc = ∅ is called closed
and open otherwise. We extend the controllability to
the states as follows Qc = {q ∈ Q|∃a ∈ Lc s.t. q a→}
and Quc = {q ∈ Q|∃a ∈ Luc, q

a→}. Note that the
two sets are not necessarily disjoint.

Definition 5 (Open and well-controllable Systems)
Let A be a system and Luc, Lc be respectively the set
of uncontrollable and controllable actions. We say
that the system is open, respectively well-controllable,
iff Luc 1= ∅, resp. Qc ∩ Quc = ∅
Example 4 The system of the figure 1 is nondiagnos-
able because the environment does not control any ac-
tion. This allows the system to stay in the (ab)∗ trace
with uncertainty about the fault f . By considering
Luc = {b, c}, we can see that the system becomes di-
agnosable. This is because at each time we can take
the system out from its (ab)∗ trace by enforcing it to ex-
ecute the action c. One can note that after action c the
system will converge, within a finite set of actions, in a
situation where the fault or the non fault f is certain.
This demonstrates that diagnosability as proposed in
definition 3 does not stand for open systems.

3

21st International Workshop on Principles of Diagnosis

To cover open systems as well as closed systems
(which can be considered as a degenerated case of
open ones) we propose a generalization of the diagnos-
ability definition. For this purpose we use game struc-
ture to formalize that generalization and an adapted
temporal logic, Alternating-Time Temporal Logic, in
order to check it.

3.1 Game structure for active diagnosability
Let P be a set of propositions. Conceptually, we are
dealing with a set Θ of n players, where each player
is represented by an alive and well-controllable LTS
θi = 〈Qi, qi0, Li, Ti, µi : Qi → 2P 〉. We suppose that
for any player θi, all its uncontrolled (thus observable)
actions are controlled by at least another player,Luc

i ⊂⋃
j %=i

Lc
j .

Definition 6 (Round-based game structure) A
game structure between a set of players Θ is a tuple
GΘ = 〈C, c0, P,M, δ, µ〉 where:
• C is a non empty set of configurations with C ⊂

×
i=1...n

Qi. We range over it using ci

• c0 ∈ C is the initial configuration, c0 =
〈q10, ..., qn0〉

• P is a non empty set of propositions
• M ⊂ ×

i=1...n
(Li ∪ {ε}) where ε stands for the

non-event. We range over it usingmi (for moves)
• δ ⊆ C × M × C
• µ : C → 2P

δ encodes the rules of the game. There are many
dynamics for game structures which differ by the
definition of δ (Alur et al., 1997). We define here a
game structure suitable for open and well-controllable
systems. In the initial configuration all players are in
their initial state. The game consists in a sequence
of rounds where each round is played in three steps.
In [Step 1] all the players that are in a controlled
state (active ones) can choose one among all their
possible transitions from their current states. In [Step
2] all the players which are in an uncontrollable state
(passive ones) determine their reactions by choosing
one of their uncontrolled actions which have been
chosen by at least one of the active players in the
[Step 1]1. [Step 3] consists in computing the next
configuration according to the following rules: (i) an
active player, which action was chosen by at least one
passive player, moves to one of the possible states
reachable by that action, otherwise it remains in the
same state by executing ε; (ii) if none of the possible
actions of a passive player was chosen in [Step 1] then
it remains in the same state by executing ε. Let c be a
configuration, the game can move in each round to one
of the possible next configurations allowed by local
choices of each player. For some player θ i we note
by Out(qi) = {(ai, q′i) ∈ Li × Qi : qi

ai−→ q′i ∈ Ti}
the set of the successor states of qi. We note also by

1Note here that the passive players can also have more
than one choice (in some way they are thus active too)

Out(qi, ai) the restriction of Out(qi) to transitions
labeled with ai. We have a transition from a source
configuration cs to a target configuration ct by a
labeled moveml i.e.
cs = 〈q1s, . . . , qns〉

ml=〈a1l,...,anl〉−−−−−−−−−−−→ ct =
〈q′1t, . . . , q′nt〉 ∈ δ iff:

• ∀i = 1 . . . n, s.t. qis ∈ Qc
i we have:

– qis = q′it ∧ ail = ε if !ajl, s.t. qjs ∈ Quc ∧
(qjs, ajl, q′jt) ∈ Tj ∧ ail = ajl

– (ail, q′it) ∈ Out(qis) otherwise
We note by (st the set of actions chosen by the
players in a controllable state to move from a
source configuration cs to a target ct.

• ∀i = 1 . . . n, s.t. qis ∈ Quc
i we have:

– qis = q′it∧ail = ε if ∀a ∈ (st , Out(qis, a) =
∅

– (ail, q′it) ∈ Out(qi) for some ail ∈ (st

Definition 7 (Player strategy) Let θi be one of the
players in a game structure GΘ. A strategy of the
player is composed by two functions:

• ∫ cθi : paths(GΘ) → Li × Qi s.t.
∫ cθi(c0m0 . . .mk−1ck) = (aik, qik+1) where
(aik, qik+1) ∈ Out(qik) if qik ∈ Qc

i and
undefined otherwise.

• ∫ucθi
: paths(GΘ) → Li × Qi s.t.

∫ucθi
(c0m0 . . .mk−1ck) = (aik, qik+1) where

aik ∈ (kk+1∧(aik, qik+1) ∈ Out(qik) and (ε, qik)
otherwise, if qik ∈ Quc

i ; undefined if qik ∈ Qc
i .

We denote by ∫θi the function defined on paths(GΘ)
resulting from these two functions.
A strategy ∫θi of a player θi is a function that,

given an execution of the game, decides about the next
move of the player (either freely chosen when con-
trollable or constrained as reaction when uncontrol-
lable). A computation of a game structure GΘ from
a configuration c ∈ C under the strategy ∫θi is a set
of valid paths according to the strategy function, i.e.
Comp(c, ∫θi) = {π ∈ paths(c)|∀k, 0 ≤ k ≤ |π| − 1
we have ∫θi(π[0 . . . k]) = (aik, qik+1)}. GivenC ⊂ Θ
and a set of strategies, ∫C , one for each θ ∈ C,
Comp(c, ∫C) =

⋂
∫θ∈∫C

Comp(c, ∫θ). It is easy to see

that Comp(c, ∫Θ) is a unique path in GΘ.

3.2 Active diagnosability definition
Let A be an open and well-controllable system to
be diagnosed and let us consider a system AE =
〈QE , LE , q0E , TE〉 such that :
• QE is a set of states.
• LE = Lo with Lc

E = Luc and Luc
E = Lc ∩ Lo.

• q0E is the initial state.
• TE ⊆ QE × LE × QE is a transition relation.

4

21st International Workshop on Principles of Diagnosis

The transition relation TE must be defined in such a
way that the resulted game structure from the two sys-
tems AE and A, GAE ,A, must respect the following
conditions:
• ∀c, c m−→ withm 1= 〈ε, ε〉

• ∀c1 = 〈q1E , q1〉
m=〈a1E ,a1〉−−−−−−−−→ c2 = 〈q′1E , q′1〉 ∈ δ

we have a1 1= ε

• c1 = 〈q1E , q1〉
m=〈ε,a1〉−−−−−−→ c2 = 〈q′1E , q′1〉 ∈ δ iff

a1 ∈ Luo

The system AE represents a perfect environment of
the system A: (i) the game is never blocked (ii) the
environment is always able to observe the observable
reactions of the system and always produces at least
one of the commands waited by the system (iii) the
environment never reacts when an unobservable event
is executed by the system.
For a game structure GAE ,A we naturally ex-

tend, for some fault f , the definitions of traces:
tracesf (GAE ,A) = {σ ∈ traces(c0)|σ ends
with 〈ε, f〉} and tracesf,k(GAE ,A) = {σ′ ∈
traces(GAE ,A)

∣∣ ∃ σ ∈ tracesf (GAE ,A) ∧ σ′ ∈ σ̌k}.
We can now give the generalization of diagnosability
definition for open and well-controllable systems.
Definition 8 (Active Diagnosability) Let A be a sys-
tem to be diagnosed, AE its environment and GAE ,A

the game structure involving both of them. The fault
fi ∈ Lf is actively diagnosable in A iff

∃ ni ∈ N : ∀ σ ∈ tracesfi(GAE ,A) s.t. c0
σ→ cf :

∃∫AE : ∀ρ ∈ Comp(cf , ∫AE) s.t. σρ ∈ σ̌ni :
∀α ∈ traces(GAE ,A) :

σρ)(LE × Lo) = α)(LE × Lo) implies 〈ε, fi〉 ∈ α

The definition states the following: for each trace
in the game that ends with a fault event, as a move
of the system, then the environment has a strategy in
such a way that, for any infinite continuation accord-
ing to that strategy, if there is another execution of the
game that produces the same observable moves, this
execution should contain the fault. It is easy to verify
that if Luc = ∅ then Comp(cf , ∫AE) = traces(cf).
By renaming each move 〈a, b〉 by b we fit exactly the
definition 3.
The next section presents a method and a tool in or-

der to model check active diagnosability.

4 ACTIVE DIAGNOSABILITY
VERIFICATION USING ATL

In this section we use the Alternating-time Temporal
Logic (ATL) in order to check diagnosability of an
open and well-wontrollable system. First we recall the
Alternating-time Temporal Logic and then we give a
logic formula for checking active diagnosability.

4.1 ATL
Alternating-time Temporal Logic ATL was designed
to formulate correctness properties for open systems,
which have to be proved correct with respect to an ar-
bitrary environment. The environment can be either
one or more interacting discrete event systems. As we

will show, this problem is very close to the problem
of checking active diagnosability. ATL can be seen as
an extension of the Computational Tree Logic (CTL)
where the universal (A) and existential (E) path quan-
tifiers are parameterized by cooperationmodalities be-
tween a set of agents in the system. The syntax of
an ATL formula is defined recursively over a set P of
propositions and a set Θ of players as follows:

ψ ::=
ᵀ|p|(ψ ∧ ψ)|¬ψ|〈〈C〉〉Xψ|〈〈C〉〉Gψ|〈〈C〉〉(ψUψ)

where C ⊂ Θ

ᵀ stands for True while neXt, Globally, Until are the
path temporal operators of CTL. Unlike CTL, these
operators are parameterized by a set 〈〈C〉〉 of players,
called a coalition, which means that the players in C
can cooperate in such a way that the resulted computa-
tion verifies the property considered. The semantic of
an ATL formula is provided based on a game structure,
and the truth of a formula ψ in a configuration c of a
game structure GΘ is defined via the standard clauses
of the Boolean connectors and the following clauses
for the strategized temporal operators:
• (GΘ, c) " ᵀ
• (GΘ, c) " p ⇔ p ∈ µ(c) for p ∈ P

• (GΘ, c) " ¬ψ ⇔ (GΘ, c) " ψ

• (GΘ, c) " (ψ1∧ψ2) ⇔ (GΘ, c) " ψ1∧(GΘ, c) "
ψ2

• (GΘ, c) " 〈〈C〉〉Xψ ⇔ ∃∫C s.t. ∀π ∈
Comp(c, ∫C) we have (GΘ,π[1]) " ψ

• (GΘ, c) " 〈〈C〉〉Gψ ⇔ ∃∫C s.t. ∀π ∈
Comp(c, ∫C) we have ∀i, (GΘ,π[i]) " ψ

• (GΘ, c) " 〈〈C〉〉(ψ1 U ψ2) ⇔ ∃∫C s.t. ∀π ∈
Comp(c, ∫C), ∃i ≥ 0 s.t. ∀j < i we have
(GΘ,π[j]) " ψ1 ∧ (GΘ,π[i]) " ψ2

The CTL duality of temporal operators is still valid
in ATL; 〈〈C〉〉Fψ stands for 〈〈C〉〉 ᵀ U ψ; we can also
express the classical CTL path quantifiers Always and
Eventually as follows: AXψ, AGψ, A(ψ1 U ψ2) re-
spectively by 〈〈∅〉〉Xψ, 〈〈∅〉〉Gψ, 〈〈∅〉〉(ψ1Uψ2), and
EXψ, EGψ, E(ψ1 U ψ2) respectively by 〈〈Θ〉〉Xψ,
〈〈Θ〉〉Gψ, 〈〈Θ〉〉(ψ1 U ψ2). We can also introduce
the parameterized universal path quantifier, by writing
[[C]]Xψ and [[C]]Gψ respectively for ¬〈〈C〉〉X¬ψ
and¬〈〈C〉〉F¬ψ. [[C]] expresses the fact that the agent
in C cannot avoid paths that verify a given path for-
mula. This implies that the agent in Θ \ C has a strat-
egy to produce only paths validating the path formula
(e.g. [[C]]Gψ ⇔ ¬〈〈C〉〉F¬ψ).

4.2 Diagnosability checking for one system
Let A be a system to be diagnosed and let A be its
diagnoser according to definition 4. When interacting
with the system, the environment cannot estimate ex-
actly its real state due to the nondeterminism of A. It
can only have an idea about the minimal set of its ac-
tual possible states. Let us consider an environment
of A, noted AE , as exactly the mirror of the diagnoser
except that Lc

E = Luc
o and Luc

E = Lc
o. As pointed in

5

21st International Workshop on Principles of Diagnosis

(Cimatti et al., 2003), the game structure, GAE ,A, re-
sulting from definition 6, may have finite moves. So
a perfect environment of the system is a system that
can avoid such cases and that can also benefit from the
information of the dead configurations to have an idea
about the real state of the system. We propose here, as
we made in (Melliti et al., 2008), to synthesize a per-
fect environment by extending the transition relation
TE of AE as follows:
TE= TE ∪ {(qiE , a, q′iE)|qiE

a# ∧∃w ∈ L∗
E , qjE ∈

QE s.t. i 1= j ∧ q0E
w−→ qiE ∧ q0E

w−→ qjE ∧
(qjE , a, q′iE) ∈ TE}
The perfect environment enriches its states by tran-

sitions of all the states that are reachable from the ini-
tial states by the same trace. The meaning of this ex-
tension can be interpreted as follows:
• In the case where the system is in a controllable
state, the environment will observe its reaction
among all possible reactions. This reaction of the
systemmay help the environment to better precise
the estimation about the real state of the system.

• In the case where the system is in an uncontrolled
state (waiting for a command) the environment
will send a command. If the command is not ex-
pected by the system, then the environment re-
mains in the same state and tries another com-
mand until it works. Note that according to our
extension the environment has the minimum set
of commands expected by the system.

We denote by A+
E the extension of AE .

Example 5 Figure 4 represents the perfect environ-
ment of A. The extensions are represented using
dashed arcs.

a

b

c

b

c

a

d

a

a

q0E , ∅

q5E , ∅q6E , ∅

q2E , {f}q3E , {f}

q4E , {f}d

a

Figure 4: The extended perfect environmentA+
E

To each fault fi ∈ Lf we associate the propositions
pfi , ¬pfi and ♦pfi . They respectively mean a fault fi
did happen, did not happen and did possibly happen.
The set of fault propositions of a LTS is noted∆A.
Consider the game structure GA+

E ,A. We recall here
that the states of A, respectively of A+

E , are of the
form (qi,Fj) (to differentiate them we note them by
(qi,Fj), resp. (qiE ,Fj), also qi, resp. qiE , when Fj is
not relevant).
GA+

E ,A can be interpreted as a game where in each
configuration the environment has an hypothesis about
the states of the system, i.e. the configuration c =
〈(qiE ,F), (qj ,F ′)〉 means that the environment thinks
that the system is in the state (qi,F) while the system
is in the state (qj ,F ′). The diagnosis problem can be
then reduced to the game where the environment wins

〈q0E , q0〉
¬pf

〈q6E , q6〉
¬pf

〈q5E , q4〉
♦pf

〈q6E , q3〉
♦pf

♦pf
〈q3E , q6〉

♦pf
〈q5E , q2〉

♦pf
〈q2E , q5〉

〈q2E , q2〉
pf pf

〈q4E , q4〉
pf

♦pf
〈q4E , q5〉

¬pf
〈q5E , q5〉〈q3E , q3〉

〈b, b〉

〈b, b〉

〈b, b〉 〈b, b〉

〈a, a〉

〈a, a〉

〈a, a〉

〈a, a〉〈a, a〉

〈a, a〉

〈a, a〉

〈c, c〉

〈c, c〉

〈c, c〉

〈c, c〉

〈d, d〉

〈d, d〉

〈a, a〉

〈a, a〉

Figure 5: The game structure GA+
E ,A between A and

A+
E

by determining the state of the system within a finite
set of moves. This means that active diagnosability
analysis can be reduced to the existence for the envi-
ronment of a universal strategy to determine, within a
finite set of moves, the real state of the system.
We annotate the set C of configurations of the game

GA+
E ,A using the set of propositions∆A with µ : C →

2∆
A s.t. µ(〈(qiE ,F), (qj ,F ′)〉) = ∆1∪∆2∪∆3 with:

• ∆1 =
⋃

f∈(F∩F ′)

{pf}

• ∆2 =
⋃

f∈[(F∪F ′)\(F∩F ′)]

{♦pf}

• ∆3 =
⋃

f∈[Lf\(F∪F ′)]

{¬pf}

Example 6 Figure 5 represents GA+
E ,A annotated

with µ function.
Based on the definition of the environmentA+

E and the
game structure dynamics we can state the following
propositions.
Proposition 2 Let GA+

E ,A resulting from A and its
perfect environment. The binary relation R =
{(〈qiE , qj〉 , qj)} is a bisimulation (Milner, 1989) mod-
ulo renaming functionN : M → L with N (〈a, b〉) =
b, i.e. GA+

E ,A[N] ∼ A.
Proof 1 Let c = 〈qiE , qj〉 be a configuration and qj ∈
Q.
1 According to the definition of A+

E we have
Out(qi) ⊆ Out(qiE) i.e. ∀a ∈ L, qi

a−→ im-
plies 〈−, qi〉

〈a,a〉−→, so implies 〈−, qi〉
a−→ in

GA+
E ,A[N].

2 A move m, s.t. N (m) 1= ε, is possible from a con-
figuration c = 〈qiE , qj〉 iff it is possible from the
two states that compose it, i.e. ∀(c,N (〈a, b〉) =
b, c′) ∈ δ then ∃(qj , b, q′j) ∈ T . In addition
the reached configuration c ′ is of the form c′ =
〈−, q′j〉 and as we have (〈−, q′j〉, q′j) ∈ R we con-
clude their bisimulation.

6

21st International Workshop on Principles of Diagnosis

Proposition 3 Let θ1, θ2, θ3 be three players where
θ1 ∼ θ2, then we have Gθ1,θ3 ∼ Gθ2,θ3 i.e. the bisim-
ulation is a congruence for the game structure rules
operator.
Proof 2 The proof is obvious from the definition of the
game rules.
Each configuration c such that ♦f ∈ µ(c) means

that there is an uncertainty about the fault occurrence
(same as f-nondiagnosable state in the twin plant). The
system is diagnosable in that configuration iff the en-
vironment can enforce the system to reveal its truth
about the occurrence of the fault by leading the game
to a configuration c′ with pf ∈ µ(c′) or ¬pf ∈ µ(c′).
This can be expressed for a given fault f using ATL
formulaDiagf as follows:

Diagf
def
≡ AG[♦pf ⇒ 〈〈A+

E 〉〉F(pf ∨ ¬pf)]

The formula says that each time we reach a configura-
tion where we have a doubt about the occurrence of the
fault f , then from that configuration the environment
can establish a strategy of commands on the system to
enforce it to reveal the truth about the occurrence of f .
We can express the same requirement without the need
of the environment as follows:

¨Diag
f def

≡ AG[♦pf ⇒ [[A]]F(pf ∨ ¬pf)]

The system is diagnosable for a fault f iff each time a
doubt about f appears, then the system does not have
any strategy to keep that doubt infinitely.
Theorem 1 An open and well-controllable system A
is actively diagnosable according to definition 8 iff
∀fi ∈ Lf , GA+

E ,A |= Diagfi .
This means that a system is actively diagnosable iff its
perfect environment has a strategy to prove it.

Proof 3 LetA be a system and letGA+
E ,A be the game

structure of the system and its perfect environment.

(if) Let us suppose that GA+
E ,A |= Diagf for some

fault f and the system is f-nondiagnosable ac-
cording to definition 8. This means that:
(1) ∃(qi,Fi), (qj ,Fj) ∈ Q, ∃σ ∈ L∗

o with
(q0, ∅)

σ−→ (qi,Fi) and (q0, ∅)
σ−→

(qj ,Fj) s.t. f ∈ (Fi ∪ Fj) \ (Fi ∩ Fj).
Let us say f ∈ Fi and f 1∈ Fj .

(2) traces((qi,Fi)) = traces((qj ,Fj)) and
∀π ∈ paths((qj ,Fj)), !(q,F) ∈ π with
f ∈ F .

Following the game structure of GA+
E ,A, it exists

a configuration c = 〈qiE , qj〉 s.t. ♦pf ∈ µ(c).
As c is bisimilar to qj , according to the proposi-
tion 2, then all reachable configurations c ′ from
c, c → c′, will be of the form c′ = 〈q′iE , q′j〉 with
qiE → q′iE inA

+
E and qj → q′j inA, which means,

according to (1) and (2), that ♦pf ∈ µ(c′).
We can conclude that: (GA+

E ,A, c) |= AG♦pf .
Equivalently we have (GA+

E ,A, c) |= 〈〈∅〉〉G♦pf ,

i.e. (GA+
E ,A, c) |= ¬〈〈A+

E , A〉〉F(pf ∨¬pf). This
implies ¬〈〈A+

E 〉〉F(pf ∨ ¬pf) which is a contra-
diction.

(only if) This direction of the proof becomes an obvi-
ous opposite running of (if).

Example 7 In the example of the figure 5 we
can see that for each configuration 〈q ′

E , q〉 that
is not issued from a same state q ∈ Q,
s.t. 〈q0E , q0〉

(〈a,a〉(〈b,b〉〈a,a〉)∗)−−−−−−−−−−−−−→ 〈q′E , q〉 we have
µ(〈q′E , q〉) = ♦pf . We can also read that for any post-
language σ ∈ ρ̌n with ρ = (〈a, a〉(〈b, b〉〈a, a〉)∗〈c, c〉)
and n ≥ 1 s.t. 〈q0E , q0〉

σ−→ 〈q′E , q〉 we have
µ(〈q′E , q〉) = {pf} or µ(〈q′E , q〉) = {¬pf}.

4.3 Active Diagnosability of a set of distributed
systems

In the previous section we considered active diagnos-
ability of a system within its environment. The envi-
ronment as defined represents a maximal use of the
system. Implicitly we supposed that, each time the
system can accept a command, the environment can
provide it. It is interesting to extend the notion of ac-
tive diagnosability to any environment composed by
a set of interacting systems. In this context, when a
system fails, the diagnosis is performed by its envi-
ronment composed by the other partners. Let us con-
sider a set of interacting systems A = {Ai}i=1 ...n.
We suppose that the kth system holds a fault f and
the others do not. We call context of Ak the set of
the other systems, Contk = A \ {Ak}. The interac-
tion of the system Ak with the other subsystems can
be seen as a game between the system and a coalition
composed by its context. Let us note Gk = GA+

kE ,Ak

the game between the system Ak and its perfect en-
vironment. According to propositions 2 and 3 we
have G{Ai}i=1 ...n ∼ GContk∪{Gk[N]}. Let G =
GContk∪{Gk[N]}, we annotate its configurations by the
function µ : C → 2∆

Ak with µ(〈q1, . . . , ck, . . . qn〉) =
µk(ck) with ck ∈ Ck. The environment resulting from
Contk will at the best behave as the perfect environ-
ment. This makes interesting the question of diagnos-
ability in a given context, i.e. ”can the context of a
faulty system actively diagnose it?”.
Definition 9 Let A = {Ai}i=1 ...n be a set of in-
teracting systems. The system Ak is diagnosable in
the context of A iff ∀f ∈ Lfk, G |= AG[♦pf ⇒
〈〈C〉〉F(pf ∨ ¬pf)] with C ⊆ Contk.
This means that a system is diagnosable in a context
if there is a subset of systems, in its context, that can
form a coalition in order to diagnose any of its faults.
Example 8 Let A = {A,A1, A2} with A the system
of figure 1 with Luc = {b, c} and A1, A2 the two sys-
tems represented in figure 6. In this context the sys-
tem A2 decides about the diagnosability of A by acti-
vating the command e that produces the command c.
We have here G{A1,A2}∪{GA+

E ,Ak [N]} |= AG[♦pf ⇒
〈〈A2〉〉F(pf ∨ ¬pf)], i.e. the system A2 has a strategy
to actively diagnose the system A. After receiving the

7

21st International Workshop on Principles of Diagnosis

h cb

q10

q11

q12q13

eg

a

h

d

eg

d

A1 : Lc
1o = {b, c, h}, Luc

1o = {e, g} A2 : Lc
2o = {e, g}, Luc

2o = {a, d, h}

q20

q22

q21

q23

Figure 6: An active diagnosable context for A

first a, followed by h, the system A2 can send the com-
mand e to A1 to force it to send c to A. The system A2
will then receive the diagnosis result: a means correct,
d means the fault happened in A.

5 RELATED WORK
The paper proposes a generalization of the diagnos-
ability definition presented in (Sampath et al., 1995).
The aim is to take into account the semantics of the
observable events (actions or reactions). The idea of
gathering control theory and diagnosis is promising as
claimed in (Kelly et al., 2009). At the best of our
knowledge (Wang, 2009), and then in (Wang et al.,
2009), was the first that linked diagnosis concerns and
control. These two works focus on the use of control-
lability and observability for fault avoidance purpose.
They suppose a safe sublanguage of the system and
also produce, if it is possible, a controller that can en-
sure that the system will be safe. In this work we gen-
eralize diagnosability without avoiding fault. We do
not influence the behavior of system before the diag-
nosis process is engaged. Our approach to check active
diagnosability is related to works that use symbolic
model checking technics in order to verify diagnos-
ability (such as in (Jiang and Kumar, 2001) (Cordier
and Largout, 2001) (Cimatti et al., 2003)). We used
to run the toy example here the MOCHA tool (Alur et
al., 2001). MOCHA offers a language to specify a set
of systems and to compose a game structure between
a set of players. The tool has also a model checker for
ATL formulas. We extended our method to a set of
systems, but the checking process is still performed in
a centralized manner. It will be interesting to adapt the
fault propagation method proposed in (Schumann and
Pencolé, 2007) in order to study a purely distributed
checking method (Distributed strategy computing).

6 CONCLUSION AND FUTUREWORK
In this paper we propose a generalization of diagnos-
ability definition and verification in the context of open
systems. Our active diagnosability definition can de-
tect systems as diagnosable while the classical defini-
tion states the opposite. Also it can improve the di-
agnosis process by producing automatically a scenario
(strategy of commands) of interaction with the system
in order to get accurate diagnosis. The method can
be used for a single system or for a system placed in
a context. In the last case the active diagnosability
and its checking method proposed here can be used
for a number of applications like pervasive systems
and self-healing systems. The natural extension of this
work is the use of the game metaphor for a distributed

checking of active diagnosability. Unfortunately, the
MOCHA tool does not compute strategies neither as
counter example nor as illustration: we used it only
for diagnosis purpose.

REFERENCES
(Alur et al., 1997) R. Alur, T. A. Henzinger, and
O. Kupferman. Alternating-time temporal logic. In
Journal of the ACM, pages 100–109. IEEE Com-
puter Society Press, 1997.

(Alur et al., 2001) R. Alur, L. Alfaro, R. Grosu, T. A.
Henzinger, M. Kang, C. M. Kirsch, R. Majumdar,
F. Mang, and B. Y. Wang. jmocha: A model check-
ing tool that exploits design structure. In In Pro-
ceedings of the 23rd international conference on
Software engineering, pages 835–836, 2001.

(Cimatti et al., 2003) A. Cimatti, C. Pecheur, and
R. Cavada. Formal verification of diagnosability via
symbolic model checking. In In Proceedings of the
18th International Joint Conference on Artificial In-
telligence IJCAI03, pages 363–369, 2003.

(Cordier and Largout, 2001) M.-O. Cordier and
C. Largout. Using model-checking techniques for
diagnosing discrete-event systems. In Proceedings
of the Twelve International Workshop on Principles
of diagnosis (DX’01), pages 39–46, Mars 2001.

(Jiang and Kumar, 2001) S. Jiang and R. Kumar. Fail-
ure diagnosis of discrete event systems with linear-
time temporal logic fault specifications. In IEEE
Transactions on Automatic Control, pages 128–
133, 2001.

(Kelly et al., 2009) T. Kelly, Y. Wang, S. Lafortune,
and M. Welsh. A formal foundation for failure
avoidance and diagnosis. technical Repport HPL-
2009-203, HP labs, August 2009.

(Melliti et al., 2008) T. Melliti, P. Poizat, and S. Ben
Mokhtar. Distributed behavioural adaptation for
the automatic composition of semantic services.
Fundamental Approaches to Software Engineering,
FASE’08, pages 146–162, 2008.

(Milner, 1989) R. Milner. Communication and Con-
currency. Prentice Hall, 1989.

(Sampath et al., 1995) M. Sampath, R. Sengupta,
S. Lafortune, K. Sinnamohideen, and D. Teneket-
zis. Diagnosability of discrete event systems. IEEE
Trans. on Automatic Control, 40(9):1555–1575,
September 1995.

(Schumann and Pencolé, 2007) A. Schumann and
Y. Pencolé. Scalable diagnosability checking of
event-driven systems. In IJCAI, pages 575–580,
2007.

(Wang et al., 2009) Y. Wang, S. Lafortune, T. Kelly,
M. Kudlur, and S. A. Mahlke. The theory of dead-
lock avoidance via discrete control. In POPL, pages
252–263, 2009.

(Wang, 2009) Y. Wang. Software Failure Avoidance
Using Discrete Control Theory. PhD thesis, Uni-
versity of Michgan, 2009.

8

