
A Decentralized Model-Based Diagnosis for BPEL services

Yingmin Li, Lina Ye, and Philippe Dague
LRI, Univ. Paris-Sud, CNRS, and INRIA Saclay-Île de France

Parc Club Orsay Université, 4 rue Jacques Monod, bât G, Orsay, F-91893, France
Email:〈firstname〉.〈lastname〉@lri.fr, Tel: (33) 172925993

Tarek Melliti
IBISC, Univ. d’Evry Val d’Essonne, CNRS,

Tour Evry 2, 523 place des Terrasses de l’Agora, Evry, F-91025, Franc
Tarek.Melliti@ibisc.fr

Abstract

The paper proposes a decentralized diagnosis approach
for a set of choreographed BPEL Web services, where a lo-
cal diagnoser is associated to each BPEL service and coop-
erates with a coordinator. The local diagnosis is based on
a Colored Petri Nets model enriched with I/O data depen-
dency relations represented with color propagation func-
tions. By applying the multiset marking calculation equa-
tion, a diagnosis inequations system is constructed and
solved to retrieve a local diagnosis. The coordinator up-
dates the global diagnosis until reaching a final consis-
tency.1

1 Introduction

Self-healing software is one of the important challenges
for Information Society Technologies research. Our paper
proposes a decentralized diagnosis approach for BPEL ser-
vices, whose goal is to design a framework for self-healing
Web services by adopting artificial intelligence methodolo-
gies to solve the diagnosis problem by supporting online
detection and identification of faults.

A Web service (WS) is a set of distributed message ori-
ented interacting components. We can construct complex
WS systems by composing basic WSs in two ways: or-
chestration and choreography (P2P). An orchestrated BPEL
service is a central process to organize (basic or complex)
WSs to finish complex tasks. A choreographed WS has not
a central process while all the involved WSs are aware of

1The work is supported by EU through the FP6 IST project 516933
WS-DIAMOND (Web Services DIAgnosability, MONitoring and Diag-
nosis) and national ANR project WEBMOV (Web services Modeling and
Verification).

their partners but none has the global view of the whole WS
application. Distributed WS applications make B2B engi-
neering more convenient but raise more challenges for han-
dling dysfunctions. For example, how to locate the source
and reason of faults when they occur? During the interac-
tion of distributed WS components, subtle faults can come
from corrupted data or some functional errors. Due to the
message oriented nature of WS applications, faulty data is
propagated through the execution trace and is used to elab-
orate other faulty data and control decisions. In this way
the subtle faults become large ones. A typical example is
a misunderstanding of date format in different languages.
06/03/2009, in English, is June 3, 2009; but in French, is
March 6, 2009. If a travel agency WS misinterprets the date
format, all the date related reservations will be faulty. An-
other example is the inconsistent data in data base because
of the delay of the WS invocation. These two kinds of faults
are named as semantic faults.

1.1 Example: flight agency

Consider a cross-organization cooperation, which in-
volves four partners: an end-user User, a Customer agency
(flight agency) C, an airline company A, and a Bank cen-
ter B. The three companies aim to offer a secure tickets
buying service for User. C receives a request, which is
composed of flight dates d1, d2 and departure and return
cities c1 and c2, from User, and invokes operation o1 to
get the cheapest flight from A. Next C invokes an opera-
tion o2 to pay on B. Then in a pick process, if OnMessage
of C is ”no credit”, C invokes an operation o3 to cancel the
reservation on A and should reply to User a failure mes-
sage, else if OnMessage of C is a payment confirmation
from B, C should reply a reservation information like d0,
d1, c1, c2, airline name, flight number, price, etc. Partner

A receives a request from C to get the cheapest flight, A
invokes a basic WS BWS1 to get the cheapest available
flight, and should reply it to C. Then in a pick process, if
OnMessage of A is a payment confirmation from B, pro-
cess finishes, else if A is OnMessage a cancel request from
C, A invokes a basic WS BWS2 to cancel the flight and
terminate the process. B receives a payment order from C,
and invokes a basic WS BWS3 to do deduction, then in
a switch process, if the deduction fails, B invokes an op-
eration o4 on one-way to send a ”no credit” message to C,
else B invokes operations o5 and o6 on one-way to send a
confirmation message to A and C.

Suppose C is a French customer agent, while A is an En-
glish airline company, and there is some semantic incom-
patibility between the two partners. A French reservation
request like: reserve a round trip flight from Paris to Lon-
don on March 4, 2009 (04/03/2009) and return 3 days later,
on March 7, 2009 (07/03/2009) could be interpreted as re-
serving a round trip from Paris to London on April 3, 2009
and return 3 months later, on July 3, 2009. So C will re-
ceive a wrong payment confirmation from B and send it to
User. In this case, an exception occurs on User due to a
semantic fault. This example will be used to illustrate each
step of our work.

1.2 Global view of decentralized diagnosis

When an exception is thrown, the service that generates
the data and all the services modify the data should be sus-
pected. Whereas a current Web service exception can only
report where the exception happens. Since the semantic
faults are the most difficult and critical ones to diagnose,
our approach focuses on determining the exact source faults
that are possibly responsible for the exceptions.

A BPEL process can be considered as a Discrete Event
System (DES) and a set of BPEL services in a chore-
ographed environment can be modeled as a set of place-
bordered Petri nets. We propose a decentralized online di-
agnosis architecture (in figure 1) in which, for each BPEL
service BPELi, a local diagnoser Di is provided and co-
operates with a coordinator CO. The coordinator contains
a global diagnoser D and a global choreographed model
Model which acknowledges the choreographed relations
CR between the interacting BPEL services. When an ex-
ception occurs on communicated BPELi, Di is triggered
and then infers a local diagnosis result to CO and that up-
dates the status of D. If D finds that BPELj (j 6= i) is
accused to be faulty, it triggers Dj . D is updated continu-
ously until arriving a final consistency.

To achieve a decentralized diagnosis in a choreographed
scenario, we first introduce a local model for each BPEL
service in section 2, where we introduce a CPN model and
define its firing rules in section 2.1, translate the typical ba-

D1

B P E L1

C P N s

C P N s D2

B P E L2

C P N s

C R

C RD3

B P E L3

C O

DM o d e l

Figure 1. Diagnosis architecture

sic BPEL service activities and structural operators in to
CPN models in section 2.2, especially, including the fault
models locally. Next step, we construct the choreographed
global model which includes the global fault model in sec-
tion 3. The global and local diagnoses are presented in
section 4. For the local diagnosis, an inequation diagno-
sis system is constructed and solved according to the alge-
bra properties of the CPN model in 4.1. And we describe
the decentralized diagnosis steps in 4.2. We compare the
related work, and conclude in section 5.

2 Local model for one BPEL service

2.1 Colored Petri Net

A Petri net is a Colored Petri Net if its tokens can be
distinguished by colors. Here we restrict the definition of
Colored Petri Net that we use in this paper.

Let E be a set, a multiset on E is an application m from
E to Z (a multiset is denoted as m = q0e0 + + qnen

where qi = m(ei)). We use M(E) to define the set of
finite multisets from E to Z, and M+(E) if we restrict it
to N. Sum and subtract operators between two multisets are
defined as in [6]. For two given value domains D, D′, we
denote by [D → D′] the set of possible functions from D
to D′.

Definition 1 A Colored Petri Net graph (CPN graph) is a
tuple N=〈Σ,X ,F ,P ,T ,cd,Pre,Post〉, where: Σ is a set of
colors (see [6]); X is set of variables that range over Σ; F
is a set of color functions, F ⊆ ⋃

n
[Σn → Σ]; P is a set of

labeled places; T is a set of labeled transitions, we denote
Type : T ′ → T ′′ with T ′, T ′′ ⊂ T and T ′ ∩T ′′=∅ is a type
function of T ; cd : P → 2Σ, is a function that associates to
each place a color domain2; Pre, Post : are forward and
backward matrices such that Pre : P ×T →M+(Σ∪X),
are input arc expressions; and Post : P × T → M+(E),
are output arc expressions.

E represents a color expression which can be a color con-
stant, a variable, or a color function of F (completely or
partially instantiated). Given an expression e ∈ E , we use

2In this definition, a transition has no color domain. This restriction
will be explained in section 2.2.3.

V ar(e) to denote the set of variables which appear in e, and
Eval(e), the evaluation of e in Σ.

We denote •t and t• as the input and output places set of
transition t, •p and p• as the input and output transitions set
of place p.

Definition 2 A CPN graph N = 〈Σ,X ,F ,P ,T ,cd,Pre,
Post〉 is well formed iff: ∀t ∈ T, ∀p ∈ t•, we have
V ar(Post(p, t)) ⊆ V ar(Pre(., t)) with V ar(Pre(., t))
=

⋃
p′∈•t

var(Pre(p′, t)).

In a well formed CPN graph, we restrict that for each
transition, the output arc expressions must be composed by
the variables which are in the input arcs expressions. To
each CPN graph, we associate its terms incidence Matrix C
(P × T →M(E)) with C=Post-Pre.

In the following, we define the behaviors (the dynamics)
of a CPN System.

Definition 3 A marking M of a CPN graph is a multiset
vector indexed by P , where ∀p ∈ P,M(p) ∈M+(cd(p)).

Operators + and − on multisets are extended to markings
in an obvious way.

Definition 4 A Colored Petri Net system (CPN system) is a
pair S=〈N, M0〉 where N is a CPN graph and M0 is an
initial marking.

Definition 5 A transition t is enabled in a CPN sys-
tem S with marking M , iff ∃u, with M ≥ Pre(., t)u,
V ar(Pre(., t)) → Σ, which is a binding of the input arcs
variables. 3

Definition 6 Let M be a marking and t a transition, with
M [t〉u for some u. The firing of the transition t changes the
marking of CPN from M to M ′ = M + C(., t)u. We note
the firing as M [t〉uM ′. A sequence of transitions δ ∈ T ∗ is
defined as: M [δ〉M if δ is the empty sequence; M [ωt〉M ′

iff ∃M ′′ such that M [ω〉M ′′ and M ′′[t〉uM ′.

2.2 From BPEL to CPN model

There exist already many works dedicate to translate
BPEL services into CPN model for composition verifying
([12]), supervising ([3]), analyzing ([5]) etc.. In this sec-
tion, we construct our own CPN model by introducing the
faulty behaviors into Petri nets model which is suitable not
only for diagnosing BPEL services, but also for diagnosing
other large software systems. In the following, we define
how to translate the static and dynamic features into CPN
models.

3u must respect the color domain of the places, i.e., ∀p ∈• t, x ∈
var(Pre(p, t)), we have u(x) ∈ cd(p).

2.2.1 Translating static BPEL features to CPNs

BPEL data variables and constants: to catch maximally
the dependency between data (variables, constants, etc.),
we decompose the structured XML data types into leaves.
Each leave xi is denoted by (X, xi) as a place in CPNs.

Color Domain: three colors are used: red (r), faulty data
value; black (b), not faulty data value; and unknown color
(∗), correctness unknown of data value.

Data dependency within BPEL v.s. color functions:
to specify the effect of each activity on data, we give each
activity a data dependency signature in term of three de-
pendency relations (proposed in [1]): forward (FW), the
activity just copies the value from the input to the output;
source (SRC), the output data is generated by the activity;
and elaboration (EL), the output data is elaborated from a
set of input data. Each data dependency relation is associ-
ated with a color propagation function to represent the data
status production.

Definition 7 Given a data relations set D = {FW , SRC,
EL}, ∀d ∈ D, the associated color propagation function dc is
defined as: ∀c, c′ ∈ Σ,∀C ⊆ Σ,





FW c ∈ [Σ → Σ], FW c(c)=c
SRCc ∈ [∅ → Σ], SRCc=∗

ELc ∈ [2Σ → Σ], ELc(C)=c′, with c′=





b, iff ∀c ∈ C, c=b
r, iff ∃c ∈ C, c=r
∗, iff ∃c ∈ C, c=∗∧
@c′′ ∈ C, c′′=r

In the following sections, we model dynamic features,
the basic BPEL activities and structured operators, with
CPNs in a choreographed scenario.

2.2.2 Translation from basic WS to CPN

A basic WS is a program which publishes its invocation in-
terface and can be remotely called by other WS. As it is
called synchronously and cannot be decomposed, we model
it as a CPN system, which has a transition, remote in-
put/output activation places and a set of shared input/output
data places (the local components are in the dotted line
boxes). The data dependency between its input and output
can be FW , EL, and/or SRC, which is optional offered
by the developers. The CPN model of a basic WS con-
tains a set of data fault transitions tfi , which are triggered
by the consummation of the token in the output activation
place. Once tfi is executed, there should be a fault in its
output data place and the fault can be passed to its invoker,
a BPEL process. We define the type of faulty transitions as
tB : Type(tfi) = tB (figure 2(A)).

E :

B :

r

r

C i na C
im

tf 0

C
ix

t
r e c

t
f i

X i

C o u ta

Type () =Type () =tf 0 t
r e ct

f i
C :

ai n
P A

C

ai n
P A

C

(CF W
c

)
im

F W (C
c

)ina

ai n

ao u t
m i

ai n
P A

C
ix

X i

ao u t
P A

t
i n v
in

r

r

tf 0 ai n
P A

C

ai n
P A

C

ao u t

ai n
P A

(CF W
c)

ix

t
i n v
o u t

. . . op t iona l bas ic ac t i v i t i es . . .

ai n

ao u t

C i na

F W (Cc)i na

C
ix

X i

(CF W
c)

ix

t
a s s

y i

C
iy

(C ,F = E L
c

i 1
m

i n

i 2
m

i n
C)c

T y p e () =t
f i

t
B

A :

r
C

ao u t t
f i

m
i 1
in m

i 2
in

ai n
P A

ao u t
P A

C
a i n

P A C m
i 1
in

t
B

FC C
i

m o u t

Cm
i 2
in

o u tm
i

a(CF W
c)in

P A

ai n

ao u t

C i na

F W (Cc)i na

C
ix

X i

(CF W
c)

ix

t
r e p

C
i

m

m i

ao u t
P A

ao u t
P A

C

D :

m i
o u t

C
im o u t

m j
i n

C
j

mi n

(CF W
c

)
j

m i n

Y j

C
jY

tf j

T y p e () = T y p e () =tf 0 t
i n v
o u ttf j

C
im C

j
mi n

C
i

m o u t

ai n
1

C i na
1

F W (Cc)ina

F W (Cc)ina

C i na
ai n

F W (C
c

)ina
1

ao u t
1

Figure 2. CPNs of the basic activities

2.2.3 Basic activities translation

Due to space limitation, we model only four main basic
activities (Receive,Assign,Invoke, and Reply) while the
other similar activities can be easily translated in the same
way (structural operators also).

Receive(m,X) copies the values from a message m to a
local variable X . To separate the different faulty parts trans-
mitted remotely, we add for each mi an internal transition
(fault) before the receive transition as in figure 2(C). Data
places (m, mi), (x, xi) are simplified as mi and xi. A re-
mote activation place ain

PA is added to allow the activation
control from partner PA to Receive.

Two kinds of fault transitions are modeled: tf0 models
the remote control fault; and tfi models the remote data
fault. Both their types are defined as trec: Type(tf0) =
Type(tfi) = trec. The execution (occurrence) of tfi is trig-
gered by the consummation of the token in the remote in-
put activation place ain

PA. The transmission of the fault (red
token) is illustrated on the arc expressions. Each arc ex-
pression represents the colored token consumed (on an arc
(p, t)) or produced (on an arc (t, p)). To keep the liveness
of the CPN, we add an arc from the output place xi to the
receive transition trec. Similar activity: OnMessage.

Invoke(X[, Y]) calls another Web service, either a ba-
sic or composite one. It takes the value of the variable X ,
sends a remote request to its partner, synchronously or asyn-
chronously waits for the response message, stores it in the
variable Y , or gets the response by Receive(m,Y). As
Y can be infected by external faulty WS which is unob-
servable, we introduce a series of unobservable faulty tran-

sitions between the tininv and tout
inv transitions to model the

faults caused by external WS. Invoke can be asynchronous
call and only sends the request X . In this case, it has only
the tininv transition (figure 2(B)).

Reply(Y, m) copies values from a variable Y to a mes-
sage m for returning the response (figure 2(D)). There is no
fault model in its CPN model. Note that reply does not af-
fect the correctness of remote control, so f c on the arc (trep,
aout

PA) is FW c(ain
PA).

Assign(X, Y) reorganizes local variable parts to com-
pose a new one. So its model does not contain fault
transition, remote activation, or shared data places (figure
2(E)). Similar operators: Throw and Rethrow. The Wait,
Empty, and Exit activities do not have relation with the
variables, so their CPN model only have the I/O local and
remote activation places.

2.2.4 Structured operators translation

Sequence operator sequence(S1, S2) connects different
activities with and the occurrence execution order. So we
can generate the resulting sequence CPN by merging the
local intermediate output and input activation places of con-
tractive CPNs (in figure 3(a)).

Conditional operator Switch({(coni(Xi, Vi),Si)}i∈I)
represents an alternative execution of the activities Si under
the conditions coni(Xi, Vi). Xi and Vi are respectively the
variables and constants. For each subprocess Si, a transi-
tion coni is added to generate an activation place ain

i which
is elaborate from the common activation input place of
Switch, Xi, and Vi. So the faults in the data places Xi, Vi

can be transmitted to subprocess activation control, which
allows the diagnosis of the control fault in a BPEL process.
At the end of the Switch process, a new aout replaces all
the aouti of subprocess Si (in figure 3(c)). Similar opera-
tors: Scope together with the compensation handlers, event
handlers, and fault handlers.

Iterative operator while(con(X, V), S1) iterates the
activity S1 execution until the breaking off of the conditions
con(X, V). While is similar to Switch but in While, the
aout of the iterative subprocess is also ain of tcon (in figure
3(b)). Similar operators: Link with its ”transitionCondi-
tion”. Similar operators: RepeatUntil, ForEach.

Message triggering operator Pick({Mi, Si}i∈I) trig-
gers one subprocess Si by the arriving (represented
as the remote activation place ain

PAi
) of a message

OnMessage(Mi) from partner PAi. So Pick operator is
a combination of a set of OnMessage activities (in figure
3(d)).

2.2.5 Some remarks on the BPEL model net

Observable vs unobservable transitions: we divide T into
observable transitions Tobs and fault transitions TF (T =

a

a : S e q u e n c e (S 1 , S 2)

aC

a i n
1

a i n
2

i naC
1

ao u t
1

ao u t
2

i naC

i
CX C

iV

a i n
iX V i

C o n n

a i n
1

a i n
na i n

i

ao u t
1

ao u t
i

ao u t
n

i naC
1

i naC
i

i naC
n

C o n iC o n 1

 c : S w i t c h ({ (c o n (X , V) , S) } , i i i i i I)

o u ta

j
E L i na

c(C , CX , C
iV)

C o n

i naC
i

CX

C
iV

a i n X i V i

a i n
1

ao u t
1

C o n
_ _ _ _

j
E L i na

c(C , CX , C
iV)

j
E L i na

c(C , CX , C
iV)

O M1 O M n

a i n
1X1

M n

X n

a i n
n

i naC
1

i naC
n

ao u t
n

ao u t
1

F W i na
c(C)

ai n
P An

M 1

ai n
P A 1

o u ta

i naC

ai n

F W i na
c(C)

1 F W i na
c(C)

n

F W 1
c(M) F W n

c(M)

 b : W h i l e (c o n (X , V) , S)
1

d :P ick ({M i ,S i } , i I)

Figure 3. CPNs of the structural operators

Tobs∪F and Tobs∩TF = ∅) and define a type function over
faulty transition to observable ones Type : TF → Tobs.

Initial and final marking configuration: obtained by
marking P as in table 2.2.5.

Table 1. M0 and Mn of CPNs
CP 1 DP 2 AP0

3 AP0
4 AP 0

PA0
5 AP 0

PAi

6

M0 ∗ b b 0 b 0

Mn ∗ x7 0 x7 0 x7

1 Constant places; 2 Variable places;
3 First local activation places; 4 Local activation places;
5 First remote activation places;
6 Remote activation places;
7 x=r if p is within fault trace, x=b if verified by external
checkers (e.g., user, developer), x=∗ otherwise.

One-boundness: the resulted CPNs are one-bounded (or
safe, means one place can at most contain one token), which
is guaranteed by the fact that a BPEL process does not al-
low a subprocess call that can lead to more than one token
production in the activation and data places.

2.2.6 Example (cont.): flight agency

In figure 4, a CPN model of partner C is presented to-
gether with its interacting relations (bolded arrows) with
other partners (data places for each transition are simpli-
fied as one input and one output for the sake of space limit).
All the color variables Cp of a place p are omitted and the

color propagation functions are listed. A symptom (red to-
ken) occurs on User to represent a faulty reservation which
shows an unreasonable price.

r

r

r

a1

d1

a2

d2

t1

f 3

f1

f2

t2

a3

d3

t3

a4

a5

a6

a7

a8

a9

t5

d4
d5

f 4

d1
c

d 2
c

d 3
c

d 4
c

d 5
c

d 9
c

d 6
c

d 7
c

d 8
c

d 1 0
c

d1 1
c d1 3

c

d1 4
c

f 5
a1 1

t7

d7

d1 5
c

a1 2

d6

r
r

r

r

a1 0

a1 5

d8

a1 3

a1 4

f6

f 7

f8

d9

d1 0

d 1 1

r

d1 2
c

d1 6
c

d1 7
c

d1 8
c

d1 9
c

a1 6

C

U s e r

A

B

A

U s e r

B

d1
c

F W (C
c

)
2a=

d 2
c

F W (C
c

)
1d=

d 3
c=d 4

c = F W (C
c

)
3a

d 5
c = F W (C

c
)

2d

=d 7
c

4F W (C
c

)d

=
6

F W (C
c

)ad 6
c

d 9
c = d 8

c = F W (C
c

)7a

d1 0
c = F W (C

c
)

5d

=
7d1 2

c
F W (C

c
)d

T y p e (f) = T y p e (f) = t1 2 1

T y p e (f) = T y p e (f) = t 3 4 3

t4

t6

t8

d2 0
c

=d1 3
c =d1 1

c
F W (C)

9a
c

8F W (C
c

)d=d1 4
c

=d1 6
c =d1 5

c
F W (C)

1 3a
c

=
9d1 7

c
F W (C

c
)d=d2 0

c

=d1 9
c =d1 8

c
F W (C)

1 2a
c

T y p e (f) = T y p e (f) = t 5 6 5

T y p e (f) = T y p e (f) = t 7 8 6

Figure 4. CPNs model of partner C

3 Fault model of a choreographed set of WSs

Each partner Ni involved in a choreography scenario
provides a BPEL process describing: (i) its partners
{Nj}(j 6= i) and (ii) its interface (local operations like
Invoke, Receive, and Reply). A choreographed relation
between two partners is represented by two sets of places
which correspond to a share messages and their correspond-
ing remote control places.

Definition 8 let P s
i denote the subset of places Pi on Ni which

are shared with another Nj (j 6= i). A choreographed relation
CR is a set of functions Fij : Aout

PAi
× P s

i → Ain
PAj

× P s
j }.

∀a ∈ Aout
PAi

, ∀a′ ∈ Ain
PAi

, p ∈ P r
i , Fij(a, p)=(a′, p′) and

F−1
ij (a′, p′)=(a, p).

Definition 9 A choreographed model is a tuple CDM= 〈⋃
i∈I

Ni,

CR〉, where Ni is a CPN model of a partner BPEL service, and
CR is a choreographed relation.

3.1 Example (cont.): flight agency

In figure 4, the interacting places are: (ai, dj) with
(i, j)=(1,1),(4,3),(5,4),(8,6),(10,7),(11,8),(14,10),(15,11).

We simply denote the shared places on the corresponding
partners as a′i and d′j . So the choreographed relation
of partner A to B and C is: CRA=

⋃
α∈{B,C}

FAα. The

global model of the flight agent services fa set is:
CMDfa=〈NA ∪NB ∪NC ,CRA ∪ CRB ∪ CRC〉.

4 Diagnosis of Decentralized BPEL services

4.1 Local Diagnosis for one BPEL service

During the execution of a BPEL service instance, we can
record the sequence of activities executed within this in-
stance, that we call the trace. This trace belongs to (Tobs)∗.
When a fault occurs at some moment of the instance exe-
cution, an exception is thrown, what we call in diagnosis
literature a symptom. Exceptions are thrown due to some
inconsistency of a part of the services state. The inconsis-
tency can concern either data variables values or activation
data (e.g receiving a bad message, or not receiving an ex-
pected message). In both cases, a thrown exception can be
represented as a marking where the faulty data (or activa-
tion) places are marked with a red token and the others can
be marked either as black or unknown.

Definition 10 Let M be a marking, M is a symptom (exception)
marking iff ∃p, M(p)(r) 6= 0. We denote the set of symptom
markings by M̂ .

Definition 11 A diagnosis problem is a tuple D=
< N, δo, M̂ >: N is a CPN system that represents the model of
a BPEL service; δo is an observable trace δo ∈ (Tobs)

∗; M̂ is a
symptom marking.

To solve a diagnosis problem, we introduce a covering rela-
tion:

Definition 12 A covering relation ¹ between colors Σ =
{r, b, ∗} is a partial ordered relation where any color cov-
ers itself and the ∗ color covers all colors (i.e ¹=
{(r, r), (b, b), (∗, ∗), (r, ∗), (b, ∗)}). We extend the color covering
relation to multisets and markings as follows:

• let m, m′ ∈ M+(Σ) we have m ¹ m′ iff
∑
c∈Σ

m(c) =
∑
c∈Σ

m′(c) ∧ ∀c 6= ∗, m′(c) > 0 ⇒ m(c) ≥ m′(c)

• let M, M ′ be two markings, we have M ¹ M ′ iff ∀p ∈
P, M(p) ¹ M ′(p)

We give now a definition of a diagnosis:

Definition 13 Let D =< N, δo, M̂ > be a diagnosis problem,
a diagnosis S is a non empty subset of faults set (TF), (S ⊆ TF)
such that: M0 + C × −⇀

δ ¹ M̂ with
−⇀
δ a characteristic vector

defined as follows: ∀t ∈ Tobs,
−⇀
δ (t) =

−⇀
δo(t), where

−⇀
δo(t) is the

number of occurrences of t in δo; ∀f ∈ S,
−⇀
δ (f) = 1; ∀f ∈

(TF \ S),
−⇀
δ (f) = 0.

We restrict the value of a fault transition to 1 because once
fault occurs, the fault will be persistent.

Definition 14 Let D = 〈N, δo, M̂〉 be a diagnosis problem and
S be a diagnosis, S is minimal iff ∀S′ ⊂ S, S′ is not a diagno-
sis. The diagnosis solution DS ⊆ 2TF is the set of all possible
minimal diagnoses.

4.1.1 Diagnosis of CPN by inequations system solving

Let D = 〈N, δo, M̂〉 be a diagnosis problem and let ni

be variables ranging over {0, 1}, we construct the charac-
teristic vector δ as follows: ∀t ∈ Tobs, i)

−⇀
δ (t)=

−⇀
δo(t);

ii) ∀fi ∈ TF ∧ −⇀δo(Type(fi)) 6= 0,
−⇀
δ (fi)=ni; iii) ∀f ∈

TF ∧ −⇀δo(Type(f))=0,
−⇀
δ (f)=0;

We can then construct an inequations system (one in-
equation for each place) for the diagnosis problem as fol-
lows: QM̂ =Eqpi

: M̂(pi) º M0(pi) + C(pi, .)
−⇀
δ .

To each place p, we associate an inequation Eqp

where the left part is l(Eqp)=M̂(p) and the right part is
r(Eqp)=M0(p)+C(p, .)

−⇀
δ . We divide the set of inequa-

tions QM̂ into three subsets: i) Qr
M̂

={Eqp|l(Eqp)=r};
ii) Qb

M̂
={Eqp|l(Eqp)=b}; iii) Q∗

M̂
={Eqp|l(Eqp)=∗ ∨

l(Eqp)=0}.
The diagnosis is obtained by equating the left and the

right parts of the Qr
M̂

equations. In the following, we give
first the solution of an inequation and then the solution of
an inequations system.

One inequation Qr
M̂

solving
The inequation with the left red part is a multi set over terms
that can be composed by color functions, constants, and the
corresponding place variables (could be with negative co-
efficients). The solving approach (algorithm 1) is, for each
inequation corresponding to one symptom place p, to bal-
ance out the negative items with the positive constant items
in the right part, initiate the red tokens coefficients ni as
1 (fault occurs), and keep the unknown color functions for
further recursive solving (algorithm 2) until arriving to a
choreographed relation.

4.1.2 Example (cont.): partner C of flight agency

The incidence matrix, with a size 27×16 can be constructed
by applying the Post-Pre. Now suppose we get a series of
observed activities δ0: Receive, Invoke, Invoke, Pick,
OnMessage, Reply (the corresponding transitions in CPN
model are t1, t2, t3, t4, t5, t8), which means the payment
confirmation branch is executed. Given an initial marking
M0 =(a1 a2 a3 · · · a16 d1 . . . d11)=(b b 0 · · · 0 b · · · b),
the final marking is Mn =(a1 · · · a14 a15 a16 d1 · · · d10

d11)=(0 · · · 0 b b ∗ · · · ∗ r). The characteristic vector can
be constructed as:

−⇀
δ T : (t1 · · · t6 t7 t8 f1 · · · f6 f7 f8)=(1

· · · 1 0 0 n1 · · · n6 0 0). An inequations system concerning

Algorithm 1 Partially solving one inequation:
solvAnEqu(Eqp)

Input: Eqp: a Qr
M̂

inequation which concerns a place p;
Output: < Cr

p , Nr
p > {Cr

p :a set of color functions which gen-
erate red tokens; Nr

p : a set of coefficients which mean their
corresponding fault transitions are executed;}

1: Cr
p = ∅; Nr

p = ∅;
2: ForEach ni × ci ∈ r(Eqp)+ =

∑
i∈I ni × ci do

3: if ni is not a constant and ci = r then
4: Nr

p = Nr
p ∪ {fi}; {records tfi in Nr

p}
5: else if ci is a color function concerning place p′ then
6: Cr

p = Cr
p ∪ {cp′};{records possible fault place cp′ for

further solving}
7: else if ci is a color propagation function dc

i then
8: Cr

p = {Cr
p} ∪ {cpi ∈ V ar(ci)};{records the input

places of ci for further solving}
9: return < Cr

p , Nr
p >;

partner C can be got by applying definition 6 in equation
4.1.2 (the inequation Eqd11 in a gray box is symptom). By
solving the inequations system, a diagnosis on partner C is
got: n6 > 0, which means place d7 is faulty, so we can
accuse partner B to be faulty. In the following sections, we
see how to diagnose this fault in a choreographed scenario.





Eqa1 : 0 º (r − Ca1)× n1 − Ca1 × 1 + b · · ·
Eqa16 : b º FW c(Ca12)× 1 + 0· · ·
Eqd2 : ∗ º (FW c(Cd1)− Cd2)× 1 + b · · ·
Eqd11 : r º FW c(Cd9) + b

Algorithm 2 Completely solving a Qr
M̂

inequation:
CDS(QM̂ , Eqp)

Input: QM̂ = Qr
M̂
∪Qb

M̂
∪Q∗

M̂
: the inequations system ;

Eqp: a Qr
M̂

inequation;
Output: Sp: a diagnosis solution concerning a symptom place p;

1: Sp = ∅;
2: < Cr

p , Nr
p >= solvAnEqu(Eqp);{get the first back reason-

ing result, Cr
p need to be resolve further}

3: Sp = Sp ∪Nr
p ;

4: ForEach cp′ ∈ Cr
p do

5: if ∃Eqp′ ∈ Q∗
M̂

then
6: if l(Eqp′) = ∗ then
7: Sp = Sp ∪ CDS(Qr

M̂
∪ {r º r(Eqp′)} ∪

(Qb
M̂
∪Q∗

M̂
)\{Eqp, Eqp′}, r º r(Eqp′));{evaluates

l(Eqp′) as r, reconstructs the inequations system and
recursively back reasoning}

8: else if l(Eqp′) = 0 then
Sp = Sp∪CDS(Qr

M̂
∪{r º r(Eqp′)+cp′}∪(Qb

M̂
∪

Q∗
M̂

) \ {Eqp, Eqp′}, r º r(Eqp′) + cp′);{evaluates
the l(Eqp′) as r and add a red token on the right side
of the inequation to balance Eqp′ , reconstructs the in-
equations system and recursively back reasoning}

9: return Sp;

An inequations system QM̂ solving
By solving each inequation in Qr

M̂
, we get the diagno-

sis for the inequations system QM̂ (see algorithm 3). The
union set of all the Sp is the diagnosis solution for the whole
symptom marking which corresponds to multiple symp-
toms.

4.2 Protocol for global diagnosis

In the decentralized diagnosis architecture, each local di-
agnoser can interact both with its associated Web service
and with the coordinator, while the coordinator can interact
only with local diagnosers. The coordinator CO contains
a global model CDM and an initially empty global diag-
noser D. This decentralized diagnosis starts from a local
diagnoser LDi which is triggered by BPELi. D is first
extended by LDi. D keeps the fault transitions fi and in-
vokes other local diagnoser for further explanation of faulty
places pi until a local diagnoser returns null (see algorithm
3).

Algorithm 3 Local diagnosis for QM̂ : LDS({pi})
Input: {pi}: a set of faulty places in local CPN model;
Output: D: a local diagnosis solution;

1: D=∅;
2: QM̂ =Construct({pi});{Construct constructs an inequa-

tions system QM̂ where Qr
M̂

={l(Eqpi) = r}}
3: ForEach Eqp ∈ Qr

M̂
do

4: Sp=CDS(QM̂ , Eqp);{resolve each inequation in Qr
M̂

by
back reasoning}

5: QM̂ =QM̂ ∩ Sp;

6: D=D
∪× Sp;4

7: return D;

4.3 Example (cont.): flight agency

Concerning the flight agency (figure 4), the diagno-
sis process starts on partner C which is triggered by
a wrong reservation exception. A local diagnosis re-
sult DC1={{〈C, d7〉}} is sent by C to the global di-
agoser D. D is then extended as {{〈C, d7〉}} and ac-
cording to the global model known by the coordinator,
{{〈B, d′7〉}}, the corresponding fault signature on partner
B, is generated and sent to B. Next D receives a lo-
cal diagnosis DB1={{〈B, d′6〉}} and {〈B, d′7〉} in D is re-
placed by {〈B, d′6〉}. The process continues and D is ex-
tended in turn by the local diagnosis results {{〈A, d′4〉}},
then {{〈A, d′3〉}}, BWS1, {{〈A, d1〉}}, and {{〈A, d′1〉}}
({{〈User, d′1〉}} can be rejected by user). So the final di-
agnosis result as D={{〈BWS1, ft〉}}, where D contains

4∪× is an operator that applies the union operator on couples resulting
from the Cartesian product.

one minimal diagnosis and {〈BWS1, ft〉}, which indicates
the fault come from the basic WS BWS1 on partner A.

Algorithm 4 Global diagnosis solution GDS

Input: D=
⋃{{ ⋃

j∈N

〈Di, pj〉,
⋃

k∈N

〈Di, fk〉}}: is a set of minimal

diagnosis on Di, pj is a suspended place on Di, and fk is a
faulty transition on Di;

Output: D: the global minimal diagnosis set;
1: stop=fault;{A flag to exit the diagnosis process}
2: while Not Stop do
3: ForEach ld ∈ D do
4: ForEach e ∈ ld do
5: ld′=ld′ ∪ F−1(e);{F ∈ CR, while Ain

PA and Aout
PA

are omitted}
6: ForEach e′ ∈ ld′ do
7: ForEach 〈Dm, pn〉 ∈ e′ do

8: ld′=ld′
∪× LDSm({pn});

9: D′=D\{ld} ∪ {ld′};
10: if D′=D then
11: stop=true;
12: else
13: D=D′;
14: return D;

5 Related work and conclusion

A BPEL process can be considered as a discrete event
system (DES). Automata, process algebra, and Petri nets
are the most popular DES models. We refer the reader to
[9] for the surveys of formal methods of Web services mod-
eling. The major method for diagnosing a DES is trajectory
unfolding, which is used on the observable trajectory of sys-
tem evolution to find the faulty states as the diagnosis. For
example, [11] proposes a decentralized model-based diag-
nosis algorithm based on the PNs model ([7]) by unfolding
the trajectory backword. But in [11], local diagnoser does
not support iteration in BPEL processes.

We can also adapt the FlightAgent example according
to the modeling methods of [2] by modeling the states of
the BPEL service as places and activities as transitions. As
this modeling approach loses the data dependency which
cannot ensure the diagnosis is as minimal as ours. [8] mod-
els a modular interacting system as a set of place-bordered
Petri nets and proposes a distributed online diagnosis which
applies algebra calculations from the local models and the
communicating messages between them. But when apply-
ing [8] on the FlightAgent example gets the explosion of
the state space because the partition of the variables and
messages into subtle parts, and its simple Petri nets defini-
tion are too limited to deal with the data aspects.

There are some works that model the WS system with
other types of models. In [4], a system is modeled with pro-

cess algebra which contains faulty behavior models. The di-
agnosis is retrieved by comparing all possible action traces
with the observations. All the faulty actions of the matched
traces are the diagnosed faults. But [4] models and diagno-
sis the general WS applications in stead of a concrete WS
specification language. [10] models BPEL services as en-
riched synchronized automata pieces and diagnose by tra-
jectory reconstruction from observation while the algorithm
is incapable for the control fault in the process.

An implementation of translating BPEL into CPNs based
on the implementation of [7] is under developing in order
to proof and compare the diagnosis minimality and cor-
rectness with other diagnosis approaches. Meanwhile we
are studying a more general model for diagnosing various
DES based on the inequations system solving approaches.
Our diagnosis approach can be easily extended into the dis-
tributed environments according to the approach proposed
in [8] by defining a proper composition protocol of the
CPNs. And we believe that the diagnosability analysis can
also be done using algebra analysis based on the incidence
matrix, which is another ongoing work.

References

[1] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi,
M. Segnan, and D. T. Dupré. Enhancing web services with
diagnostic capabilities. In ECOWS, pages 182–191, 2005.

[2] A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis
of asynchronous discrete event systems, a net unfolding ap-
proach. IEEE Trans. on Automatic Control, 48:714–727,
2003.

[3] T. Chatain and C. Jard. Models for the supervision of
web services orchestration with dynamic changes. In
AICT/SAPIR/ELETE, pages 446–451. IEEE CS Press, 2005.

[4] L. Console, C. Picardi, and M. Ribaudo. Process algebras
for systems diagnosis. Artificial Intelligence, 142(1):19–51,
November 2002.

[5] C. O. et al. Formal semantics and analysis of control flow in
ws-bpel. Science of Computer Programming, 67(2-3):162–
198, July 2007.

[6] K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis
Methods and Practical Use. Springer, USA, 1997.

[7] Y. Li, T. Melliti, and P. Dague. Modeling bpel ws for diag-
nosis: towards self-healing ws. In WEBIST, pages 795–803.
IEEE C.S., 2007.

[8] S.Genc and S.Lafortune. Distributed diagnosis of place-
bordered petri nets. Automation Science and Engineering,
IEEE Transactions, 4(2):206–219, April 2005.

[9] Y. Yan. Description Language and Formal Methods for Web
Service Process Modeling. M.E Sharpe Inc., Armonk USA,
2008.

[10] Y. Yan and P. Dague. Modeling and diagnosing orchestrated
web service process web services. In ICWS IEEE Interna-
tional Conference, pages 9–13. IEEE C.S., 2007.

[11] L. Ye and P. Dague. Decentralized diagnosis for bpel web
services. In WEBIST, pages 283–287. INSTICC, 2008.

[12] Z. ZhaoLi, H. Fan, and X. HaiJun. A colored petri net-based
model for web service composition. Journal of Shanghai
University (English Edition), 105(4):323–329, 2008.

