@] (@

1P 1bidc

Deliverable 2:
Tools for negotiation mechanism specification and
validation : Application on the Single Shot

Abstract.

The deliverable 2 concerns the Task 1.2. We illustrate the deliverable 1 methodology on two
negotiation protocols. We also present different tools to design mechanisms and generate roles abstract
behaviours. We end this deliverable by the first steps toward the tasks 2 and 3 which model generation.

Deliverable Id.: 1.0

Date : 7/12/2007
Classification: Public/Private
Originating Partner :

Author(s) : LIP 6 + IBISC
Relevant Work package : WP 1...
Relevant Task : Taskl.1...
Release Status : Draft VO...

Project Co-ordinator: Lip6
Partners: IBISC

Table of Contents

L 658 (076 10167 5 o 4 USSP 3
2. FT Protocols SPeCIfICAtION.uieiuiieiiieiieiiieiie ettt ettt tteste et e et e et e sbeessaeesbeesssesnsaesssessseensnesnsaens 4
L. INTHHAIISALION STEP..ciutiiiieiieeiiieeiee et ee et ettt e et e e et e e s beeestbeeessaaeessaeeessaeeessseesssaeeasseeessseeessseeensseeesseennnns 4
2.DiSCOVET ANd AUCTION SEEP.....eevreiiieitieeiieitieeieeteeeteesteeseteeseessteesseesseeesseessseesseesssesnseensaeasseenseesnseenseennns 4

F N N3 11 7ed (e s o TSRS USTRUSRRPR 5
B)IEEIAtIVE. ..ottt ettt et ettt e st e et e e s tteesb e e s sae e b e e saaeenbeenteeeaseeenaeenbeennteenseennaeenne 5
3.Matching and AGreemeENnt SEEP.......c..eeicuiieriiieeiie ettt e et et e et e e e ee e e teeeebeeessbeeessseeesseeessseesnsseennnns 5

3. THE PIASOA tOOL.... ittt ettt e a e s a ettt e bt e bt e st e s bt et e eate s et enbeentesaeenee 9
4. Single Shot specication using PIASOA t0O].........cccuiiiiiiiiiie ettt 11
1.ROles and relationSRIPS:....cc.eiiiiiiiiiii ettt ettt et e et e e e et e e be e aeeenbeensaeenbeen 11
2.DefINING the DASE LYPES f..uveiiiiiieeiieeeiieeeiie et et e et eestte e st e e e teeesbaeesbeeessseeessseeessseeesseessseesnseennnns 12
A)INTOTMALION LYPES ..vienviieiiieiieeiieite ettt ettt et e et e et e st e e bt e ssaeebeesaseesseessseenseensseenseenseesnsens 12
B)PartiCIPant LY PES. .. .eeeuieeeiieeeiieeeteeeetee et e ettt e e stteeeeaaeetaeestaeeesaeeeaeeeasaeeasbaeensbeeeenbaeennreeenreenn 12
C)Channel types and LOCALOTS.ceiuiiiiieriieeiieriie et eiee et eriee ettt e eaeessaeebeebeessseessaessseenseessseenses 12
3.Defining the choreography FIOW:........cocviiiiiiieie et e 13
A)The INTHALISAtION STEP....eeiuvieiiiriieiieeie ettt etee sttt et e et e steebeestaeebeessseenseessseenseessseensaensseenns 14

B)The market discover and aUCHION SEP........eeecvieeriieeiiieeiieeeceeeeiee et e e sereeeereeeeaeeeaaeeeraeesereees 15

C) Exception block vs appliCatiVe TUIES........cccuieruiiiiiiiieeiieiiece ettt eaeens 16

5. From WSCDL to activities state MOdel............ccoviiiiiiiieiiieeieece e e esane e 17
6. From WSCDL t0 BPEL.......ooiiiie ettt sttt sttt e s 19
A)HOW 10 ZENETALEecuviieeiiieeiiieeiie ettt ete et e et e e ste e e taeeetaeeesbeeessaeesssseesnsaeessseeesssesensseeensseeans 19
B)GENETation TUIES........eeiuiiiiieiieeie ettt ettt ettt et e e st e e b e e ssaeenbaessaeenbeensaesnsaennneenne 19

2.From BPEL t0 MOAEISooiiiiiiiiiiiie ettt et tae e eta e e ssnaeesnnaeesnsaeessseeennnes 21

7 COMCIUSION. .ttt ettt ettt h et s a e bt et ea e bt eabees e e ebeea b e eatenbeembesate bt enteentenaeenseennens 23
TRE ATCHTVES....eiiiiiieiiie ettt et e ettt e et e e e ta e e s teeesateeessbeeesssaeesseeenssaeanssaeansseesssseessseeensseennns 23

The tools download addresses and bibliography.............ccceevieriiiiiinieeriee e 23

Sate of the art negotiation e-market

Delivers

1. Introduction

In this deliverable we will illustrate the methodology proposed in deliverable 1 by using two
negotiation mechanisms provide by FT. The document is structured as follows:

Section 2 presents in detail the two mechanisms using UML specification.

Section 3 we present a tool called PI4SOA and then in section 4 we describe the single shot
mechanism specification using such PI4SOA (steps and choice explanation).

Section 5 is dedicated to the choreography model generation using LTSA extension.

In section 6 we present a specific feature of PI4SAO tool, The compilation, which is the end
point projection presented and explained in deliverable 1 and then we present a guide tour
through tools that generate model of abstract BPEL. Section 7 is for concluding a archives
details description.

[Version: 1.0 Page 3 of 25

Date |

Sate of the art negotiation e-market Deliver:

2. FT Protocols Specification

FT provided two negotiation protocols that may be used in the Grid4All project. These
protocols are also used to validate our approach. They consist in the “single shot protocol” and
the “iterative protocol”.

The first one was produced conjointly in order to fix terminologies and the second was fully
produced by FT and validated by the LIP6 partner.

The specified protocols are represented using the AUML graphical methodology extending
UML 2.0 sequence diagrams [Bauer05, Cabac03]. In both protocols, the same roles are
involved, that is:

Buyer: sends bids to acquire items

Seller: sends offersto sell items

Auctioneer: receives bids

Initiator: the role that initiates the market, may be abuyer or aseller

Market initiator: creates and configures the market

Market: The market itself, manages bids and offers

SIS Semantic Information Service which isaregistry of markets

Agreement manager: builds contracts between winning seller and buyer

ONOoOO~WDNE

Both protocols are executed following three main steps:
i. Initialisation

ii. Auction

Iii.Matching and agreement

1. Initialisation Step

The initialisation step is the same in both protocols. It consists in the protocol represented in
figure 1. Thisfigure shows that an auction isinitialised by the initiator role. To do so, the latter
contacts the market initiator by sending the information related to the market configuration.
This information includes the “ stop-registration” and the “stop-bidding” timeouts values, the
market channel, etc.

If the received parameters include errors, the market initiator can throw an exception
(represented by the option rectanglein figure 1).

The market initiator then creates the market role and sends the market parametersto it. Finally,
the market initiator advertises the market to the SIS.

2. Discover and auction step

Participating in an auction implies for buyers and sellers to look for a market that fits to their needs, ex.
a market where an item a buyer is interested in is sold. To this aim, each participant sends a request to
the SIS, represented by the message “search for market” in figure 2 and figure 3.

If the required market does not exist, the participant initialises and configures an new market following
the initialisation protocol (see figure 1). Otherwise, the SIS sends the market's configuration
parameters (channel, timeouts, etc).

[Version: 1.0 | Page 4 of 25 Date |

Sate of the art negotiation e-market

Delivers

Once the market parameters values at hand, participants have to register by sending a message to the
market. Theregistration isvalid if it has been done before a* stop-registration” time.

An auctioneer is then in charge of receiving buyers bids and sellers offers. Received bids are valid
only if they succeed the buyers' registration. Moreover, bids have to precede the “ stop-bidding” time.

According to the single shot and the iterative protocols, this step is described as follows.
A) Single Shot

In the single shot protocol, the seller which seeks to sell a good, sends its offer to the market. Thisis
represented by the arrow “send offer” in figure 2.

Buyers which would like to acquire this good, send bids to the market. This is represented by the
“submit bid” messagein figure 2.

In the single shot protocoal, buyers can send bids only once.

B) Iterative

In the iterative protocol, sellers and buyers seek to find a market respectively to sell and buy multiple
items, i.e. more than one type of good, such that one unit of each item is proposed. The items offered
by sellers aswell as their quantity do not evolve during the course of the auction.

In this protocol, buyers can send bundle bids on the objects traded at the auction. Thisis represented by
the loop rectangle in figures 3. Moreover, bids may be withdrawn. This is represented by the option
rectangle.

Bids are accepted if they are submitted before the “stop-bidding” timeout. This is represented as a
condition in the loop rectangle in figure 3.

The auction iterates until an acceptable match is found, or untime a timeout stops the market.

3. Matching and Agreement Step

At the end of an auction, that is when the “bidding” timeout is over, the auctioneer matches the
received bids with the seller’s offer. This is represented by the auctioneer internal action “Matching
between the offer and the bids’ in figure 2 and figure 3.

If the matching fails (in figure 2 and figure 3, see the upper path in the last aternative rectangle), the
auctioneer informs the seller and the buyers.

Otherwise (see the lower path), the auctioneer notifies the winning buyer and price to both the seller
and the buyers.

Then, the auctioneer creates the agreement manager role which is in charge of building contracts
between winning buyers and sellers. The agreement procedure is represented by a continuation in
figure 2 and figure 3.

[Version: 1.0 Page 5 of 25

Date I

Sate of the art negotiation e-market Deliver:

sd Initialisation Protuml)

i- Initiator mi: Marketlnitiator sigSIS

init market

option I

exceplion

channel Passing Ci

create role m:Market

e

T
I
I
info market Ci I

Y
ra

|
1
advertize market

send bid channel ref

|
|
|
f
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

e

_x____________________\.c_____ | W

Figure 1: Initialisation Protocol

[Version: 1.0 Page 6 of 25 Date |

Sate of the art negotiation e-market Deliver:
sd Single Shot Protocol)
b:Buyer s:Seller sis:SIS . Auctionneer mMarket
| T | ; |
I I search for market I 1 I
|
| A ! |
I search for market | : |
|] - | I
| | 7 | |
T f f
at g | | | l
[markeat u+found] I I 1 I
| no such market | I :
L o such market I : I
X 1 |
I I oreats rols i Initiator] I
l ! '. ' | I
| ref l] initialisation Protocol | i : :
I P Lo L — : |
[market for.md Cmi | send market ref | | |
e I
I send market ref | : |
[+ | |
I | i]
i i i register ! :
I
| | | I
I I I register H i
| | |)
i | I send offer H I
| | |
: : submit bid i
| | : A Matching between the
| | | : offer and the bids
| | |
1
at_] : L I notify loser I
[matching nEt successiul] ! notify loser :
L5 T t
| | [!
_____ r--——FF """ "4--—---—-—-"-"-"—"——————7
[matching sbcoessful] I | notify winner 1
I I~ 1 1
| I oty winner I create role
r I I I am:Agreement Manager
| | | x T
| | [!
C »] AGREEMENT)
[I I |
| | | I
| | | X
| | | x
X X X !
Figure 2: Single Shot Protocol
[Version: 1.0 Page 7 of 25 Date |

Sate of the art negotiation e-market Deliver:
sd Iterative Protocol)
b:Buyer =:5eller a5 SIS & Auctionneer mMarket
| | |r i |
| | search for market | : :
I Ly
| | | I |
| search for market | I I
I + = I |
1 I L I I
alt | | | I |
| | I |
[market unfound] | | | |
: I nosuch market | : :
| no such market | | |
= T] I |
[I create role i Inifiartor ! !
| I } I |
| | | ; I |
[ref | Initialisation Protoco | | |
I [[' ! [
—————————————————————————————————— | |
[market fapind Crm] :_ send market ref T I |
I |
! sand market ref | | |
	I		
	I		
		registar	
f } 4 =			
I		regisler 1	
[: : ! e			
I	I I		
I I I			
		send offier	
t	I t =		
T ! I			
]			
loop T I I :			
It< WM"J] : submit il:uld			
L 1 o			
		I	
I L			
.		I	
option I withdraw I			
1	1 o		
I		I	
		:	
		I Matching between the	
I I I I offer and the bids			
at /}1l 3 L notify loser			
[matching n!:}'l successful) ! natify losar :			
		I	
————— o o o e e] et e]			
[matching slccessful]		notify winner I	
1			
:	r\ motify wllgner I		
f I T 1 creale role			
		f—————> amAgreement Manager	
		X :	
		!	
(P AGREEMENT)			
		!	
T T T			
		*	
X X X '			
Figure 3: Iterative Protocol			
Version: 1.0 Page § of 25 Date [

Sate of the art negotiation e-market Deliver:

3. The PI4SOA tool

The Pidsoa is W3C open source tool that offers a graphical editor to design WSCDL [1]
specification i.e. a peer to peer web service composition. It is now at its forth release 1.6.3 and
it works as an eclipse plug-in (there is no standalone tool).

The tool presents a set of features, we will point out in the following two features that deal
directly with the project aims. Nevertheless a short description of the main features will be
exposed.

WSCDL design feature: the tool offers the possibility to design a WSCDL service (a peer to
peer collaboration between). The design steps flow the presentation of the WSCDL in
deliverable 1.

The figure 4 presents a screenshot of the eclipse PI4SOA perspective. It is composed mainly
by four windows:

the project navigator widows, the choreography widows, the properties window and the output
console window. The choreography window is composed by three tabs roles relationships,
Base Types and Choreography Flow.

Defining a choreography can be done by three steps:

Stepl1 : defining the roles and relationships

The first step of defining a choreography is to define or to identify the different roles. The
roles as explained in deliverable 1 correspond to a behaviour of one or more partners
represented by participant. A role may be defined by a set of independent behaviours
represented in PI4SOA tools by behaviour. In this step we also define the relationships
between roles. The relationships are oriented. A relationship between a role A and a role B

means that A will interact with B and the target of the interaction (the services provider) will
be B.

Step2 : defining data, channel and participant types (base type)

In this step we define the different types that will be needed within the choreography. The
types correspond (as defined in deliverable 1) by data types and channel types (and what
needed for channel i.e. locator and token locator). PI4SOA supports the importation of XML
schemas that represent the types that will be used by the choreography information (e.g.
important the XMLschema data types for XML primitive types). In this step the channel is
defined and also affected to roles. Channel that can support other channel transfers must
reference the transported channel type. Tokens are also defined (they are typed data) and
affected to channels. The roles are then used to define participant types. Participant represents
possible physical partners or organisations that will compose the choreography (in our case it
can be used to identify the actors agent of the e-market)

Step 3 defining the collaboration protocol:

At this stage we define the flow of interaction between behaviours of roles. This collaboration
protocol is defined by (i) a set of variables (information types, channel types, tokens, etc.) that
composes the states of the whole choreography (ii) a set of choreography elements. One of the
choreography must be declared as the main one and can be composed by other choreographies.
(ii1) one or more exceptions, finalize blocks both choreographies and blocks are defined by a
set of activities. A choreography is defined by a flow of structured (sequence, while, choice
and workunit) interactions. Interaction is between two behaviours of two roles. Interaction are
allowed only between two related roles (related by a declared relationship). The interactions
concern an operation (in the sense of WSCDL definition) and is composed by one or two
exchanges. An exchange is an oriented message (sent and/or received). The exchange within
an interaction depends on the operation model (request-response, request, response) which is

[Version: 1.0 | Page9 of 25 | Date |

Sate of the art negotiation e-market Deliver:

directed by the exchange model fixed by the used channel to make the interaction.

& Choreography - Examples/EmptyChoreography.cdm - Eclipse SDK
File Edt Wiew Navigate Search Froject Run Window Help

mild Q- # B G- B o 5 | choreography

= e

U= Navigator (3 & 25 T T O emptychoreography.cdm 51 =08
a4 1= Examples Ty seect
4 & sompls Roles and relationships graphical
& primer L= Types * Roles and relationships grapnical
- scenarios % Role constructors
B = Behaviar
=
&, Relstionship
object properties
[l properties 22 0% outine| | | 2 ¥ =0
Property Valus oles and Relationships tab
4 Info
derived false
editable trie hase types
last modified 1 décembre 2007 15:20003
lnked false choreography flow
Incation CHP4SOALedipselwarksparslExa. .
name Emply:Choreography, cdm
th E; les{EmplyCh .ol
ot ’22’?';';;’ Tyt epy o8 Fu and Relatmnshlps]lase wpaslthmeug.apw Fluwsl
[21 Problems 52 * =0
3 errors, 4 warnings, Oinfos
Description Resi =
4 B Errors (3 items) [~
@ Value For attributs Mame' must he specified Emp
A walia frr attribibe 'Tarnat ! rusck ha cnarifiad Frm T
4 I

Examples/EmptyChoreography.cdm

e enitrartt pour ...

I1EF 1521

Figure 4: The PI4SOA eclipse plug-in perspective

In the flowing we describe the single shot mechanism by illustrating the different steps.
The single shot specification using WSCDL.

[Version: 1.0 Page 10 of 25 Date |

Sate of the art negotiation e-market Deliver:

4. Single Shot specication using PI4SOA tool

1. Roles and relationships:

With the single shot we identify four roles :

e The initiator (Initiator R") is the market instance creator. It can be a seller, a buyer or
a third party. Its role is defined by only one behaviour initiating market an then be
contacted by the market to finalize the negotiation when a winner is defined.

e The Market (Market R) is a partner who offers an auctioneering service. Each
instance of this role corresponds to a market instance. It is contacted by the initiator to
initiate an instance and then contacted by bidders for trading. It is defined by one
behaviour that can be summarized by four steps (they will be largely commented when
we describe the flow) : instantiation, registration, biding and then concluding by
informing the bider and the initiator of the negotiation issues.

e The bider (Bider R): the bider role can be either a seller or a buyer. In the
mechanism, the type of market selling or market does not have any importance on the
mechanism behaviour. That is why we aggregate buyer and seller in bider. The bider
has only one behaviour that can be summarized in two steps: finding a market instance
in the SIS and then bidding in that market.

e The SIS (SIS_R) : the SIS role plays the role of intermediate between bidders and
markets instances. It is composed by two behaviours: the SIS Reg B and the
SIS Get B. Why we need two behaviours for the SIS? There is two main reasons to
define a role with more than one behaviour: First because it corresponds to two
completely independent applications offered by the role that we call local
independence (i.e. for the role it can offer two independent services) consulting market
do not depends operationally on market registration. The first condition is necessary to
split the role in two behaviours within a choreography but not sufficient. In addition to
the local independency we need to proof that there is no other behaviour of an other
role that needs to interact with the two behaviours within the same choreography. In
the case of the SIS, the registration service and the discover service do not share any
related behaviours ; The registration is for the market while the discover is for the
bider. That is why we separate these two aspects of the SIS in two behaviours.

Roles behaviours are represented in the figure 5 screenshots of the PI4SOA tools.

1

The name of the role in the single shot WSCDL proposed specification
[Version: 1.0 Page 11 of 25 Date |

Sate of the art negotiation e-market Deliver:

 FEER

£ Market_E

% [®

=% Initistor_B

4 =&
4 [particpant B>

= 515 Reg B
=% 515 _Get B
== Bider_E

Figure 5: Roles, behaviours and relationships that compose the single shot

2. Defining the base types :

The base types deals with all types needed for the choreography. The tool separates them in
classes. Here we emphasizes three classes of types:

A)Information types

They are application types that correspond to exchanged messages and local state types. Types
can be defined by reference to an XML schema that can be imported within the name space
element. In the case of the single shot, we have identified the set of types. Those types are
essentially for message exchange types like BidType which corresponds to the bid message
type. Message types use only reference to primitive XML types. This restriction is due to a
bug in the tool that do not support correctly XML schema importation (warnings are
generated). See in the archives the html description of the protocol for a complete presentation
of the information types

B)Participant types

Participant types allow to define a set of participant types by grouping roles. Participant types
can be used when defining the choreography to declare more that one instance of a set of
grouped roles (i.e. participant). Normally a participant type refers to a possible organization
that participate in the choreography realization.

C)Channel types and locators

The last part of the base type is the channel type definition. In this part we define the needed
channel types for the choreography. While interaction happens always between two roles and
on a given channel with a choreography it must belong to a specific behaviour. Each channel
type makes a reference to a token. So before defining channel type one must define the set of
tokens. Tokens make reference to a declared information types. To identify a specific part of
the information type that will correspond to the token we declare a token locator for each
token (using an Xpath expression). Once Channels types are declared we can specify the

[Version: 1.0 | Page 12 of 25 |

Date I

Sate of the art negotiation e-market Deliver:

passing channel. A channel that can be used to transport data of an other channel must make
reference to the transported channel type within its definition. The figure 6 illustrates the point
using the market channel: the market defines a channel that will be used by the Bider to
contact him. The bider may send it and contact channel to be informed of the negotiation
result. The figure shows how the B2ZM market channel is declared as channel that can support
transfer of BiderC data .

| properties 55 . 5= outline 5 B R
Property Value

Action Reguest_respond i [. G DEl Types
Eehawior Market B
Diescripkion chanrel of market for bider F AZSIS
Tarme Bz
Reference Token id_M .
Role Type Market_R

Usage Diskinct v Eider end contact
— |

B properties & ™ 5% qutline T:s) =0

Property oM
Ackion
il bl |
Channgl BiderC v
Description Bider end contact o i MbidC
hew faise] Tl

| b Tokens
B id_auc
S id Init
S jd_mM
S jd_mMI
wTh jd_SIS

Figure 6: Channel types declaration and passing channel dependency

3. Defining the choreography Flow:

Once the choreography structure (roles-relationships) and needed types are defined we can
define the global protocol that defines the different roles interaction (in our case the Single
Shot protocol).

The choreography flow is the specification of all allowed interactions (see figure 8) between
the different behaviours. We must point out that the choreography flow do not correspond to a
possible scenario of interaction but all the allowed scenarios of interactions. Thus, the
choreography flow is a set of controls structure operators that restrict a set of basic enclosed
interactions. When defining the choreography the designer also define the interface of each
behaviour of each role. The interface is defined (see next when we compile WSCDL to BPEL)
by the offered operation, the interaction interface, the protocol of accepting partner invocation
and consuming partner operations. So we must be careful that by defining the allowed
interactions we are defining the services types.

As claimed in the UML description we can distinguish two separate parts of the whole
interaction: the initialisation and the registration-biding. This separation appears when
defining the whole choreography. It is to the SIS two behaviours ; one for registration and the
other for market discovery. So within the global view of the choreography market registration
and market discovery interleaves (the SIS can hold may market instances). The whole
choreography is an interleaving (parallel composition of the two parts: initialization and
market discoverer and play). The figure 7 shows the root structure of the choreography.

[Version: 1.0 Page 13 of 25 Date |

Sate of the art negotiation e-market Deliver:

11 Grgesho>

=

-
=
: Market Initilizatio v [Market Discover and Play
= I_ Sass
= i
" IMarket Discover and Flaw]
-

[1 <[Snaleshot

Figure 7: the single Shot choreography is composed by two parallel flow
one for initialization and the second for auction

A)The initialisation step

The initialization of market involves the Initiator, the Market and the Registration behaviour
(e.g. the SIS role). Their interaction is linear 'see the figure 9):

Initiator-->Market : (V varCofMlInit [M]) *(marketcreatOP(marketInfo)).
Initiator-->Market : varCofMInit (getMarketOwnerRefOP(InitiatorCannelValue))’.
Market-->SIS Reg: (V varRegSIS [SISRegC]) registerOP(marketInfo).
Market-->SIS Reg: (varRegSIS) (getBibsessionRefOP(varCofMInit)).

hal ol e

First the initiator initiates an interaction with the market so a fresh instance of market service
is generated.

Then the initiator sends its reference (its instance channel to the market instance). The market
instance will contact the SIS Reg (registration behaviour) and then publish the market
information. This interaction creates a new instance of the SIS Reg. That instance will
receives the market instance reference.

2 A--->B : (vs[t]) (opName(arguments)) : means that 4 invokes the operation OpName of the behaviour B and

this using the channel variable value s of type ¢. That invocation creates a new instance of B and that instance
channel is s plus the value of the locators during the exchange.

A--->B: s(OpName(arguments)): means that A invokes the operation OpName using the channel variable s

[Version: 1.0 | Page 14 of 25 Date |

3

Sate of the art negotiation e-market

Delivers

- + [Market Tnitiizatio
= Properkies 22 OE Cuwkline E| X i
Property Yalue
Align False 1'-.- createMarket

—* Inlnstati

< frreateMark

Chanrel Yarishble
Descripkion
Frorn Parkicipant

Marme
Operation
Relationship ’\- inforMarketB:
Tirmeout From Glolsgr- —F Inaetow
Tirmeout To Rgle T _

Tire To Cand %, JfinforMarket

To Parkicipapt // I
k.. ink arketInfo
=% Inkarkst
L«c EinMarkﬂtInf
An Interaction concerns a relationship % [SendEidchan:
—F inGetEid:
) . . *\...{2 EsandBidcha\

An Interaction defines a WSDL operation
I . //J
An Interaction happenon a channel i < Market Tnitiization]
1

Figure 8: the market creation interaction detail

B)The market discover and auction step

This part is initiated by the bider who checks for a market. First he requests the SIS Get
services for a market, two cases are possible: either the market exists and then the
choreography continues or an exception is raised (NotFoundMarketExp) end the
choreography stops here. In case of a possible market, the response of the request is the
market instance reference. When getting the market bid channel reference, the Bider instance
can then interact within the market. While a set of possible bidders can interact within the
same market instance, we can not sequence the registration the biding. That is why we
consider that the registration and the biding can happen in parallel. The side effect of such
design may lead to a bider behaviour that can interleave the biding and the registration. This is
so permissive while we must restrict the bider that the bidder registration must happen before
biding. In order to realise such order constraint we use for each biding session (that concerns a
bider) a sub-thread of the market one. This sub-thread reference (here channels) are generated
by the market instance for each registration. This means that the bider must get the biding
session channel in order to perform it. An other important aspect with this part of the
choreography is time constraints. The registration is possible only when registration date is
reached, the biding is possible only when the beginning if the bidding session date is reached.
And finally the result of the market is only sent when the bidding session is closed. These
time constraints are designed using workunit constructors (see deliverable 1). For the three
cases, registration, biding and result send back, interactions are placed in workunits guarded
by “cdl:hasedeadlinepassed(date). The dates are supposed to be communicated by the
initiator* (the XML data types are in the rachives delivered with this document) when initiating

*This does not appear in our design because of the difficulties we had to import complex types
schemas.

[Version: 1.0 | Page 15 of 25 |

Date I

Sate of the art negotiation e-market

Delivers

a market. They are global variables. workunit are blocked until the respective dates are
reached.
We show in figure 9 an annotation of the single shot choreography Flow..

C) Exception block vs applicative rules

The tool supports also the reaction of the choreography when exceptions are raised. We can
distinguish two kind of exceptions: the first type when the condition of the exception raise is
not global (local to one partner). For example, in the choreography when the bider asks the SIS
for a market and no instance fits its requirement an exception is raised and the associated
exception block is activated (the exception block do nothing but terminate). This provokes the
end of the choreography. The other type of exception is when the condition is globally
observable. For example, when the bider sends a bid value less then the market value. When
condition on observable (or exchanged) data can be expressed, this belongs more to the
choreography rules than exception. This is the reason why the bad bid is handled by a
conditional behaviour rather than by an exception. We will see how this choice will lead to
well-detailed role definition.

[Version: 1.0 Page 16 of 25

Date |

Sate of the art

negotiation e-market

Delivers

‘e

ey barallel
—_

market creation and
regisiration

1 ekl

s

, e

| = Iirstaiedp

\, o]

‘. riekateyOure>

I ik dunenhet

4 ivtetora

‘. it etinfo

I — itet

4 et

\, i)

I =+ nitbdessarFe

\ Gendimete]

© ate Doy il

morket discover
parallel
‘- ez Pt
=+ itz
- utsechirat
4
© [, Parallel
T
quarded registration block
i
"
oot oo fread
" Sb\lib'fb»
L easte>
=gt
=0l
|t
\, iy
I = bisessinRe
i faeve]

2 g Parallel

— —
result notofication guarded

! o block

i Feenc)

et

1 < Hoecuence)

#¢hlfonthead

send bid block
a—

Vb

I —Hiid:
L g

I conditional
7 fatitcley

o)

I = itiane

bl

)

7 padita]

-

_

el

gl odbicg e

|

R Ereﬂd!ssnr\

it

Wi]

Wit hkas]

W el Sl e]
W e Bolyps

W st el g
Wt i

W b ey

W astbssstnlud o Sosinl
W bl izt

Wl T

W Gy,

W et sl

WA B el
Wi o]
Wl 1]

W it

WA el 2

N RS [s15%]

W aesindvde [auonyz)
N st M [W575]

WA g ceeTetye]
WA b [id]

Figure 9: The Single Shot Choreography Flow

| Version: 1.0

Page 17 of 25

Date |

Sate of the art negotiation e-market

Delivers

5. From WSCDL to activities state model

The resulted file produced by the tool is a .cdm file (a specific XML file). Once the design
finished, we can export such file to a set of other languages: UML, HTML description or to
the WSCDL specification.

WS-engineers Is an eclipse plug-in that extends the LTSA (Labelled Transition Systems
Analyser), tools to Web services languages such as WSCDL and BPEL. This plug-in takes as
input a WSCDL specification and transforms it to an equivalent FSP[4] specification (see[5]
for translation details). FSA is a process algebra used as specification language by the tool (see
figure 10 for LTSA-WS-engineers perspective). We note here that such translation ignores
data and time constraints. Only interactions are modelled..

& Choreography - Examples/examples/primer/singleshot.cdl - Eclipse SDK
Fle Edit Mavigate Search Project Run Window Help LTSA myEditor

il Q- | & *a o - [|E choreography
25 Navigator 52 = % ¥ = O] lg singleshot.cdm # singleshot cdl 52 =8
4 12 Examples [] -

4= examples SEEEEETTERETEd i i i iddddi i idiiiddddidiiiiiddddiidiiiiddiiiiiiiiisiivy

4 (= primer /¢ BEGIN CDL Package: SINGLESHOT £
(= Singleshot_wshpel FEEFEEFETFERETEETERTERd R d PR PR d A i b i I FiiFiddd i ifiifiniisi
(= SingleShot_wsdl SINGLESHOTSEQ11CREATEMARKETinstanciatemarketopregquest = [request_instanciatemarketop -> EHD) .
& BuyersellercDL.cdm SINGLESHOTSEQ11CREATEMARKETEXCHSEQ = 3INGLESHOTSEQLICREATEMARKETinstanciatemarketoprequest:ERD.
= mage jpeg SINGLESHOTSEQL1INFORNARKETEYOUNERgetmarketovnerrefrequest = (_ request_getmarketownerref —> EHD) .
‘Ffé singleshot.cdl SINGLESHOTSEQ11INFORMARKETEYOUNE TRgetmarketownerrefrequest;EHD.
4 singleshot.cdm SINGLESHOTSEQ11INMARKETINFOregis " .

[scenarios SINGLESHOTSEQL1INMARKETINFOEXCHS the FSP specificm‘ion of the ‘equest ;END.

El project SINGLESHOTSEQL1SENDEIDCHANELREF: . sessionref -> END).

SINGLESHOTSEQ11SENDEIDCHANELREFE WSCDL File ‘bibsessionrefreguest ;END.

R RN N)

/¢ Sequence cowposition process - SINGLESHOTSEQLL

SEEEEETTERETEd i i i iddddi i idiiiddddidiiiiiddddiidiiiiddiiiiiiiiisiivy

SINGLESHOTSEQLL = 5INGLESHOTSEQL1CRELTENRRKETEXCHSEC ; SINGLESHOTSEQLLINFORMARKETBYOWNEREXCHSED ; 3INGLESHOTSEQL

[it »
WSCDL |FsP Editor

[Problems | 01 LTS output | 5] LTS Draws 23 =08
Hr e X o

-

| Machine
= o W] SINGLESHOT.PARALLEL31 SINGLES. .
EEllnee]lszloutina i] SINGLESHOT PARALLEL31.SINGLES, .

PRYR o s = ||] ||cDLArchitectureModel /
CDLArchitectureModel Th h h I "
o e choreography labelled

oo i

PARALLEL4L fransition system
PARALLELS1
SINGLESHOT

SINGLESHOT_CDLModel

m

__request_petbibssssionrst
a

The different processes " request_gelblosessiontel
composing the Choreography | et sptunle,_ruest gt mepona._requst_posth_ et g basesins o

S P o o o 0 =
SINGLESHOTSEQINMARKETINFOECHSEQ
SINGLESHOTSEQSENDBIDCHANELREFgetbibses __request_posthibst_sespond_registerop
SINGLESHOTSESENDBIDCHANELREFEXCHIES
SINGLESHOTSEQ
SINGLESHOTSEQZSEARCHFORMARKE Taetmark
SINGLESHOTSE2SEARCHFORMARKE Tastmark T T
SINGLESHOTSE2SEARCHFORMARKETENCHSE oot itree et Wi oot v et i oot 24 T

dver varevian e vermant Vidvee vermact Wi
SINGLESHOTSEQSREGISTERregisteroprequest d] »
»

“ i1 » | Draw | Alphabet | Transitions

Figure 10: The LTSA We-engineers tools perspective : from WSCDL to FSP

Using the resulted FSP specification we can use the LTSA tool verification and simulation
functionalities. This tool allows the checking of deadlock freeness and also for the progress
properties. In our case (choreography) deadlock checking is not relevant because deadlock can
not appear in global view specification so by construction the FSA specification also will be
deadlock free. In contrast, the tool offers the possibilities to check LTL[4] formula specified
by the designer this can be used the check applicative properties on the global interaction (for
example be sure that if the registration happens the bider will always receive the result, even it
was eliminated after a bad bid value.). The simulation is an other functionality that can be
useful for a designer not familiar with model checking. The simulation offers a step by step

[Version: 1.0 | Page 18 of 25 |

Date I

Sate of the art

negotiation e-market Deliver:

execution of the choreography interaction. At each step the designer is guided by firing one of
the current possible state interaction. The figure 11 shows the simulator of LTA applied on
the single shot. The trace shows all possible interactions until the biding. The user have then
the choice to simulate a bad bib or a good bid.

% LTS Analyser

Bl + B

| Edit [output | Draw | Mac Editor |

File Edt Check Build Window Help Options

w oo @ & I B |colarchivecturetodel e 44 777

SINGLESHOT.PARALLEL31.5INGLE

ectureiodel

__request_instanciatemarketop
__request_getmarketownerref
~| __request_getmarkets

—respond_getmarkets [[]__request_getmarketownerref \

__request_registerop

[T __request_instanciatemarketop

[7] __request_gethibsessionref
[7] __request_getmarkets
1 respond g
[7] __respond_registerop

[T __request_posthibsessionref
__request_bhidresultop
__request_sendbid

m

» | [[]__request_youroutofgame

_ request_gethibsessionme!

-——
_ request_gethihsessionref

_ recuest_instan recuest getmar]

tarket recuest regist respond e request posthi reuest_gethibsessionze:

_ tequest_posthibse respond _registerop

SN NN -

Fioure 11: The LTSA WS-engineers simulator.

| Version: 1.0

Page 19 of 25

Date |

Sate of the art negotiation e-market Deliver:

6. From WSCDL to BPEL

We pointed out in deliverable 1 the theoretical foundations behind global calculus that leads to
EPP (End Point Projection). The EPP consists in deriving from the global specification (the
choreography) each participant (here the roles) specifications in a sound and complete way
(their composition behaves exactly according to the global one). We have explained also the
importance of such generation for the proposed functional model ; “the participant behaviours
generation allows the market actors to check their conformance to a role”. An other advantage
(also pointed out in deliverable 1) is that the EPP can be used for code generation (or more
precisely a starting point for the implementation). The PI4SAO implements a variant of the
EPP method. It uses WSDL as target language for role specification joined to BPEL (Abstract
BPEL). Other target languages are also prosed like Java for example.

The only drawback of the projection functionalities of PI4SOA is that project the conditional
behaviours on all the involved partner even the condition concerns one role data. Why such
choice?

- First, we must remember that variables are situated which means that they belong to
one or more roles.

- Second, The condition expressions are boolean Xpath expressions (i.e. strings). To
situate a conditional behaviour, the tool must extract (by parsing the expression) the
involved variables.

- Last, when a condition is involving more than one variable and those variables to a
disjoint set of roles, the project leads to a redefinition of local conditions (which is in
the most cases impossible to realize without adding explicit state communication).

Those reasons make a more specific projection of conditional behaviours hard to realize, that
1s why the conditional behaviours is projected on all the roles involved in the condition block.

A) How to generate

To generate participant specification, we must first enable the generation functionalities (right
click on the choreography file --> properties). We can then choose to enable the target
specification and also the version for example for WSDL. We have the choice between version
1 or version 2. We can also specify if the WSDL file will be just the interface or we generate
also the biding details.

B) Generation rules

WSDL generation : PI4SOA allow the generation of the WSDL interface for each role. As
we explained before each role divided in more that one behaviour this mean that we will
generate a WSDL for each behaviour. The WSDL file defines the set of operation (elementary
services offered by the behaviours) this is constructed by analysing the different interaction
within a behaviours as target and then extract the union. Each operation have the same name
as the operation is the WSCDL specification and the message types are extracted from the
enclosed exchange information types. The WSCDL file of all the behaviours are in the
archives associated to this deliverable figure X represent the WSDL File of the SIS registration
service. It offer two operations registerOp for registration and getbidsessionRef that allow the
market to send its channel information.

[Version: 1.0 Page 20 of 25 Date |

Sate of the art negotiation e-market Deliver:

<?xml version="1.0" encoding="UTF-3"7>

< saulns="http://schemas.xmlsoap. org/wsdl/" smlns: soap="http://schemas.xmlsoap. org/wsdl/soap/ " smlns: tns="http://localk
< name="3I5_Rey WSDL™»
< name="registerOp">
< message="xsd: string" name="InMarketInfo"/>
ks >
< name="getBibsessionkef">
< meszage="xsd: string" name="inGetBiddessionRef"/>
ks >
2 >
< name="3I18 Reg BEinding" type="tns:3I3 Reg WADL"=
< style="rpe" transport="http://schemas,xmlsoap, org/soap/http"/>
< name="registerOp">
< soaphction="http://localhost: 8080/ chor/gingledhot/ registeroP "/ =
< >
< encodingdtyle="http://schenas.mlsoap. org/soap/encoding/ " namespace="http://localhost: 8080/ chor/ Single
< >
ks >
< name="getBibsessionkef">
< soaphction="http://localhost: 8080/ chor/dingleshot/getBibsessionket"/>
< =
< encodingdtyle="http://schenas.mlsoap. org/soap/encoding/ " namespace="http://localhost: 8080/ chor/ Single
< >
< =
< ®
£ name="3I3_Reg WIDLIesrvice">
< binding="tns: 3If Rey BBinding" name="§I% Reg WSDLEort">
< location="pi4soa: User defined definitions"/»
< =
2 >
< >

Fioure 12: The oenerated WSDI. file of SIS recistration hehaviours

The BPEL generation: the BPEL generation is more complicated than the WSDL one. The
BPEL normally will correspond to the local collaboration of a given behaviours. The
generation of BPEL for a given behaviour can be summarized in three steps :

partner declaration: partner of a behaviours here are all the choreography behaviours wich are
related with an outgoing relationship of the considered one. In other words the are all the
behaviours that provides operation to the behaviours.

e Projection of interactions: in this step we consider all the interactions that the
behaviours participate either as consumer or provider. The local projection of an
interaction depends of the role played by the behaviours, consumer or a provider. In
first case the interaction is represented locally by an invoke activities and the second
case the interaction is represented by a receive is the request exchange element appear
and reply if the response exchange appear in the interaction.

e Projection of the control flow: The control flow on the previous transformation
(interaction to invokes or receive/reply) is derived by project the chronography control
flow on only the behaviours concerned interaction. Then a translation of choreography
specific constructor to BPEL one that perseve the same operational semantiqc (the
constraint order). For example the workunit is transformed to a scope’ : A workunit
uses the hasdedlinepassed() condition is transformed to a scope with a BPEL wait
activity as the first one and then the behaviours of the workunit block. On the other
hand if the condition is hasdurationpassed() the scope is defined with a time-out
(using the argument as duration) and the workunit behaviour block will be the time-
out behaviour.

The figure X represents the BPEL file(for in xml tree format for clarity) of the bider BPEL.
we point out here the exception behaviours when a market was'nt found. The rest of different
FPEL file of the different behaviours are in the archives.

> This is a critical choice and cause a lot of bugs

[Version: 1.0 Page21 of 25 Date |

Sate of the art

negotiation e-market

Deliver:

B P

sultHandlers

the exception block

%m'ﬂ invoke
"= 1oy

T E i
- @ name

wiating for registration date

" for

a-

4" sequence

; 'ﬂ invoke

: - @ inputVarisble
% operation

- @ outputVarishle

- @ partnerLink

H - @ portType

a M receive

- @ operation

- @ partnerLink

- @ portType
@ variable

" wait

B oy

a " sequence

a-®% tlow

;ml: wait
[o natne
h 'ﬂ until
)-'ﬁ sequence

wait until end of
biding session to
receives the result

-8 receive

@ operation

% partnerLink
‘@ portType
4" zequence

@n'ﬂ invoke

tns: Badbidproposition

GuardedRegistrationThread
org.apache.xpath.axes.ChildTestIteratorf1£528de

FingleShot warlictC
registerdp
SingleShot_wvarCurrent¥Val
marketWsDL
tns:imarketWSDL

postEib3essionkRef
Bider_ WSDL
tns:Bider W3DL
Finglefhot_warbidCh

fireBidsession
org.apache.xpath. axes.ChildTestIteratorfeSdas?

NotificationThread
org.apache.xpath.axes.ChildTestIteratorf1975ckh?

hidResultOp
Eider WSDL
tns:Bider WSDL

m Tree f Grid)\Schemal

Figure 13: the XML structure of the Bider BPEL behaviour

| Version: 1.0

Page 22 of 25

Date |

Sate of the art negotiation e-market

Delivers

2. From BPEL to models

Many works aims to give a formal model to BPEL and that for different reasons the first one
is that XML format is very fastidious to use we need a intermediary light model to specify the
service behaviour before implementing it; The other reason is to check properties of the BPEL
services so we need to transform it to model checkable format (For a more detailed description
of related work on transforming BPEL see the project proposition). The most existent tools
model only behavioural aspect of BPEL using petri-nets, state charts or automata etc. Part of
them support time constraint. In this class of tools the data are totally ignored, in the next
deliverable when we address compatibility we will sketch the needed feature to compare
actors behaviour to abstract roles. the LTSA plug-in WS-engineer presented also support
translation of BPEL process to FSP specification then similar functionalities can be done
(verification and simulation). In addition we consider here a second tool (a prototype called
WSMOD [3]) provided by IBISC partner that transform abstract BPEL to timed automata this
tools is working on Abstract BPEL (no data and no conditions) is now being adapted to
support additional BPEL feature to fit to PI4SOA generation format. for example the wait is
generated by using BPEL 2.0 format while our tool work on BPEL 1.1 . The figure 14
presented the the transition system associated to the bider role.

[Version: 1.0 Page 23 of 25

Date |

Delivers

negotiation e-market

Sate of the art

sl bl puodea

e e | R e P B et e v e R e R e

sl bl poodsa Gar st sy b endi ol o G gl psseen s prodsa

ey

o

it e~

ey s

s

Qo bt

b

Figure 14: The labelled transition system of the Bider behaviour

Date |

Page 24 of 25

| Version: 1.0

Sate of the art negotiation e-market

Delivers

7. Conclusion

In this deliverable we illustrated our methods (presented in deliverable 1) by using the Single
shot protocol. We also presented a set of tools to design negation mechanism a choreography
of Web services, PI4SOA the tools is an open source and offer additional functionalities like
roles BPEL specification generation. We presents also an other plug-in that called LTSA WS-
engineers that transform a WSCDL specification and BPEL specification to a process algebra
called FSP. The transformation concerns only communication action, both time and data are
ignored. We are extending a tool provided by out IBISC partner to support time and data
oriented model. conditional

The archives

This deliverable is send with an archive that contain the following document:

e singleshot.cmd : is the PI4SOA specification of the single shot protocol
iterative.cmd : is the PI4SOA specification of the iterative protocol
singleshot.cdl : is the WSCDL specification of the single shot
iterative.cdl : is the WSCDL specification of the interactive
singleshot wsdl : directory contains the WSDL files generated for the single shot
singleshot _wsbpel : directory contains the BPEL files generated for the single shot
iterative_wsdl : directory contains the WSDL files generated for the iterative
iterative_wsbpel : directory contains the BPEL files generated for the iterative
singleshot.html : is HTML description of the specification
iterative.html : is HTML description of the specification
singleshot.xmi : correspond to an UML export of single shot specification
iterative.xmi : correspond to an UML export of iterative specification

The tools download addresses and bibliography

[1] PI4SOA : the tool can be download here http://pi4soa.sourceforge.net/ with the eclipse
33X

[2] LTSA WS-engineers : is a plug-in developed by the imperial college of London. Its open
source and can be downloaded here http://www.doc.ic.ac.uk/Itsa/eclipse/wsengineer/

[3] WSMod is works with the BPEL 1.0 is an ibisc provided tool and can be downloaded here
www.ibisc.fr/~melliti

[4] Peter Michael Sewell PHD thesis “The Algebra Of Finite Ftate Processes” October 1995.

[S] Howard Foster, Sebastian Uchitel, Jeff Magee and Jeff Kramer “ Model-Based Analysis
of Obligations in Web Service Choreography > IAICT-ICIW 2006 page 149.

[Version: 1.0 Page25 of 25

Date I

http://pi4soa.sourceforge.net/
http://www.ibisc.fr/~melliti
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/

	1.Introduction
	2.FT Protocols Specification
	3.The PI4SOA tool
	4.Single Shot specication using PI4SOA tool
	5.From WSCDL to activities state model
	6.From WSCDL to BPEL
	7.Conclusion

