
Deliverable 2:
Tools for negotiation mechanism specification and

validation : Application on the Single Shot

Abstract.
The deliverable 2 concerns the Task 1.2. We illustrate the deliverable 1 methodology on two
negotiation protocols. We also present different tools to design mechanisms and generate roles abstract
behaviours. We end this deliverable by the first steps toward the tasks 2 and 3 which model generation.

Deliverable Id.: 1.0
Date : 7/12/2007
Classification: Public/Private
Originating Partner :
Author(s) : LIP 6 + IBISC
Relevant Work package : WP 1…
Relevant Task : Task1.1…
Release Status : Draft V0…
Project Co-ordinator: Lip6
Partners: IBISC

Table of Contents
1. Introduction..3
2. FT Protocols Specification...4

1.Initialisation Step..4
2.Discover and auction step.. 4

A)Single Shot...5
B)Iterative.. 5

3.Matching and Agreement Step...5
3. The PI4SOA tool..9
4. Single Shot specication using PI4SOA tool...11

1.Roles and relationships:... 11
2.Defining the base types :.. 12

A)Information types ..12
B)Participant types...12
C)Channel types and locators.. 12

3.Defining the choreography Flow:.. 13
A)The initialisation step...14
B)The market discover and auction step..15
C) Exception block vs applicative rules.. 16

5. From WSCDL to activities state model... 17
6. From WSCDL to BPEL... 19

A)How to generate ..19
B)Generation rules...19

2.From BPEL to models ...21
7. Conclusion... 23

The archives... 23
The tools download addresses and bibliography...23

Sate of the art negotiation e-market Deliverable

1. Introduction

In this deliverable we will illustrate the methodology proposed in deliverable 1 by using two
negotiation mechanisms provide by FT. The document is structured as follows:

Section 2 presents in detail the two mechanisms using UML specification.

Section 3 we present a tool called PI4SOA and then in section 4 we describe the single shot
mechanism specification using such PI4SOA (steps and choice explanation).

Section 5 is dedicated to the choreography model generation using LTSA extension.

In section 6 we present a specific feature of PI4SAO tool, The compilation, which is the end
point projection presented and explained in deliverable 1 and then we present a guide tour
through tools that generate model of abstract BPEL. Section 7 is for concluding a archives
details description.

Version: 1.0 Page 3 of 25 Date Here

Sate of the art negotiation e-market Deliverable

2. FT Protocols Specification

FT provided two negotiation protocols that may be used in the Grid4All project. These
protocols are also used to validate our approach. They consist in the “single shot protocol” and
the “iterative protocol”.

The first one was produced conjointly in order to fix terminologies and the second was fully
produced by FT and validated by the LIP6 partner.

The specified protocols are represented using the AUML graphical methodology extending
UML 2.0 sequence diagrams [Bauer05, Cabac03]. In both protocols, the same roles are
involved, that is:

1. Buyer: sends bids to acquire items
2. Seller: sends offers to sell items
3. Auctioneer: receives bids
4. Initiator: the role that initiates the market, may be a buyer or a seller
5. Market initiator: creates and configures the market
6. Market: The market itself, manages bids and offers
7. SIS: Semantic Information Service which is a registry of markets
8. Agreement manager: builds contracts between winning seller and buyer

Both protocols are executed following three main steps:
i. Initialisation
ii. Auction
iii.Matching and agreement

1. Initialisation Step
The initialisation step is the same in both protocols. It consists in the protocol represented in
figure 1. This figure shows that an auction is initialised by the initiator role. To do so, the latter
contacts the market initiator by sending the information related to the market configuration.
This information includes the “stop-registration” and the “stop-bidding” timeouts values, the
market channel, etc.

If the received parameters include errors, the market initiator can throw an exception
(represented by the option rectangle in figure 1).

The market initiator then creates the market role and sends the market parameters to it. Finally,
the market initiator advertises the market to the SIS.

2. Discover and auction step

Participating in an auction implies for buyers and sellers to look for a market that fits to their needs, ex.
a market where an item a buyer is interested in is sold. To this aim, each participant sends a request to
the SIS, represented by the message “search for market” in figure 2 and figure 3.

If the required market does not exist, the participant initialises and configures an new market following
the initialisation protocol (see figure 1). Otherwise, the SIS sends the market’s configuration
parameters (channel, timeouts, etc).

Version: 1.0 Page 4 of 25 Date Here

Sate of the art negotiation e-market Deliverable

Once the market parameters values at hand, participants have to register by sending a message to the
market. The registration is valid if it has been done before a “stop-registration” time.

An auctioneer is then in charge of receiving buyers’ bids and sellers’ offers. Received bids are valid
only if they succeed the buyers’ registration. Moreover, bids have to precede the “stop-bidding” time.

According to the single shot and the iterative protocols, this step is described as follows.

A) Single Shot

In the single shot protocol, the seller which seeks to sell a good, sends its offer to the market. This is
represented by the arrow “send offer” in figure 2.

Buyers which would like to acquire this good, send bids to the market. This is represented by the
“submit bid” message in figure 2.

In the single shot protocol, buyers can send bids only once.

B) Iterative
In the iterative protocol, sellers and buyers seek to find a market respectively to sell and buy multiple
items, i.e. more than one type of good, such that one unit of each item is proposed. The items offered
by sellers as well as their quantity do not evolve during the course of the auction.

In this protocol, buyers can send bundle bids on the objects traded at the auction. This is represented by
the loop rectangle in figures 3. Moreover, bids may be withdrawn. This is represented by the option
rectangle.

Bids are accepted if they are submitted before the “stop-bidding” timeout. This is represented as a
condition in the loop rectangle in figure 3.

The auction iterates until an acceptable match is found, or untime a timeout stops the market.

3. Matching and Agreement Step
At the end of an auction, that is when the “bidding” timeout is over, the auctioneer matches the
received bids with the seller’s offer. This is represented by the auctioneer internal action “Matching
between the offer and the bids” in figure 2 and figure 3.

If the matching fails (in figure 2 and figure 3, see the upper path in the last alternative rectangle), the
auctioneer informs the seller and the buyers.

Otherwise (see the lower path), the auctioneer notifies the winning buyer and price to both the seller
and the buyers.

Then, the auctioneer creates the agreement manager role which is in charge of building contracts
between winning buyers and sellers. The agreement procedure is represented by a continuation in
figure 2 and figure 3.

Version: 1.0 Page 5 of 25 Date Here

Sate of the art negotiation e-market Deliverable

Figure 1: Initialisation Protocol

Version: 1.0 Page 6 of 25 Date Here

Sate of the art negotiation e-market Deliverable

Figure 2: Single Shot Protocol

Version: 1.0 Page 7 of 25 Date Here

Sate of the art negotiation e-market Deliverable

Figure 3: Iterative Protocol

Version: 1.0 Page 8 of 25 Date Here

Sate of the art negotiation e-market Deliverable

3. The PI4SOA tool

The Pi4soa is W3C open source tool that offers a graphical editor to design WSCDL [1]
specification i.e. a peer to peer web service composition. It is now at its forth release 1.6.3 and
it works as an eclipse plug-in (there is no standalone tool).
The tool presents a set of features, we will point out in the following two features that deal
directly with the project aims. Nevertheless a short description of the main features will be
exposed.

WSCDL design feature: the tool offers the possibility to design a WSCDL service (a peer to
peer collaboration between). The design steps flow the presentation of the WSCDL in
deliverable 1.
The figure 4 presents a screenshot of the eclipse PI4SOA perspective. It is composed mainly
by four windows:
the project navigator widows, the choreography widows, the properties window and the output
console window. The choreography window is composed by three tabs roles relationships,
Base Types and Choreography Flow.
Defining a choreography can be done by three steps:
Step1 : defining the roles and relationships
The first step of defining a choreography is to define or to identify the different roles. The
roles as explained in deliverable 1 correspond to a behaviour of one or more partners
represented by participant. A role may be defined by a set of independent behaviours
represented in PI4SOA tools by behaviour. In this step we also define the relationships
between roles. The relationships are oriented. A relationship between a role A and a role B
means that A will interact with B and the target of the interaction (the services provider) will
be B.
Step2 : defining data, channel and participant types (base type)
In this step we define the different types that will be needed within the choreography. The
types correspond (as defined in deliverable 1) by data types and channel types (and what
needed for channel i.e. locator and token locator). PI4SOA supports the importation of XML
schemas that represent the types that will be used by the choreography information (e.g.
important the XMLschema data types for XML primitive types). In this step the channel is
defined and also affected to roles. Channel that can support other channel transfers must
reference the transported channel type. Tokens are also defined (they are typed data) and
affected to channels. The roles are then used to define participant types. Participant represents
possible physical partners or organisations that will compose the choreography (in our case it
can be used to identify the actors agent of the e-market)
Step 3 defining the collaboration protocol:
At this stage we define the flow of interaction between behaviours of roles. This collaboration
protocol is defined by (i) a set of variables (information types, channel types, tokens, etc.) that
composes the states of the whole choreography (ii) a set of choreography elements. One of the
choreography must be declared as the main one and can be composed by other choreographies.
(iii) one or more exceptions, finalize blocks both choreographies and blocks are defined by a
set of activities. A choreography is defined by a flow of structured (sequence, while, choice
and workunit) interactions. Interaction is between two behaviours of two roles. Interaction are
allowed only between two related roles (related by a declared relationship). The interactions
concern an operation (in the sense of WSCDL definition) and is composed by one or two
exchanges. An exchange is an oriented message (sent and/or received). The exchange within
an interaction depends on the operation model (request-response, request, response) which is

Version: 1.0 Page 9 of 25 Date Here

Sate of the art negotiation e-market Deliverable

directed by the exchange model fixed by the used channel to make the interaction.

In the flowing we describe the single shot mechanism by illustrating the different steps.
The single shot specification using WSCDL.

Version: 1.0 Page 10 of 25 Date Here

Figure 4: The PI4SOA eclipse plug-in perspective

Sate of the art negotiation e-market Deliverable

4. Single Shot specication using PI4SOA tool

1. Roles and relationships:
With the single shot we identify four roles :

 The initiator (Initiator_R1) is the market instance creator. It can be a seller, a buyer or
a third party. Its role is defined by only one behaviour initiating market an then be
contacted by the market to finalize the negotiation when a winner is defined.

 The Market (Market_R) is a partner who offers an auctioneering service. Each
instance of this role corresponds to a market instance. It is contacted by the initiator to
initiate an instance and then contacted by bidders for trading. It is defined by one
behaviour that can be summarized by four steps (they will be largely commented when
we describe the flow) : instantiation, registration, biding and then concluding by
informing the bider and the initiator of the negotiation issues.

 The bider (Bider_R): the bider role can be either a seller or a buyer. In the
mechanism, the type of market selling or market does not have any importance on the
mechanism behaviour. That is why we aggregate buyer and seller in bider. The bider
has only one behaviour that can be summarized in two steps: finding a market instance
in the SIS and then bidding in that market.

 The SIS (SIS_R) : the SIS role plays the role of intermediate between bidders and
markets instances. It is composed by two behaviours: the SIS_Reg_B and the
SIS_Get_B. Why we need two behaviours for the SIS? There is two main reasons to
define a role with more than one behaviour: First because it corresponds to two
completely independent applications offered by the role that we call local
independence (i.e. for the role it can offer two independent services) consulting market
do not depends operationally on market registration. The first condition is necessary to
split the role in two behaviours within a choreography but not sufficient. In addition to
the local independency we need to proof that there is no other behaviour of an other
role that needs to interact with the two behaviours within the same choreography. In
the case of the SIS, the registration service and the discover service do not share any
related behaviours ; The registration is for the market while the discover is for the
bider. That is why we separate these two aspects of the SIS in two behaviours.

Roles behaviours are represented in the figure 5 screenshots of the PI4SOA tools.

1 The name of the role in the single shot WSCDL proposed specification
Version: 1.0 Page 11 of 25 Date Here

Sate of the art negotiation e-market Deliverable

2. Defining the base types :
The base types deals with all types needed for the choreography. The tool separates them in
classes. Here we emphasizes three classes of types:

A)Information types
They are application types that correspond to exchanged messages and local state types. Types
can be defined by reference to an XML schema that can be imported within the name space
element. In the case of the single shot, we have identified the set of types. Those types are
essentially for message exchange types like BidType which corresponds to the bid message
type. Message types use only reference to primitive XML types. This restriction is due to a
bug in the tool that do not support correctly XML schema importation (warnings are
generated). See in the archives the html description of the protocol for a complete presentation
of the information types

B)Participant types
Participant types allow to define a set of participant types by grouping roles. Participant types
can be used when defining the choreography to declare more that one instance of a set of
grouped roles (i.e. participant). Normally a participant type refers to a possible organization
that participate in the choreography realization.

C)Channel types and locators
The last part of the base type is the channel type definition. In this part we define the needed
channel types for the choreography. While interaction happens always between two roles and
on a given channel with a choreography it must belong to a specific behaviour. Each channel
type makes a reference to a token. So before defining channel type one must define the set of
tokens. Tokens make reference to a declared information types. To identify a specific part of
the information type that will correspond to the token we declare a token locator for each
token (using an Xpath expression). Once Channels types are declared we can specify the

Version: 1.0 Page 12 of 25 Date Here

Figure 5: Roles, behaviours and relationships that compose the single shot

Sate of the art negotiation e-market Deliverable

passing channel. A channel that can be used to transport data of an other channel must make
reference to the transported channel type within its definition. The figure 6 illustrates the point
using the market channel: the market defines a channel that will be used by the Bider to
contact him. The bider may send it and contact channel to be informed of the negotiation
result. The figure shows how the B2M market channel is declared as channel that can support
transfer of BiderC data .

3. Defining the choreography Flow:
Once the choreography structure (roles-relationships) and needed types are defined we can
define the global protocol that defines the different roles interaction (in our case the Single
Shot protocol).
The choreography flow is the specification of all allowed interactions (see figure 8) between
the different behaviours. We must point out that the choreography flow do not correspond to a
possible scenario of interaction but all the allowed scenarios of interactions. Thus, the
choreography flow is a set of controls structure operators that restrict a set of basic enclosed
interactions. When defining the choreography the designer also define the interface of each
behaviour of each role. The interface is defined (see next when we compile WSCDL to BPEL)
by the offered operation, the interaction interface, the protocol of accepting partner invocation
and consuming partner operations. So we must be careful that by defining the allowed
interactions we are defining the services types.
As claimed in the UML description we can distinguish two separate parts of the whole
interaction: the initialisation and the registration-biding. This separation appears when
defining the whole choreography. It is to the SIS two behaviours ; one for registration and the
other for market discovery. So within the global view of the choreography market registration
and market discovery interleaves (the SIS can hold may market instances). The whole
choreography is an interleaving (parallel composition of the two parts: initialization and
market discoverer and play). The figure 7 shows the root structure of the choreography.

Version: 1.0 Page 13 of 25 Date Here

Figure 6: Channel types declaration and passing channel dependency

Sate of the art negotiation e-market Deliverable

A)The initialisation step
The initialization of market involves the Initiator, the Market and the Registration behaviour
(e.g. the SIS role). Their interaction is linear 'see the figure 9):

1. Initiator-->Market : (ν varCofMInit [M]) 2(marketcreatOP(marketInfo)).
2. Initiator-->Market : varCofMInit (getMarketOwnerRefOP(InitiatorCannelValue))3.
3. Market-->SIS_Reg: (ν varRegSIS [SISRegC]) registerOP(marketInfo).
4. Market-->SIS_Reg: (varRegSIS) (getBibsessionRefOP(varCofMInit)).

First the initiator initiates an interaction with the market so a fresh instance of market service
is generated.
Then the initiator sends its reference (its instance channel to the market instance). The market
instance will contact the SIS_Reg (registration behaviour) and then publish the market
information. This interaction creates a new instance of the SIS_Reg. That instance will
receives the market instance reference.

2 A--->B : (ν s[t]) (opName(arguments)) : means that A invokes the operation OpName of the behaviour B and
this using the channel variable value s of type t. That invocation creates a new instance of B and that instance
channel is s plus the value of the locators during the exchange.

3 A--->B: s(OpName(arguments)): means that A invokes the operation OpName using the channel variable s
Version: 1.0 Page 14 of 25 Date Here

Figure 7: the single Shot choreography is composed by two parallel flow
one for initialization and the second for auction

Sate of the art negotiation e-market Deliverable

B)The market discover and auction step
This part is initiated by the bider who checks for a market. First he requests the SIS_Get
services for a market, two cases are possible: either the market exists and then the
choreography continues or an exception is raised (NotFoundMarketExp) end the
choreography stops here. In case of a possible market, the response of the request is the
market instance reference. When getting the market bid channel reference, the Bider instance
can then interact within the market. While a set of possible bidders can interact within the
same market instance, we can not sequence the registration the biding. That is why we
consider that the registration and the biding can happen in parallel. The side effect of such
design may lead to a bider behaviour that can interleave the biding and the registration. This is
so permissive while we must restrict the bider that the bidder registration must happen before
biding. In order to realise such order constraint we use for each biding session (that concerns a
bider) a sub-thread of the market one. This sub-thread reference (here channels) are generated
by the market instance for each registration. This means that the bider must get the biding
session channel in order to perform it. An other important aspect with this part of the
choreography is time constraints. The registration is possible only when registration date is
reached, the biding is possible only when the beginning if the bidding session date is reached.
And finally the result of the market is only sent when the bidding session is closed. These
time constraints are designed using workunit constructors (see deliverable 1). For the three
cases, registration, biding and result send back, interactions are placed in workunits guarded
by “cdl:hasedeadlinepassed(date). The dates are supposed to be communicated by the
initiator4 (the XML data types are in the rachives delivered with this document) when initiating

4This does not appear in our design because of the difficulties we had to import complex types
schemas.

Version: 1.0 Page 15 of 25 Date Here

Figure 8: the market creation interaction detail

Sate of the art negotiation e-market Deliverable

a market. They are global variables. workunit are blocked until the respective dates are
reached.
We show in figure 9 an annotation of the single shot choreography Flow..

C) Exception block vs applicative rules
The tool supports also the reaction of the choreography when exceptions are raised. We can
distinguish two kind of exceptions: the first type when the condition of the exception raise is
not global (local to one partner). For example, in the choreography when the bider asks the SIS
for a market and no instance fits its requirement an exception is raised and the associated
exception block is activated (the exception block do nothing but terminate). This provokes the
end of the choreography. The other type of exception is when the condition is globally
observable. For example, when the bider sends a bid value less then the market value. When
condition on observable (or exchanged) data can be expressed, this belongs more to the
choreography rules than exception. This is the reason why the bad bid is handled by a
conditional behaviour rather than by an exception. We will see how this choice will lead to
well-detailed role definition.

Version: 1.0 Page 16 of 25 Date Here

Sate of the art negotiation e-market Deliverable

Version: 1.0 Page 17 of 25 Date Here

Figure 9: The Single Shot Choreography Flow

Sate of the art negotiation e-market Deliverable

5. From WSCDL to activities state model

The resulted file produced by the tool is a .cdm file (a specific XML file). Once the design
finished, we can export such file to a set of other languages: UML, HTML description or to
the WSCDL specification.

WS-engineers Is an eclipse plug-in that extends the LTSA (Labelled Transition Systems
Analyser), tools to Web services languages such as WSCDL and BPEL. This plug-in takes as
input a WSCDL specification and transforms it to an equivalent FSP[4] specification (see[5]
for translation details). FSA is a process algebra used as specification language by the tool (see
figure 10 for LTSA-WS-engineers perspective). We note here that such translation ignores
data and time constraints. Only interactions are modelled..

Using the resulted FSP specification we can use the LTSA tool verification and simulation
functionalities. This tool allows the checking of deadlock freeness and also for the progress
properties. In our case (choreography) deadlock checking is not relevant because deadlock can
not appear in global view specification so by construction the FSA specification also will be
deadlock free. In contrast, the tool offers the possibilities to check LTL[4] formula specified
by the designer this can be used the check applicative properties on the global interaction (for
example be sure that if the registration happens the bider will always receive the result, even it
was eliminated after a bad bid value.). The simulation is an other functionality that can be
useful for a designer not familiar with model checking. The simulation offers a step by step

Version: 1.0 Page 18 of 25 Date Here

Figure 10: The LTSA We-engineers tools perspective : from WSCDL to FSP

Sate of the art negotiation e-market Deliverable

execution of the choreography interaction. At each step the designer is guided by firing one of
the current possible state interaction. The figure 11 shows the simulator of LTA applied on
the single shot. The trace shows all possible interactions until the biding. The user have then
the choice to simulate a bad bib or a good bid.

Version: 1.0 Page 19 of 25 Date Here

Figure 11: The LTSA WS-engineers simulator.

Sate of the art negotiation e-market Deliverable

6. From WSCDL to BPEL

We pointed out in deliverable 1 the theoretical foundations behind global calculus that leads to
EPP (End Point Projection). The EPP consists in deriving from the global specification (the
choreography) each participant (here the roles) specifications in a sound and complete way
(their composition behaves exactly according to the global one). We have explained also the
importance of such generation for the proposed functional model ; “the participant behaviours
generation allows the market actors to check their conformance to a role”. An other advantage
(also pointed out in deliverable 1) is that the EPP can be used for code generation (or more
precisely a starting point for the implementation). The PI4SAO implements a variant of the
EPP method. It uses WSDL as target language for role specification joined to BPEL (Abstract
BPEL). Other target languages are also prosed like Java for example.
The only drawback of the projection functionalities of PI4SOA is that project the conditional
behaviours on all the involved partner even the condition concerns one role data. Why such
choice?

− First, we must remember that variables are situated which means that they belong to
one or more roles.

− Second, The condition expressions are boolean Xpath expressions (i.e. strings). To
situate a conditional behaviour, the tool must extract (by parsing the expression) the
involved variables.

− Last, when a condition is involving more than one variable and those variables to a
disjoint set of roles, the project leads to a redefinition of local conditions (which is in
the most cases impossible to realize without adding explicit state communication).

Those reasons make a more specific projection of conditional behaviours hard to realize, that
is why the conditional behaviours is projected on all the roles involved in the condition block.

A) How to generate
To generate participant specification, we must first enable the generation functionalities (right
click on the choreography file --> properties). We can then choose to enable the target
specification and also the version for example for WSDL. We have the choice between version
1 or version 2. We can also specify if the WSDL file will be just the interface or we generate
also the biding details.

B) Generation rules

WSDL generation : PI4SOA allow the generation of the WSDL interface for each role. As
we explained before each role divided in more that one behaviour this mean that we will
generate a WSDL for each behaviour. The WSDL file defines the set of operation (elementary
services offered by the behaviours) this is constructed by analysing the different interaction
within a behaviours as target and then extract the union. Each operation have the same name
as the operation is the WSCDL specification and the message types are extracted from the
enclosed exchange information types. The WSCDL file of all the behaviours are in the
archives associated to this deliverable figure X represent the WSDL File of the SIS registration
service. It offer two operations registerOp for registration and getbidsessionRef that allow the
market to send its channel information.

Version: 1.0 Page 20 of 25 Date Here

Sate of the art negotiation e-market Deliverable

The BPEL generation: the BPEL generation is more complicated than the WSDL one. The
BPEL normally will correspond to the local collaboration of a given behaviours. The
generation of BPEL for a given behaviour can be summarized in three steps :
partner declaration: partner of a behaviours here are all the choreography behaviours wich are
related with an outgoing relationship of the considered one. In other words the are all the
behaviours that provides operation to the behaviours.

 Projection of interactions: in this step we consider all the interactions that the
behaviours participate either as consumer or provider. The local projection of an
interaction depends of the role played by the behaviours, consumer or a provider. In
first case the interaction is represented locally by an invoke activities and the second
case the interaction is represented by a receive is the request exchange element appear
and reply if the response exchange appear in the interaction.

 Projection of the control flow: The control flow on the previous transformation
(interaction to invokes or receive/reply) is derived by project the chronography control
flow on only the behaviours concerned interaction. Then a translation of choreography
specific constructor to BPEL one that perseve the same operational semantiqc (the
constraint order). For example the workunit is transformed to a scope5 : A workunit
uses the hasdedlinepassed() condition is transformed to a scope with a BPEL wait
activity as the first one and then the behaviours of the workunit block. On the other
hand if the condition is hasdurationpassed() the scope is defined with a time-out
(using the argument as duration) and the workunit behaviour block will be the time-
out behaviour.

The figure X represents the BPEL file(for in xml tree format for clarity) of the bider BPEL.
we point out here the exception behaviours when a market was'nt found. The rest of different
FPEL file of the different behaviours are in the archives.

5 This is a critical choice and cause a lot of bugs
Version: 1.0 Page 21 of 25 Date Here

Figure 12: The generated WSDL file of SIS registration behaviours

Sate of the art negotiation e-market Deliverable

Version: 1.0 Page 22 of 25 Date Here

Figure 13: the XML structure of the Bider BPEL behaviour

Sate of the art negotiation e-market Deliverable

2. From BPEL to models
Many works aims to give a formal model to BPEL and that for different reasons the first one
is that XML format is very fastidious to use we need a intermediary light model to specify the
service behaviour before implementing it; The other reason is to check properties of the BPEL
services so we need to transform it to model checkable format (For a more detailed description
of related work on transforming BPEL see the project proposition). The most existent tools
model only behavioural aspect of BPEL using petri-nets, state charts or automata etc. Part of
them support time constraint. In this class of tools the data are totally ignored, in the next
deliverable when we address compatibility we will sketch the needed feature to compare
actors behaviour to abstract roles. the LTSA plug-in WS-engineer presented also support
translation of BPEL process to FSP specification then similar functionalities can be done
(verification and simulation). In addition we consider here a second tool (a prototype called
WSMOD [3]) provided by IBISC partner that transform abstract BPEL to timed automata this
tools is working on Abstract BPEL (no data and no conditions) is now being adapted to
support additional BPEL feature to fit to PI4SOA generation format. for example the wait is
generated by using BPEL 2.0 format while our tool work on BPEL 1.1 . The figure 14
presented the the transition system associated to the bider role.

Version: 1.0 Page 23 of 25 Date Here

Sate of the art negotiation e-market Deliverable

Version: 1.0 Page 24 of 25 Date Here

Figure 14: The labelled transition system of the Bider behaviour

Sate of the art negotiation e-market Deliverable

7. Conclusion

In this deliverable we illustrated our methods (presented in deliverable 1) by using the Single
shot protocol. We also presented a set of tools to design negation mechanism a choreography
of Web services, PI4SOA the tools is an open source and offer additional functionalities like
roles BPEL specification generation. We presents also an other plug-in that called LTSA WS-
engineers that transform a WSCDL specification and BPEL specification to a process algebra
called FSP. The transformation concerns only communication action, both time and data are
ignored. We are extending a tool provided by out IBISC partner to support time and data
oriented model. conditional

The archives
This deliverable is send with an archive that contain the following document:

 singleshot.cmd : is the PI4SOA specification of the single shot protocol
 iterative.cmd : is the PI4SOA specification of the iterative protocol
 singleshot.cdl : is the WSCDL specification of the single shot
 iterative.cdl : is the WSCDL specification of the interactive
 singleshot_wsdl : directory contains the WSDL files generated for the single shot
 singleshot_wsbpel : directory contains the BPEL files generated for the single shot
 iterative_wsdl : directory contains the WSDL files generated for the iterative
 iterative_wsbpel : directory contains the BPEL files generated for the iterative
 singleshot.html : is HTML description of the specification
 iterative.html : is HTML description of the specification
 singleshot.xmi : correspond to an UML export of single shot specification
 iterative.xmi : correspond to an UML export of iterative specification

The tools download addresses and bibliography
[1] PI4SOA : the tool can be download here http://pi4soa.sourceforge.net/ with the eclipse
3.3.X

[2] LTSA WS-engineers : is a plug-in developed by the imperial college of London. Its open
source and can be downloaded here http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/

[3] WSMod is works with the BPEL 1.0 is an ibisc provided tool and can be downloaded here
www.ibisc.fr/~melliti

[4] Peter Michael Sewell PHD thesis “The Algebra Of Finite Ftate Processes” October 1995.

[5] Howard Foster, Sebastian Uchitel, Jeff Magee and Jeff Kramer “ Model-Based Analysis
of Obligations in Web Service Choreography ” IAICT-ICIW 2006 page 149.

Version: 1.0 Page 25 of 25 Date Here

http://pi4soa.sourceforge.net/
http://www.ibisc.fr/~melliti
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/

	1.Introduction
	2.FT Protocols Specification
	3.The PI4SOA tool
	4.Single Shot specication using PI4SOA tool
	5.From WSCDL to activities state model
	6.From WSCDL to BPEL
	7.Conclusion

