
A Colored Petri Nets Model for Diagnosing
Semantic Faults of BPEL Services ?

Yingmin LI, ∗ Tarek MELLITI ∗∗ Philippe DAGUE ∗

∗ LRI, Univ. Paris-Sud, CNRS, and INRIA Saclay-Île de France
F-91893, France (Tel: 33 1 69 72 92 59 93; e-mail:

firstname.lastname@lri.fr).
∗∗ IBISC, Univ. d’Evry Val d’Essonne, CNRS, F-91025, France

(e-mail: Tarek.Melliti@ibisc.fr)

Abstract: The paper contributes to modeling an orchestrated complex Web Service (BPEL)
with Colored Petri Nets (CPNs) for diagnosis. In the CPNs model, colored tokens are used to
represent the faults in a BPEL process. A uniform fault model is introduced to represent both the
faulty input data and external faulty Web services called by the BPEL activities. We use three
I/O data dependency relations for each BPEL activity. To represent the fault propagation in
colored Petri nets, we define the color propagation functions for each data dependency relation.
We give a concrete translation from a BPEL service to a CPNs model. Model-based diagnosis
framework is then used. Based on the evolution equation in Petri nets theory, we construct an
inequations system as a diagnosis problem and solve it with an algebra algorithm.

Keywords: Model-based diagnosis, BPEL, Web service, Colored Petri Nets

1. INTRODUCTION

Self-healing software is one of the important challenges for
Information Society Technologies research. Our paper pro-
poses a centralized diagnosis approach for BPEL (OASIS
[2006]) services, whose goal is to design a framework for
self-healing Web services by adopting artificial intelligence
methodologies to solve the diagnosis problem by support-
ing online detection and identification of faults.

A Web service (WS) is a set of distributed message ori-
ented interacting components. We can construct complex
WS systems by composing basic WSs in two ways: orches-
tration and choreography (P2P). An orchestrated BPEL
service is a central process to organize (basic or complex)
WSs to finish complex tasks. A choreographed WS has not
a central process while all the involved WSs are aware of
their partners but none has the global view of the whole
WS application. Distributed WS applications make B2B
engineering more convenient but raise more challenges for
handling dysfunctions. For example, how to locate the
source and reason of faults when they occur somewhere
in a distributed WS application? As orchestration is the
basic of the WS composition, we focus on single BPEL
service diagnosis based on CPN (Diaz [2001]) model which
can be easily extended to a distributed environment.

During the interaction of distributed WS components,
subtle faults can come from corrupted data or some
functional errors. Due to the message oriented nature of
WS applications, faulty data is propagated through the
? This research has been initiated in the framework of the FP6
IST project 516933, WSDIAMOND (Web Services DIAgnosability,
MONitoring and Diagnosis) and continued in the framework of
the national ANR project WEBMOV (Web services Modeling and
Verification).

execution trace and is used to elaborate other faulty data
and control decisions. In this way the subtle faults become
large ones.

Consider the following example which will be used as
an illustration example along this paper: a BPEL ser-
vice FlightAgent calculates a series of business flight
costs. The FlightAgent starts with a receive activity
C to receive a request string of the series of departure
cities and dates, for example, from Paris to London on
01/03/2008, and from London to Madrid on 03/03/2008,
from Madrid to Rome on 05/03/2008, and from Rome
to Paris on 09/03/2008, all the dates are in European
format. FlightAgent iteratively (by using While activity
W) invokes an invoke activity S to split the request string
to get the information for one flight: the departure city, a
departure date, and an arriving city (which is also the de-
parture city of next flight). Whereafter an invoke activity
O reserves the flight tickets and cumulatively calculates
the flight fees.

We consider two types of faults: the faulty input data and
the bad basic WS which sometimes cannot be tested or
detected immediately. For example, bad activity S inter-
prets the date format incorrectly, 01/03/2008, 03/03/2008,
05/03/2008, and 09/03/2008 are misinterpreted as Jan-
uary 03, 2008, March 03, 2008, May 03, 2008, and Septem-
ber 03, 2008. which is hard to test locally. As to the
prizing rules of the airline, at the end of the process, reply
activity P returns the total ticket price of the whole trip
(in figure 3a) which is unreasonably huge. The client (or
other Web service which invokes FlightAgent) can arise
an exception. These two types of faults both reflect on data
within the BPEL process. So we consider both of them as
data fault while the latter one is explained as the basic

WS fault. Note that we suppose the overall orchestration
and choreography schema is correctly designed.

A BPEL process can be considered as a discrete event
system (DES). Automata, process algebra, and Petri nets
are the most popular models. We refer the reader to
Yan [2008] for the surveys of formal methods of Web
services modeling. In this paper, we address the data
faults by using the model based diagnosis approach, and
more specially, the discrete event model based approach
(Ardissono et al. [2005], Benveniste et al. [2003], Boukadi
et al. [2006], Chatain and Jard [2005], Li et al. [2007],
Yan and Dague [2007], Ye and Dague [2008], Zhang et al.
[2008]). Among the usual discrete event model, we use
colored Petri nets to define the diagnoser. Many works use
the Petri nets to do diagnosis (Benveniste et al. [2003],
Li et al. [2007], S.Genc and S.Lafortune [2005], Ye and
Dague [2008]). Some works use high level Petri nets to
modeling WS (Chatain and Jard [2005], Yi and Kochut
[2004], Zhang et al. [2008], Boukadi et al. [2006]) as the
CPN model is more compact and expressive from the
aspect of data evolution. While there are few work which
uses CPN model to solve the WS diagnosis problem.

The main originality of this work is a natural use of the
colored Petri nets (supported by CPN Tools CPN Group
[2007]); the color domain is used to model data (states)
status and transitions are used to define transition sta-
tus. The model presented here can be generalized to a
very large software domain besides Web services. Another
originality is the diagnosis methods: unlike most of other
works based on Petri nets, we don’t use an unfolding
approach (Benveniste et al. [2003], S.Genc and S.Lafortune
[2005], Yan and Dague [2007], Ye and Dague [2008]), but
use the incidence matrix and the characteristic vector of
the observed trace in order to transform the diagnosis
problem to an inequations system, and then we propose an
algorithm to solve one inequation and then the inequations
system.

The paper is organized as follows: in section 2, we in-
troduce CPN model for the BPEL services and define
their firing rules. We define CPN model for typical basic
activities and structural operators of BPEL in section 3; in
section 4, we define the diagnosis problem and its solution
and illustrate it with a concrete example; in section 5,
we introduce some related work, compare the different
methods, and give some directions for future research.

2. COLORED PETRI NET

A Petri net is a Colored Petri Net if its tokens can be
distinguished by colors. Here we restrict the definition of
Colored Petri Net that we use in this paper.

Let E be a set, a multiset on E is an application m from E
to Z (a multiset is denoted as m = q0e0 ++ qnen where
qi = m(ei), Z is the integer set). We use M(E) to define
the set of finite multisets from E to Z, and M+(E) if we
restrict it to N. Sum and subtract operators between two
multisets are defined as in Jensen [1997]. For two given
value domains D, D′, we denote by [D → D′] the set of
possible functions from D to D′.
Definition 1. A Colored Petri Net graph (CPN graph) is
a tuple N=〈Σ,X ,F ,P ,T ,cd,Pre,Post〉, where: Σ is a set of

colors (see Jensen [1997]). X is set of variables that range
over Σ. F is a set of color functions, F ⊆ ⋃

n
[Σn → Σ].

P is a set of labeled places, and there are two types of
places exists: AP , the activation places which contains
the CPN execution control, DP , which contains the data
used during the execution of CPN, especially, we denote
the constant data places set as CP ; Formally, this is
represented as follows: P : AP ∪ DP and CP ⊆ DP ,
AP ∩DP = ∅. T is a set of labeled transitions, we denote
Type : T ′ → T ′′ with T ′, T ′′ ⊂ T and T ′ ∩ T ′′=∅ is a type
function of T . Cd : P → 2Σ, is a function that associates to
each place a color domain 1 . Pre, Post : are forward and
backward matrices such that Pre : P × T →M+(Σ∪X),
are input arc expressions. And Post : P × T → M+(E),
are output arc expressions.

E represents a color expression which can be a color
constant, a variable, or a color function of F (completely
or partially instantiated). Given an expression e ∈ E , we
use V ar(e) to denote the set of variables which appear in
e, and Eval(e), the evaluation of e in Σ.

We denote •t and t• as the input and output places set of
transition t, •p and p• as the input and output transitions
set of place p.
Definition 2. A CPN graph N = 〈Σ,X ,F ,P ,T ,cd,Pre,
Post〉 is well formed iff: ∀t ∈ T, ∀p ∈ t•, we have
V ar(Post(p, t)) ⊆ V ar(Pre(., t)) with V ar(Pre(., t)) =⋃
p′∈•t

var(Pre(p′, t)).

In a well formed CPN graph, we restrict that for each
transition, the output arc expressions must be composed
by the variables which are in the input arcs expressions.

To each CPN graph, we associate its terms incidence
Matrix C (P × T →M(E)) with C = Post− Pre.

In the following, we define the behaviors (the dynamics)
of a CPN System.
Definition 3. A marking M of a CPN graph is a multiset
vector indexed by P , where ∀p ∈ P,M(p) ∈M+(cd(p)).

Operators + and − on multisets are extended to markings
in an obvious way.
Definition 4. A Colored Petri Net system (CPN system)
is a pair S=〈N,M0〉 where N is a CPN graph and M0 is
an initial marking.
Definition 5. A transition t is enabled in a CPN system
S with present marking M , iff ∃u, with M ≥ Pre(., t)u,
V ar(Pre(., t)) → Σ, which is a binding of the input arcs
variables. 2

We use M [t〉u to denote that t is enabled in M by the
use of u, and we use the classic notation M [t〉 if u is not
important (e.g. when u is unique).
Definition 6. Let M be a marking and t a transition, with
M [t〉u for some u. The firing of the transition t changes
the marking of CPN from M to M ′ = M + C(., t)u. We
note the firing as M [t〉uM ′.
1 In this definition, a transition has no color domain. This restriction
will be explained in section 3.2.
2 u must respect the color domain of the places, i.e., ∀p ∈• t,
x ∈ var(Pre(p, t)), we have u(x) ∈ cd(p).

Definition 7. We extend the definition 6 to a sequence of
transitions δ ∈ T ∗ as: M [δ〉M if δ is the empty sequence;
M [ωt〉M ′ iff ∃M ′′ such that M [ω〉M ′′ and M ′′[t〉uM ′.

3. FROM BPEL TO CPN MODEL

There exist already many works dedicated to translate
BPEL services into CPN model for verifying (Tan et al.
[2009],Boukadi et al. [2006]), composing (Zhang et al.
[2008]), supervising (Chatain and Jard [2005]), etc.. In this
section, we construct our own CPN model by introducing
the faulty behaviors into Petri nets model which is suit-
able not only for diagnosing BPEL services, but also for
diagnosing other large software systems.

A BPEL process consists of basic activities and structured
operators. The idea of modeling BPEL to CPN is: to map
each primitive data to a place, each basic activity to a
transition. To each basic activity, input and output activa-
tion places ain ∈ P and aout ∈ P are associated to identify
the execution order. To include the fault model, additional
transitions are added to represent the unobservable faulty
activities either in basic WSs or in BPEL services. The
structured operators are modeled as CPNs which sew
the structured sub-processes by combining, disjointing, or
generating the local activation places. Once a red token
is generated by a faulty transition in a basic activity,
the fault is passed along the execution trace through the
arc expressions which are represented in Pre and Post
matrices. In the following, we define how to translate the
static and dynamic features into CPN models.

3.1 BPEL data Variables and constants

BPEL data variables and constants
To catch maximally the dependency between data (vari-
ables, constants, etc.), we decompose the structured data
types into their elementary parts, denoted by the leaves
of their XML tree structure. For a variable X of type m
(resp. an Xpath expression), we use xi to range over the
Leaves(m) (resp. Leaves(X)) and denote the xi part of
X by a couple (X,xi). In our mapping, each data variable
and constant is represented by a unique place in CPNs.

Color Domain
In our CPN model, three colors are used: red (r) marks
a place with faulty data value; black (b), not faulty data
value; and unknown color (∗), unknown correctness of data
value.

Data dependency within BPEL v.s. color functions
To specify the effect of each activity on data, we give
each activity a data dependency signature in term of three
dependency relations (Ardissono et al. [2005]): forward
(FW), if the activity just copies the value from the
input to the output; source (SRC), if the output data is
generated by the activity; and elaboration (EL), if the
output data is elaborated from the set of input data.
To each of this dependency relation, we associate a color
propagation function to represent the data status (faulty,
correct, or unknown status) production.
Definition 8. Given the data relations set D = {FW ,
SRC, EL}, ∀d ∈ D, the associated color propagation
function dc is defined as: ∀c,c′∈Σ,∀C⊆Σ,





FW c ∈ [Σ → Σ], FW c(c)=c
SRCc ∈ [∅ → Σ], SRCc=∗
ELc ∈ [2Σ → Σ], ELc(C)=c′, with c′={

b, iff ∀c ∈ C, c=b
r, iff ∃c ∈ C, c=r
∗, iff ∃c ∈ C, c=∗ ∧ @c′′ ∈ C, c′′=r

In the following sections, we model dynamic features,
the basic BPEL activities and structured operators with
CPNs.

3.2 Translate basic BPEL activities into CPNs

BPEL service is composed with a series of basic activities.
We map each basic activity to its CPN model. Due to
space limitation, we restrict our definitions to four main
basic activities (Receive,Assign,Invoke, and Reply) while
the other similar activities can be easily translated in the
same way.

The main idea in mapping BPEL basic activities to CPNs
is: each primitive data is mapped to a place, each basic
activity is mapped to a transition, and Pre and Post
matrices are defined based on semantical data dependency.
In order to distinguish the activities execution order and
the traces among different branches, to each basic activity,
we associate an input activation place ain and an output
activation place aout.

As we focus on the data fault diagnosis of one BPEL
service, the BPEL service code is assumed to be correct.
Possible faults can be faulty data received by Receive
activities, or faulty activities which come from other WS
called by Invoke activities. So we must introduce fault
models for Receive and Invoke activities to localize the
faulty data or external WS. Our approach is to introduce
additional transitions to represent the unobservable faulty
activities and to define the color functions in Pre and Post
matrices which represent the propagation of faults.

r r

r

(C
XF = E L

c), C
i 1 X i 2

c

F
C

T y p e () =t
f i

t
i n vType () =Type () =tf 0 t

r e ct
f i

m i

X i

C
ix

F W (Cc)
i na

F W (Cc)
im

C i na C im

C i na ai n C im

tr e c

ao u t ao u t

ai n x
i 2x

i 1

C i na

C i na

t i n v

y i

F W (Cc)
i na

C
X i 2

C
X i 1

Cy i
Cy i

Cao u t

t
f 0

t
f i

t
f i

Fig. 1. receive and invoke CPN

Receive(m,X): an activity simply copies the values from
a message m to a local variable X. In order to model the
receiving of a set of faulty parts from a message value,
we add for each part of the message an internal transition
(fault) before the firing of the receive transition in figure 1
(left). Note that data places (m,mi), (x, xi) are simplified
as mi, xi.

The CPN model of Receive contains two kinds of fault
transitions: the activation fault transition tf0 , and the
data fault transitions tfi , we define their types as:
Type(tf0)=Type(tfi)=trec. The execution of tfi is trig-
gered by the consummation of the token in the input
activation place. Once tf0 (or tfi) is executed, we can

deduce that there is a faulty control (or data) input. The
transmission of the fault (red token) is illustrated on the
arc expressions. Each arc expression represents the colored
token consumed (on an arc (p, t)) or produced (on an arc
(t, p)). To keep the liveness of the CPNs, we add an arc
from the output place xi to the receive transition trec and
its associated color function Cxi

is the color of the output
data place xi.

Reply(Y,m): an activity that copies values from a vari-
able Y to a message m for returning the response of the
BPEL service to its invoker. So Reply can be the ending
of BPEL and simply forwards (FW) values. There is no
fault model in its CPN and we simply fill Post with FW
functions.

Assign(X,Y): an activity that reorganizes local variable
parts inside a BPEL process without changing the values.
So its model is similar to Reply activity. Similar operators:
Throw and Rethrow. The Wait, Empty, and Exit activ-
ities do not have relation with the variables, so their CPN
model only have the input and output activation places.

Invoke(X,Y): an activity that calls another basic or
composite Web service. It takes the value of the variable
X as input and stores the output in the variable Y . The
data dependency can be FW , EL, and/or SRC. As Y can
be infected by external faulty WS which is unobservable,
we introduce a series of unobservable faulty transitions
after the invoke transition to model the faults caused by
external WS as is illustrated in figure 1 (right).

The CPN model of Invoke only contains the data fault
transitions tfi , which are triggered by the consummation
of the token in the output activation place. Once tfi is
executed, there should be a fault in its output data place
and it can be passed to the other activities along the BPEL
process execution trace. Again, we define Type(tfi) = tinv.

3.3 Translate structured BPEL activities into CPNs

In this section, we show how to obtain BPEL process CPN
by a modular combination of a set of CPNs. We formally
define four main structural operators (Sequence, Switch,
While, and Flow) while the other similar operators can
be easily translated in the same way.

Sequence operator sequence(S1, S2)
Sequence connects different activities, and the execution
order of these activities is the same as their appearance
order in the constructor. So we can generate the resulting
sequence CPN by simply merging the local intermediate
output and input activation places of contractive CPNs
(in figure 2(a)).

Conditional operator Switch({(coni(Xi, Vi),Si)}i∈I)
Switch represents an alternative execution of the activities
Si under the conditions coni(Xi, Vi). Xi and Vi are respec-
tively the variables and constants. For each subprocess
Si, we add a transition coni to generate its activation
place. Each coni takes the common activation input place
of Switch, Xi, and Vi as inputs to elaborate an input
activation place ain

i for subprocess Si. A new aout is added
to replace all the aouti of subprocess Si (in figure 2(c)).
Similar operators: Scope together with the compensation

handlers, event handlers, and fault handlers, Pick together
with OnMessage, IF , Link.

Iterative operator while(con(X, V), S1)
While iterates the activity S1 execution until the breaking
off of the conditions con(X). The CPN graph of While is
similar to Switch in which the activation input place of the
subprocess S1 is elaborated by the activation input place
of While, X, and V . But in While, the aout of iterative
subprocess is also ain of tcon. Note that tcon represents the
transition if condition con is true and tcon represents the
transition if condition con is false (in figure 2(b)). Similar
operators: RepeatUntil, ForEach.

Parallel operator flow({Si}i∈I)
Flow executes the activities Si in parallel. It terminates
when all the activities are finished (fork-join). So we
add ain, aout, tin, and tout to compose the subprocesses
together in parallel (in figure 2(d)).

a

a : S e q u e n c e (S 1 , S 2)

aC

a i n
1 a i n

2

i naC
1

ao u t
1

ao u t
2

C o n

i naC
i

CX

C
iV

a i n X i V i

a i n
1

ao u t
1

C o n
_ _ _ _

j
E L i na

c(C , CX , C
iV)

j
E L i na

c(C , CX , C
iV)

i naC
i

CX

C
iV

a i n
iX V i

C o n n

a i n
1

a i n
n

ao u t
1

ao u t
n

i naC
1

i naC
n

C o n 1

o u ta

j
E L i na

c(C , CX , C
iV) a i n

1
a i n

n
i naC
1

i naC
n

ao u t
n

ao u t
1

F W i na
c(C)

o u ta

i naC

ai n

E L o u ta
c
(C , C)o u ta

1 n

F W i na
c(C)

 b : W h i l e (c o n (X , V) , S)
1

 c : S w i t c h ({ (c o n (X , V) , S) } , i i i i i I) d :F low ({S i } , i I)

Fig. 2. CPN models of the structural operators

3.4 Some remarks on the BPEL model

Observable vs unobservable transitions
To distinguish the BPEL activities transitions which are
observable and the fault transitions which are not, we
divide T into observable transitions Tobs and fault transi-
tions TF (T=Tobs∪TF and Tobs∩TF =∅). Remember a type
function over faults has been defined, that associates to a
fault its observable transition Type: TF→Tobs.

Initial and symptom markings of BPEL model net
The initial marking is obtained by marking P . CP are
marked as unknown as they cannot be changed by any
transition; DP are marked as black; a ap ∈ AP which
activate the first execution of CPN is marked as black
and the other AP are marked as 0. The final marking is
retrieved from the thrown exception. When fault(s) occurs,
an exception will be thrown to specify on which activity,
there is a faulty part(s), which corresponds to the places

in DP . Specially, unmatched or uninitiated data (variable)
refers the BPEL process may chose fault execution branch.
In this case, the input activation place of the activity
will be marked as r. All the other places are marked as
unknown because there is no information of their marking.

One-boundness of the BPEL model nets
The resulted CPNs are one-bounded (or safe, means one
place can at most contain one token, proof is omitted
because of space limitation), in which places represent
either data or activation variables.

3.5 Example (cont’d):

Now we can construct the CPN of the BPEL service
flightAgent as in figure 3. Note that place d0 represents
the request string, d1 is a null flight schedule variable,
and invoke activity to will fill it with data during the
execution of process flightAgent. Place d5 is the output
flight schedule list variable. To keep the visibility of the
graph, the color functions which do not concern the data
dependency are omitted, for example, color function Cain

on the arc (ain, tc) is omitted.

F l i g h t A g e n t (a)

: R e c e i v e

: I n v o k e

: I n v o k eot

: R e p l ypt

r

r

r

r

a i n

t f 0 f 1t

t c

F W
C()a i nC

()F W
C Cd1

E LC ()Cd2

F W
C()aC

4

r

f
3

t

t p

t o

t s

d0

t f a

d1

a o u t

d4

d5

E LC ()Cd3

E LC ()dC
4

()F W
C Cd0

d3

F W
C(a)

5

a5

W
t

d2a2

Wt

f 2
t

F W
C()aC

3
a3

a4

E L
C(,)Cd 2

Ca 2
E L

C(,)Cd 2
Ca 2

Type() = t f3 t s

Type() = t f2 t o

Type() = Type() t fa t f0

= Type() = t f1 t c

: W h i l e

ct

wt

st

Fig. 3. BPEL (a) and CPN model of flightAgent

4. DIAGNOSIS OF BPEL SERVICE USING CPN

4.1 Diagnosis problem

During the runtime of a BPEL service instance, we can
record the sequence of activities executed within this
instance, that we call the trace. This trace belongs to
(Tobs)∗. When a fault occurs, an exception is thrown
by an execution engine or a WS client, what we call in
diagnosis literature, a symptom occurs. Exceptions are
thrown due to some inconsistency of a part of the services
state. The inconsistency concerns either data variables
values or activation data (e.g receiving a null, corrupt,
or unexpected message). In either case, a symptom can
be represented as a marking where the faulty data (or

activation) places are marked as a red token and the others
can be marked either as black or unknown.
Definition 9. Let M be a marking, M is a symptom
(exception) marking iff ∃p, M(p)(r)6=0. We denote the
symptom markings by M̂ .

We can now give the definition of a diagnosis problem as
follows:
Definition 10. A diagnosis problem is a tuple D=<
N, δo, M̂ >:

• N is a CPN system that represents the model of a BPEL
service;

• δo is an observable trace δo ∈ (Tobs)
∗;

• M̂ is a symptom marking.

Before giving a definition of a solution to a diagnosis
problem, we introduce a covering relation as follows:
Definition 11. A covering relation ¹ between colors of
Σ={r, b, ∗} is a partial ordered relation where any color
covers itself and the ∗ color covers all colors (i.e ¹={(r, r),
(b, b),(∗, ∗),(r, ∗),(b, ∗)}). We extend the color covering
relation to multisets and markings as follows:

• let m, m′ ∈M+(Σ), we have m ¹ m′ iff
∑
c∈Σ

m(c)=
∑
c∈Σ

m′(c)∧

∀c 6= ∗, m′(c) > 0 ⇒ m(c) ≥ m′(c)
• let M, M ′ be two markings, we have M ¹ M ′ iff ∀p ∈ P ,

M(p) ¹ M ′(p)

This means if two multisets have the covering relation,
each of their elements must have the same token numbers.
And explicitly, as ∗ covers both r and b, but r and b do
not cover each other, so 3× r does not cover 2× r + 1× b.

We give now a definition of a diagnosis:

Definition 12. Let D=〈N ,δo,M̂〉 be a diagnosis problem,
a diagnosis Sol⊆TF and Sol 6=∅ such that: M0+C×−⇀δ ¹M̂

with
−⇀
δ is a characteristic vector defined as follows:

• ∀t ∈ Tobs,
−⇀
δ (t)=

−⇀
δo(t), where

−⇀
δo(t) is the occurrence number

of t in δo;

• ∀tf ∈ Sol,
−⇀
δ (tf)=1;

• ∀tf ∈ (TF \ Sol),
−⇀
δ (tf)=0.

Note that we restrict the value of a fault transition to 1.
This is due to the fact that a fault transition only changes
the color of token to red and has no effect on the activation
places marking. Even if a fault happens more than once
we consider only the occurrence of the fault transition that
can explain the symptom (the red token). Thus we restrict
the value of the characteristic vector of a fault transition
to one or zero (happened and explains the symptom or did
not happen).

Definition 13. Let D=〈N ,δo,M̂〉 be a diagnosis problem
and Sol be a diagnosis, Sol is minimal iff ∀Sol′ ⊂ Sol,
Sol′ is not a diagnosis.

Definition 14. Let D=〈N ,δo,M̂〉 be a diagnosis problem,
the diagnosis solution DS ⊆ 2F is the set of all possible
minimal diagnoses.

4.2 Diagnosis of CPN by inequations system solving

Let D=〈N ,δo,M̂〉 be a diagnosis problem and let ni be
variables ranging over {0, 1}, we construct the character-
istic vector δ as follows:

• ∀t ∈ Tobs,
−⇀
δ (t)=

−⇀
δo(t);

• ∀tfi
∈ TF ∧ −⇀δo(Type(tfi

)) 6= 0,
−⇀
δ (tfi

)=ni;

• ∀tf ∈ TF ∧ −⇀δo(Type(tf))=0,
−⇀
δ (tf)=0;

We can then construct an inequations system (one inequa-
tion for each place) for the diagnosis problem as follows:

QM̂=





Eqp1 : M̂(p1) º M0(p1) + C(p1, .)
−⇀
δ

· · ·
Eqpi : M̂(pi) º M0(pi) + C(pi, .)

−⇀
δ

· · ·
To each place p, we associate an inequation Eqp where
the left part is l(Eqp)=M̂(p) and the right part is
r(Eqp)=M0(p)+C(p, .)

−⇀
δ . We divide the set of inequations

QM̂ into three subsets:

• Qr
M̂

={Eqp|l(Eqp)=r}
• Qb

M̂
={Eqp|l(Eqp)=b}

• Q∗
M̂

={Eqp|l(Eqp)=∗ ∨ l(Eqp)=0}

The diagnosis algorithm executes backward reasoning re-
cursively (algorithm 2) for each inequation Eqp ∈ Qr

M̂
within QM̂ and then combines all the diagnosis results
(algorithm 3). In the following, we give first the solution
of one inequation and then that of an inequations system.

One inequation Qr
M̂

solving
The part on the right side of an inequation is a multi

set composed by color functions, constants, and the cor-
responding place variables which may have positive or
negative coefficients. Solving the inequation consists in
canceling the negative terms in the right part, keeping
the positive color functions, and evaluating the positive
coefficient ni red tokens to 1 (algorithm 1). Algorithm 1
looks for the possible minimal diagnosis Nr

p corresponding
to one symptom place p in a symptom marking. And at
the same time, it looks for the candidate inequations Cr

p
which can explain the symptom place but should be solved
further. So to completely solve an inequation, we need to
recursively solve Cr

p until getting a final diagnosis solution
for one symptom place. The idea is to recursively solve
each inequation in Qr

M̂
by getting the diagnosis solution

Solp for one symptom place (algorithm 2).

An inequations system QM̂ solving
By solving each inequation in Qr

M̂
, we get the diagnosis

for a inequations system QM̂ (algorithm 3). The union set
of all the Solp is the diagnosis solution for QM̂ which can
contain multiple symptoms (faults).

4.3 Example (cont’): incidence matrix of flight agent

In the example of CPN of flight agent, we can see that
flight agent CPN contains 12 places and 11 transitions (5
of them are unobservable, and 6 are observable). Table 1
is the incidence matrix of flight agent got by C=C+−C−.

3
∪
× is an operator that applies the union operator on couples

resulting from the Cartesian product.

Algorithm 1 Algorithm partially solving a Qr
M̂

inequation:

solvAnEqu(Eqp)

Input: Eqp: a Qr
M̂

inequation concerns a place p;

Output: < Cr
p , Nr

p > {Cr
p :a set of color functions which generate

red tokens; Nr
p : a set of faulty transitions;}

1: Cr
p=∅; Nr

p=∅;
2: ForEach ni × ci ∈ r(Eqp)+=

∑
i∈I

ni × ci do
3: if ni is not a constant and ci = r then
4: Nr

p=Nr
p ∪ {tfi

}; {records the faulty transition tfi
in Nr

p}
5: else if ci is a color function concerning place p′ then
6: Cr

p=Cr
p ∪ {cp′};{records the place cp′ if its color ci is

unknown for further solving}
7: else if ci is a color propagation function dc

i then
8: Cr

p={Cr
p} ∪ {cpi ∈ V ar(ci)};{records all the input places

of ci for further solving}
9: end if

10: end for
11: return < Cr

p , Nr
p >;

Algorithm 2 Diagnosis solution algorithm for completely solving
a Qr

M̂
inequation: CSD(QM̂ , Eqp)

Input: QM̂=Qr
M̂
∪Qb

M̂
∪Q∗

M̂
: the inequations system ;

Eqp ∈ Qr
M̂

: an inequation to solve;

Output: Solp: a diagnosis solution concerning a symptom place p;
1: Solp=∅;
2: 〈Cr

p ,Nr
p 〉=solvAnEqu(Eqp);{get the first back reasoning result,

Cr
p need to be resolve further}

3: Solp=Solp ∪Nr
p ;{record the current diagnosis}

4: if Cr
p 6= ∅ then

5: ForEach cp′ ∈ Cr
p do

6: if ∃Eqp′ ∈ Q∗
M̂

then

7: if l(Eqp′)=∗ then

8: Solp = Solp ∪ CSD(Qr
M̂
∪ {r º r(Eqp′)} ∪ (Qb

M̂
∪

Q∗
M̂

) \ {Eqp, Eqp′}, r º r(Eqp′)); {evaluates the

l(Eqp′) as r, reconstructs the inequations system and
recursively back reasoning until solved all the related
places}

9: else if l(Eqp′)=0 then

10: Solp=Solp∪CSD(Qr
M̂
∪{r º r(Eqp′)+cp′}∪ (Qb

M̂
∪

Q∗
M̂

) \ {Eqp, Eqp′}, r º r(Eqp′) + cp′);{evaluates the

l(Eqp′) as r and add a red token on the right side
of the inequation to balance Eqp′ , reconstructs the
inequations system, and recursively back reasoning
until solved all the related places}

11: end if
12: end if
13: end for
14: end if
15: return Solp;

Algorithm 3 Diagnosis solution algorithm for QM̂

Input: QM̂=Qr
M̂
∪Qb

M̂
∪Q∗

M̂
: the inequations system ;

Solp=∅: a diagnosis solution concerning a symptom place p;
Output: D: a diagnosis solution of QM̂ ;
1: D=∅;
2: ForEach Eqp ∈ Qr

M̂
do

3: Solp=CSD(QM̂ , Eqp); {resolve each inequation in Qr
M̂

by

back reasoning}
4: D=D

∪
× Solp; 3

5: end for
6: return D;

Table 1. C = C+ − C−: incidence matrix of flight agent

C+ − C− tfa tf0 tf1 tC tW t
W

tS tf3 tO tf2 tP

ain r − ain ain-ain ain-ain −ain

a2 FW c(ain) −a2 −a2 FW c(a4)

a3 ELc(a2 , d2) −a3 a3-a3
a4 FW c(a3) a4-a4 −a4
a5 ELc(a2 , d2) −a5

aout FW c(a5)

d0 r − d0 d0-d0
d1 r − d1 d1-d1
d2 FW c(d0)-d2 d2-d2 d2-d2 d2-d2 r − d2
d3 FW c(d1)-d3 ELc(d4)-d3 −d3
d4 ELc(d2)-d4 r- d4 d4-d4
d5 ELc(d3)-d5

As to space limitation, in the incidence matrices, we use
the name of places to represent the colors of the places,
for example, ain represents Cain . Transitions tfa

, tf0 , tf1 ,
tf2 , and tf3 are unobservable activities (in gray columns).
Especially tfa

, tf0 , and tf1 generate the input fault data
of flight agent, tf3 represents the external fault in the WS
which is invoked by tS , and tf2 represents the external
fault in the WS which is invoked by tO.

4.4 Example (cont’): diagnosis solution of flight agent

In our diagnosis scenario, each BPEL process is associated
with a monitoring platform, which dedicates to record the
status of the activities and variables of each execution
instance, and a diagnosis WS, which contains the initialed
(all DP are marked as black and AP are marked as 0
excepts the first input activation) CPN model of the BPEL
and acknowledge the diagnosis WS. The diagnosis WS
can be triggered by the BPEL executer (BPEL execution
engine) or invoker (WS, application, etc). Once a symptom
is thrown by the executer or invoker, the (activation or
data) places which correspond to the symptom is marked
as r while the other data places are marked as ∗, and
activation places are marked as 0. Now suppose we get a
series of observed activities σ0: C, W , S, O, W , S, O, W ,
and P , which means the while iteration is processed twice.
Then we construct a characteristic vector

−⇀
δ T : (tfa tf0 tf1

tC tW tW tS tf3 tO tf2 tP)=(n0 n1 n2 1 2 1 2 n4 2 n3 1).
Given an initial marking M0 =(ain a2 a3 a4 a5 aout d0 d1

d2 d3 d4 d5)=(b 0 0 0 0 0 b b b b b b), we suppose that,
in two diagnosis scenarios, we got two symptom markings
Mn1 = (ain a2 a3 a4 a5 aout d0 d1 d2 d3 d4 d5)=(0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ r), and Mn2 = (ain a2 a3 a4 a5 aout d0 d1 d2

d3 d4 d5)=(0 0 0 0 0 r ∗ ∗ ∗ ∗ ∗ r). For symptom marking
Mn1 , we can construct an inequations system as in (1).

Note that for final marking Mn2 , we can construct a
similar inequations system except Eqaout is different (r º
FW c(Ca5) + 0) from the one in equation system (1).
By applying the diagnosis algorithms, the diagnosis that
concerns the symptom marking Mn1 is illustrated in figure

4 while the diagnosis that concerns Mn2 is the
∪× product

of the diagnosis illustrated in figures 4 as the inequations
system for symptom marking Mn2 contains one more red
token in the activation output place aout. In figure 4, we
illustrate the diagnosis solving process in structured trees.
The nodes represent the inequations needed to be solved
and each leaf represents a diagnosis and the union of all
leaves is a diagnosis solution.

As a result, for symptom marking Mn1 , we have the di-
agnosis: D1={{tf0}, {tf1}, {tf2}, {tf3}} represents 4 single
faults. Either the input data fault d0, or the input data
fault d1, or the transition fault on invoke activity S,
or the transition fault on invoke activity O. Concerning
the symptom marking Mn2 , the diagnosis is extended

as: D=D1

∪× D2, where D2 concerns the red token in
activation place aout. As illustrated in figure 4 (right),
D2={{tfa

}, {tf0}, {tf2}}. So, we get diagnosis D={{tf0},
{tf2}, {tfa

, tf1}, {tfa
, tf3}}, i.e., the fault is on input data

place d0, or on transition O, or on input activation place fa

and invoke activity C, or on input activation place fa and
invoke activity S. And these results can be used further
for the study of diagnosability.





Eqain : 0 º (r − Cain)× n0 − Cain + b
Eqa2 : 0 º FW c(Cain)− Ca2 × 2− Ca2 + FW c(Ca4)× 2 + 0
Eqa3 : 0 º ELc(Ca2 , Cd2)× 2− Ca3 × 2 + 0
Eqa4 : 0 º FW c(Ca3)× 2− Ca4 × 2 + 0
Eqa5 : 0 º ELc(Ca2 , Cd2)− Ca5 + 0
Eqaout : ∗ º FW c(Ca5) + 0
Eqd0 : ∗ º (r − Cd0)× n1 + b
Eqd1 : ∗ º (r − Cd1)× n2 + b
Eqd2 : ∗ º FW c(Cd0)− Cd2 + (r − Cd2)× n3 + b
Eqd3 : ∗ º FW c(Cd1) + (ELc(Cd4)− Cd3)× 2− Cd3 + b
Eqd4 : ∗ º (ELc(Cd2)− Cd4)× 2 + (r − Cd3)× n4 + b
Eqd5 : r º ELc(Cd3)− Cd5 + b

(1)

E q
d 5

E q
d 3

E q
d 4

E q
d 1

E q
d 2

E q
d 0

E q
a o u t

E q
a 5

E q
a 2

E q
d 2

E q
d 0

E q
a i n E q

a 4

E q
a 3

t f3t f1

t f2

t f0

t f2

t f0 t fa

Fig. 4. Diag: Mn1 and Diag: Eqaout in Mn2

5. RELATED WORK

The major method for diagnosing a DES is trajectory
unfolding. Unfolding method is used on the observable
trajectory of system evolution to find the faulty states as
the diagnosis. For example, Ye and Dague [2008] proposes
a decentralized model-based diagnosis algorithm based on

the PNs model (Li et al. [2007]) by inversely unfolding the
trajectory. But in Ye and Dague [2008], local diagnoser
does not support iteration in BPEL processes.

We can adapt the flightagent example according to the
modeling methods of Benveniste et al. [2003] by represent-
ing the states of the BPEL service as places and activities
as transitions for applying the unfolding approach for
diagnosis. As this modeling approach does not consider
the data dependency so it cannot ensure the diagnosis is as
minimal as ours. S.Genc and S.Lafortune [2005] models a
modular interacting system as a set of place-bordered Petri
nets and proposes a distributed online diagnosis which
applies algebra calculations from the local models and the
communicating messages between them. But the fact that
S.Genc and S.Lafortune [2005] models the state of a model
as a transition which causes the combinatorial explosion
of the state space, and its simple Petri nets definition are
too limited to deal with the data aspects.

There are some works that model the WS system with
other types of models. In Console et al. [2002], a system is
modeled with process algebra containing faulty behavior
models. The diagnosis is done by comparing all possible
action traces with the observations. All the faulty actions
of the matched traces are the diagnosed faults. But Con-
sole et al. [2002] models and diagnosis the general WS
applications but not a concrete WS specification language.
Yan and Dague [2007] models BPEL services as enriched
synchronized automata pieces and diagnose by trajectory
reconstruction from observation while the algorithm is
incapable for diagnosing the control fault in the process.

A similar diagnosis approach has been proposed in Ardis-
sono et al. [2005], of which we use the same data de-
pendency relation. But Ardissono et al. [2005] does not
support loops in WS process while we represent loops as
the occurrence in a characteristic vector. In such way, we
solve the loops without extra cost. The consistency-base
diagnosis approach proposed in Ardissono et al. [2005] is
more abstract but loses the precision on the modeling level.

Although our approach contains recursive loop, all the
recursive stops once each inequation is checked. So in worst
case, each inequation in the inequations system is checked
at most once. For each inequation concerning place p, the
time of calculating depends on the color (propagation)
functions defined in scope of •p, |t| in worst case where
t is the number of transitions. So the worst complexity
is O(|p| · |t|). But in practical, related color (propagation)
functions are much less than |t|. So the complexity of our
algorithm is much less than those of Yan and Dague [2007],
Ardissono et al. [2005], Ye and Dague [2008] (O(|p| · |t|2)).

6. CONCLUSION

This CPN modeling approach addresses diagnosis of data
fault(s) of orchestrated Web services. The paper constructs
a model for the faulty data and faulty activities in a
BPEL process. We construct an inequations system for the
diagnosis of a BPEL service. And a concrete inequations
solving algorithm is proposed. The diagnosis takes advan-
tage of the matrix calculation, which helps to improve
the effectiveness of the diagnosis. The interpretation of
happened (1) or not happened (0) status of the fault

transitions avoids the unfolding of Petri nets. So the it-
erative structure in BPEL services does not increase the
complexity of the diagnosis.

Our diagnosis approach can be easily extended into the dis-
tributed environments according to the approach proposed
in S.Genc and S.Lafortune [2005] by defining a proper
composition protocol of the CPNs.

REFERENCES

L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan,
and D. T. Dupré. Enhancing web services with diagnostic
capabilities. In European Conference on Web Services, pages 182–
191, 2005.

A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis of
asynchronous discrete event systems, a net unfolding approach.
IEEE Trans. on Automatic Control, 48:714–727, 2003.

K. Boukadi, C. Ghedira, Z. Maamar, and H. Boucheneb. Specifica-
tion and verification of views over composite web services using
high level petri-nets. Technical Report RR-LIRIS-2006-014, LIRIS
UMR 5205 CNRS/INSA de Lyon/Universit Claude Bernard Lyon
1/Universit Lumire Lyon 2/Ecole Centrale de Lyon, 2006. URL
http://liris.cnrs.fr/publis/?id=2429.

T. Chatain and C. Jard. Models for the supervision of web services
orchestration with dynamic changes. In Advanced Industrial
Conference on Telecommunications / Service Assurance with
Partial and Intermittent Resources Conference / E-Learning on
Telecommunications Workshop, pages 446–451. IEEE CS, 2005.

L. Console, C. Picardi, and M. Ribaudo. Process algebras for systems
diagnosis. Artificial Intelligence, 142(1):19–51, November 2002.

Denmark CPN Group, University of Aarhus. Cpn tools. http://

wiki.daimi.au.dk/cpntools/cpntools.wiki, 2007.
M. Diaz. Les réseaux de Petri de haut niveau. Hermes Science

Publications, Paris, France, 2001.
K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods

and Practical Use. Springer, USA, 1997.
Y. Li, T. Melliti, and P. Dague. Modeling bpel ws for diagnosis:

towards self-healing ws. In International Conference on Web
Information Systems and Technologies, pages 795–803. IEEE
C.S., 2007.

OASIS. Bpel 2.0 specification. http://docs.oasis-open.org/

wsbpel/2.0/wsbpel-specification-draft.html, August 2006.
S.Genc and S.Lafortune. Distributed diagnosis of place-bordered

petri nets. Automated Software Engineering, 4(2):206–219, April
2005.

W. Tan, Y. Fan, and M. Zhou. A petri net-based method for
compatibility analysis and composition of web services in business
process execution language. Automated Systems Engineering, 6:
94–106, 2009.

Y. Yan. Description Language and Formal Methods for Web Service
Process Modeling. M.E Sharpe Inc., Armonk USA, 2008.

Y. Yan and P. Dague. Modeling and diagnosing orchestrated web
service process web services. In International Conference on Web
Services, pages 9–13. IEEE C.S., 2007.

L. Ye and P. Dague. Decentralized diagnosis for bpel web services
(poster). In International Conference on Web Information Sys-
tems and Technologies, pages 283–287. INSTICC, 2008.

X. Yi and K.J. Kochut. Process composition of web services
with complex conversation protocols: A colored petri nets based
approach. In Design, Analysis, and Simulation of Distributed
Systems, 2004.

Z. Zhang, F. Hong, and H. Xiao. A colored petri net-based model for
web service composition. Journal of Shanghai University (English
Edition), 105(4):323–329, 2008.

