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Abstract

This paper is about Web services used in distributed,
inter-organizational business cooperation (choreography).
In this application scenario, we have a multipart functional
convention between all the involved Web services (called
partners) in order to reach the purpose of the choreogra-
phy. In such a scenario, two main problems can occur:
i) Can we determine whether the resulted composition of
partner is conforming or not to the expected behavior, with
respect to the initial cooperation schema? ii) Can we de-
termine whether the cooperation is possible by considering
the individual partners’ behaviors? i.e. are the different
partners’ behaviors compatible between them? In this pa-
per, we address the second problem. We propose a method
to model partners’ behaviors and to check the correctness
of the choreography (deadlock-free) based on the properties
of one partner’s behavior.

1 Introduction

Web services signal a new area of lightweight distributed
application development. They show a strong orienta-
tion of cross-platform, cross-language compatibility due to
their framework interoperability. This makes them a robust
framework for services oriented computation on the Inter-
net. One of the design goals for Web services is to allow
companies and developers to share services with other com-
panies in a simple way over the Internet. The service de-
scription language WSDL plays a central role in Web ser-
vices interoperability. It describes the service interface by
listing the collection of operations that are network accessi-
ble through standard XML messaging[13].

The WSDL model is restricted to only very simple com-

putation services (it presents services as a set of indepen-
dent operations). However, certain types of applications
require combining today’s simple Web services into more
complex ones in order to achieve more sophisticated appli-
cation purposes (e.g. B2B). To this aim, two extensions
of Web services’ technologies are currently investigated:
the orchestration and the choreography. The first aims to
combine existent Web services by adding a central coor-
dinator (orchestrator) which is responsible of invoking ba-
sic Web services, according to a set of control flow pat-
terns. The second is referred to as a Web service chore-
ography, which does not assume the existence of a central
coordinator but defines a conversation that should be ex-
plicitly considered by each participant Web service (called
partner). In most cases, choreography and orchestration are
used complementarily[4]. Orchestration languages are used
to implement a choreography. In this paper, we consider
the case of a distributed implementation of a choreography
using the orchestration language BPEL4WS[1], BPEL for
short.

Technically, BPEL allows each partner to orchestrate its
behavior in order to fulfill its role, with respect to the chore-
ography specification. It provides a set of communication
primitives such that the “invoke” (for requesting services
from partners), “receive” and “reply” (for offering services
to partners). This model of primitives defines the interac-
tion protocol viewed by each partner. It also provides the
data manipulation facilities necessary to describe the com-
putation performed by an executable process. All the previ-
ous primitives, communication and data handling, are struc-
tured using a set of control flow constructors, to describe the
order of their execution.



Goals

This paper is about the use of Web services in distributed,
inter-organizational business cooperation (choreography).
When such a cooperation is established between a set of
partners, the formers begin by defining the choreography.
Then, each partner defines its own role as a BPEL service
(orchestrator) and shares an abstract description of its be-
havior (by hiding computation details) with the other part-
ners. This description, called abstract BPEL, describes the
partner’s behavior and interaction points with the others. In
such an application scenario, two main problems can occur:
conformance and properties checking.

The first problem is to verify whether the interaction be-
tween the orchestrated individual services is conform to the
conversation specified in the choreography specification.
Van der Aalst et al addressed this problem in [21] and a
similar approach is adapted by Baldoni et al in [2]. In the
present paper, we address the second problem. We consider
a set of partners, given their observable behavior description
(their abstract BPEL description), we propose a method to
verify the compatibility between them, from the interaction
point of view (the interaction is deadlock-free).

Motivating scenario

In order to motivate our work, let us consider the following
cross-organization cooperation. The example involves three
partners: a Customer agent (flight agency) C, an Airline
company (flight-tickets seller) A and a Bank center B. The
three companies aim to offer a secure tickets buying service
for the bank clients. C plays the role of an intermediate
between end-users’ needs and the available airline flights.
Once the user choice done, C asks B to pay A. According
to the success or the fail of the payment operation between
B and A, the latter sends back either a confirmation or a
fail message to C, who in turn forwards the response to
the end-user. If we suppose that each partner provides an
abstract description of its observable behavior which means
its input and output and time constraints, we verify that the
composition of these three services is deadlock-free (they
are compatible). This example will be used to illustrate each
step of our work.

Approach

After reviewing the related work, section 3 gives an in-
formal introduction to abstract BPEL features. Then, we
point out the lack of semantics (the specification seman-
tics is written in English proses), in section 4 we give an
operational semantic to BPEL process definition language
and argue our choice on abstraction consideration and time
model, we end this section by proposing a formal defini-
tion of a partner and a choreography. Using the given for-

mal semantics, we model the observable behavior of each
partner using a TIOTS (Timed Input-output Transition Sys-
tem). While a partner exposes only its external behavior,
the resulted TIOTS may be non-deterministic. This non-
determinism can cause deadlock during the interaction with
such a partner. In section 5, we propose a conformity re-
lation that characterizes the class of correct Web services
behaviors. Based on that relation, we propose an algorithm
that checks the compatibility between two partner’s behav-
ior. In section 6, we reduce the problem of choreography
correctness checking to a two partners compatibility prob-
lem by introducing an aggregation operator. We conclude
the paper by summarizing our main contributions.

2 Related works

Using either a choreography or an orchestration ap-
proach, the resulted service is always called a composite
Web service. The composite service adds two dimensions
by comparison to the simple ones; they are statefull and they
obey to an operational behavior (interaction protocol). This
raises many theoretical and practical issues which are part
of ongoing research [15]. Due to the lack a formal seman-
tic to BPEL (its semantic is defined using English prose), it
is hard to define formal tools and methods that can validate
and verify behavioral properties by acting directly on BPEL
expressions. The principal approach, followed by most of
the state-of-the-art works, is to translate a service behavior
(BPEL process) into a mathematically well-founded model,
considering only the semantic of elements that are relevant
for the property to be verified. Then, model-checking meth-
ods can be applied to the formal representation of the com-
posite service behavior. There are three major formalisms
which were successfully applied: Finite State Machines
(FSM), Process Algebras (PA) and Petri Nets (PN). A great
number of works therein aims to verify specific properties
of a BPEL process.

In [20], the authors translate a given BPEL process into
a process algebraic expression in order to verify its control
flow. Based on this work, they provide an in-depth-analysis
of BPELs Dead-Path-Elimination by formal means. In [7],
a similar approach is given and is translated to LOTOS. In
previous works, we gave an operational semantic to Xlang
(ancestor of BPEL) in order to verify the ambiguity (non
usability) of a Web service behavior (not deadlock-free)[12,
9]. In [17], a similar work is done using Petri Net. In [19,
6, 10] and [18], a pattern-based translation of activities into
Petri Nets are proposed, then they use Petri Net properties
to make properties checking.

Most of these works try to verify properties related to a
single BPEL process (the coordinator). In this paper, we
focus on choreography correctness based on a single part-
ner’s observable behaviors (see [5] for work dealing with



choreography). Using the same approach as previous re-
lated works, we begin by giving an observable operational
semantic to abstract BPEL. The main difference with the
previous works is that we do not map BPEL process con-
structors to Process Algebra ones, but we consider them as a
grammar of timed process algebra and we define their oper-
ational semantic according to their informal definition. This
step allows us to model the partners’ behavior using TIOTS
(by applying operational rules) with regard to their interac-
tion. The correctness of the choreography is then character-
ized using relational properties between each participant’s
behavior and its partners’ ones.

3 Web service Choreography Using BPEL

In the following, and according to the sketch in the in-
troduction, a choreography is defined by a set of partners’
abstract BPEL files. Each partner implements its service us-
ing the executable BPEL file and shares an abstract BPEL
file with its partners. In this work1, we consider the max-
imum abstraction level by hiding all the computational de-
tails (variables, assigning expression, boolean condition, in-
ternal exceptions raise). This seems to be more realistic due
to confidentiality of business rules between partners (see
[12][9]). In the remainder of this paper, we will only con-
sider the abstract facette of BPEL.

3.1 Informal introduction to abstract
BPEL specification

An abstract BPEL file is composed of a set of partners’
interface declaration (the required interfaces), a set of local
WSDL operations (the provided interface) and the service
behavior definition (defined using the BPEL process defini-
tion language, see below).

3.1.1 WSDL Operations

An operation is defined by the exchanged messages needed
to invoke it and the order in which they have to be per-
formed. Web service’s framework (WSDL) supports four
types of operation; notification, solicit, request-response
and solicit-response. The operation, local to the service or
remote (partner’s one), constitutes the basic communication
imperative. The interaction between two services is fulfilled
by invoking their mutual operations.

Let M be a set of XML message types. We use sym-
bol ”?” for input and ”!” for output (e.g. ?m receiv-
ing a message of type m). opNames a set of opera-
tion names. We denote the set of operations by O (we

1In the current version of BPEL specification, the abstract BPEL is
similar to the executable one. The specification leaves to the developer the
choice of the abstraction level.

range over using oi). A WSDL operation o ∈ O can
be either one-way o = opName[∗m] or two-way o =
opName[!m1, ?m2]|opName[?m1, !m2] (∗may be substi-
tuted by ”!” or ”?”). We use Ω to denote the set of partner
names, we range over using ωi. To precise the owner of
an operation or a message we prefix it by the name of the
owner partner (e.g ω.o is the operation o of the partner ω).
We also introduce the following functions:

• Input : O → M with Input(o) = m where
o = opName[?m], o = opName[?m, !m′] or o =
opName[!m′, ?m])

• Output : O → M with Output(o) = m where
o = opName[!m], o = opName[?m′, !m] or o =
opName[!m, ?m′]

The Input function returns the input message of an op-
eration if it exists (not defined for notification). The Output
function returns the output message of an operation (not de-
fined for solicitation).

3.1.2 Abstract BPEL process definition language

It allows partners to define their behavior and their interac-
tion (with their partner) in the whole choreography. The
Abstract BPEL process definition language (AbBPEL) is
composed of a set of activities definitions. In AbBPEL we
distinguishes two types of activity, basic ones and structured
ones. In the following, we present the grammar of the lan-
guage using a personal syntax notation of the BPEL activi-
ties in order to avoid XML sugar notations2.

Basic activities They are the basic element used to com-
pose a partner’s behavior.

In the following, we use xi to design partner name vari-
able and Xi = (x1...xn) a vector of the partners name vari-
ables.

BasicAct ::=
receive[o](x)|reply[o](x)|invoke[o]|wait[d|t]|throw[e]

• receive[o](x): it is a communication imperative ac-
tivity. It enables the process to receive an invocation
order for its operation o from one of its partners with
name x3. The use of this variable x will be explained
the section 3.1.4.

2We recall that the abstract facette of the process language is a variant
of the process execution language by hiding some implementation details.
We choose to consider an abstraction that hides the branching conditions,
the iteration condition, the local exception rasing and internal data manip-
ulation (i.e assigning).

3In BPEL, the receive activity is not an addressed activity, we intro-
duce the variable x in order to specify the choreography.



• reply[o](x): it is a communication imperative to send
back (to partner or client) the response to partner x for
the invocation of operation o . The receive and reply
activities must be applied to a local operation.

• invoke[ω.o]: it is a communication imperative to in-
voke the operation o of the partner ω (ω must be differ-
ent from the name of the current partner). Two-ways
operations (sending request and receiving response)
are synchronous one, the invoker send request and wait
for response.

• wait[d|t]: it is an event oriented activity which pro-
duces a timeout event for a given period t or a date d.
Here, we consider just the period wait(t). The event
is catched in the process itself (no timeout communi-
cation).

• throw[e]: it does throw an exception e. An exception
is an XML type, so we can consider that e ∈ M . The
difference is that they can be internal events and not
communication events.

• empty: it is an activity which does nothing, and then
terminating.

• time: this activity is not present is the BPEL (we will
explain below). It represents an activity that does noth-
ing but lets time pass.

Within an AbBPEL, each invoke[ω.o](x) is called an in-
voke instance of the operation o or partner ω and each cou-
ple of receive[o](x) and receive[o](y) where y = x an
instance of o call.

Structured activities Structured activities are a set of
control flow constructors. Each structured activity defines
a specific order in which activities (in parameters) will be
executed (or activated). They can be applied on structured
or basic ones. We use P, Q, ... as symbols to range over
activities (basic or structured ones).

StructAct ::=
P ;Q|flow[{Pi}i∈I ]|while(P ), switch[{Pi}i∈I ]|scope(P, E)

with E = [{(mi, Pi) | i ∈ I}, (d,Q)]

Note here that P and Q can be parameterized by the part-
ner variable if they contain receive, reply or invoke activ-
ities.

• (P ; Q): sequence activity represents the execution se-
quence, P then Q.

• flow[{Pi}i∈I}]: executing different activities in paral-
lel (Pi). The joint links are ignored for simplicity.

• switch[{Pi}i∈I}]: conditional execution control. Ac-
cording to some condition, the process activates some
sub-activities (Pi).

• scope(P, E): encapsulates P and guards it by a set of
events and their associated activities, E4. The process
behaves like the P activity if none of the events hap-
pens. The events can be a received message, a raised
exception, or a time event (the wait). For each event,
the associated activities are executed when it happens.

• while(P ): repeats the execution of the P activity until
a condition is hold or broken.

Note that, in our syntax, we limit to the observable pa-
rameter e.g. for the switch and while activities, we do not
represent their conditions. From an external point of view,
the switch is assimilated to an internal non-deterministic
choice operator. The chosen behavior is done internally (out
of the control of partners or clients). The same reasoning is
applied for the while. Also, we would like to signal that we
do not handle explicitly the pick constructor because we
consider that it is a special case of the scope. The pick is a
scope that does nothing but lets time pass (that is why we
introduce time as a basic activity) and it is guarded with all
the pick events.

The process definition language of BPEL is defined as
follow:

BPELProcess ::= StructAct

That means that each process behavior is represented by
an imbrication of structured and basic activities. We use
BPELProcess to represent the BPEL process language
expressions and we range over using Bi.

3.1.3 Partner definition

Each partner involved in the choreography provides an
abstract BPEL file describing : (i) its partner, (ii) its
interface (local operations) and (iii) the AbBPEL process
defining its behavior (here its observable behavior).

Definition 1 An abstract BPEL file of a partner ω is a tuple
〈P, In, B(X)〉 with

• ω ∈ Ω is the name of the partner (we use the name here
with substitution to the notion of XML spacenames)
and let Ω the set of all the partners names.

• In ⊂ O represents the WSDL interface of the pro-
cess. The set of operations offered by the service.
In = {ω.oi} for i = 0..n

4E is an event handler process E
def
= [{(mi, Pi) | i ∈

I}, (d, Q), {(ej , Rj) | j ∈ J}], it associates to each event type (message,
exception and timeout) a process



• P ⊂ O is the set of partners’ operations P =
{ωi.o|ωi 6= ω and ∃ a partner ωi〈Pi, Ini, Bi〉 with
ωi.o ∈ Ini}. It represents the set of imported partners’
operations prefixed by the partner identifier (name).

• B(X) ∈ BPELProcess represents an expression of
the BPEL process definition language with a vector of
free partners name variables X = (x1....xn). It de-
scribes the partner behavior.

3.1.4 Choreography definition

As sketched in the introduction, the choreography is a
global overview on the inter-connection between partner’s
communication imperatives. In the BPEL abstract, the in-
voke activities are addressed (the owner of the operation)
but the exposed operations (receive and reply activities)
are not addressed. Defining the choreography is resumed
to associate to each receive and/or reply instance the in-
tended partner that will invoke it according to the global
composition schema.

Definition 2 A choreography is defined by C = {[ωi =
〈Pi, Ini, Bi〉, φi]i∈I} where

1. φi : Xi → Ωn a function that instantiates the partners
parameters.

2. Bi is the expression Bi(φi(X)) where each xi is re-
placed by φi(xi). No free variables are allowed in the
Bi expression.

The choreography specifies, for each exposed operation, the
target partner that will invoke it (the connection between
partner). In our model, this is done by a set of functions φi

which instantiate the receive and reply variables.

Definition 3 A choreography C = {(ωi =
〈Pi, Ini, Bi〉, φi)} is valid iff , for each two-ways
operation o ∈ Ini, we have φi(x) = φi(y) where x and y
are the variables of one receive[o](x) and reply[o](y) for
each o call instance.

3.2 Illustrative example

In this section, we present the choreography of our ex-
ample.

partner A: provides the following operations:
o1[?getF, !ListF ] returns the list of available flights,
o2[?getCho] gets the user choice, o3[?cancel] receives a
cancel from the customer and o4[?payment] receives the
payment confirmation from the bank.

A = (PA = {C.o2}, InA = {o1, o2, o3, o4}, BA(x, y))
with BA(x, y) =

rec[o1](x); rep[o1](x); rec[o2](x); scope[time, {(rec[o4](y),
inv[C.o2]), (rec[o3](x), empty)}]

partner C: o1[?nocredit] receives a “no credit” message
for a payment request and, o2[?conf ] receives the success
of a payment confirmation from the airline company.

C = (PC = {A.o1, A.o2, A.o3, B.o1}, InC =
{o1, o2}, BC(x, y)) with

BC(x, y) = inv[A.o1]; inv[A.o2]; inv[B.o1];
scope[time, {(rec[o1](x), inv[A.o3]), (rec[o2](y), empty)}]
partner B: o1[?orderPay] receives a payment order.

B = (PB = {C.o1, A.o4}, InB = {o1}, BB(x)) with
BB(x) = rec[o1](x); switch[inv[C.o1], inv[A.o4]]

The choreography is composed by the three partners:
Agency = {(A, φA = {(x, C), (y, B)}), (B, φB = {(x, C)}),
(C, φC = {(x, A), (y, B)})}

4 Modelling BPEL abstract process behavior

BPEL process definition language is a set of activities
describing, in a modular way, the observable behavior of
the involved Web services. In fact, this approach is close
to the process algebra paradigm illustrated for instance by
CCS [14], CSP [11] and ACP [3]. The main objective of
the process algebra approach is to cope with the complexity
of the conception of parallel systems (in our case the chore-
ography). Since time is an important issue in such systems,
the process algebra model has been enlarged by introducing
(discrete or dense) time passing. The discrete time mod-
els are usually defined by a special transition representing
one unit time passing [16]. Thus, it appears that the syn-
tactic features of AbBPEL make it a good candidate to be
an algebra of timed processes. Our approach is to consider
AbBPEL as a timed process algebra, then we:

1. associate with each activity a set of operational rules
which assigns for each process a behavioral interpreta-
tion.

2. introduce a compatibility relation, in order to compare
different partners’ processes, and which expresses that
two processes (here partner behaviors) are compatible
(their interaction is deadlock-free).

3. develop algorithms which decide the compatibility of
two partners processes.

4. propose an algorithm that checks the correctness of a
choreography.

as the first step for the development of the operational
semantic we give the elements necessary to this semantic.

A labelled transition system is an oriented graph where
the nodes represent the possible states of the system (with
an initial state) and the arcs represent the state transitions.



Each arc is labelled by the action whose occurrence has trig-
gered this transition. Depending on the process algebra lan-
guage, some labels have a special meaning. We will detail
our alphabet later.

Definition 4 A labelled transition system LTS is defined a
tuple LTS = (S, L,→, s0) where:

• S is a set of states with s0 ∈ S the initial state

• L is a finite set of labels

• →⊆ S × L× S is the transition relation

A LTS is the representation of the behaviour of a pro-
cess. The states of the process are simply the current pro-
cess after some part of an execution. To each operator op,
one associates a set of transition rules which define the pos-
sible behaviour of a process whose outer constructor is op.
Let us suppose that we want to define a rule [opx] for a
generic process P = op(P1, P2, . . .). At first, we have a
boolean expression over some potential transitions of se-
lected components of P : Bexp({Po(i)

αi−→ P ′o(i)}). This
condition is enforced by a second condition on the occur-
ring labels denoted guard({αi}). If the two conditions are
fulfilled then a state transition for P is possible where the
label Lexp({αi}) is an expression depending on the labels
of sub processes transition and the new state is an expres-
sion Nexp(P, {P ′o(i)}) depending on the original process
and the new sub processes. Below, a generic rule is pre-
sented with the usual style.

[opx] :
Bexp({Po(i)

αi−→ P ′o(i)})
P

Lexp({αi})−→ Nexp(P, {P ′o(i)})
where

guard({αi})

4.1 Operational Semantics of Abstract
BPEL activities

While the operational semantics are defined with re-
sponse to a set of events, we will give the list of consid-
ered actions according to the informal semantic of abstract
BPEL’s process definition language:

• There are two events associated with a message m: the
emission denoted by !m and the reception denoted by
?m. We also denote !M = {!m |m ∈ M} and ?M =
{?m |m ∈ M}.

• Since the service may evolve in an unobservable way
(e.g. the evaluation of a condition), we introduce τ , the
internal action.

• Since BPEL takes time into account, χ denotes one
time unit passing. We have chosen to represent time
passing by units because the time constraints of a Web
service are generally ”soft” and thus the discretization
of time is a valid abstraction. The interested readers
can refer to [8] for dense time semantic.

• The exception events set of BPEL4WS is denoted by
Ex.

• In order to control that the client correctly detects the
end of the service, we introduce

√
, the termination

event. This action will also simplify the definition of
the operational semantics.

4.1.1 Basic Activities

Basic processes are time, empty, receive, reply and throw.

time : It can only let time pass (χ stands for any delay):

time
χ−−→ time.

empty : It can only terminate: empty
√

−−−→ 0.

receive[o](x) and reply[o](x): The receive[o](x) activity
consists of receiving the input message of the operation o
and then terminating. A reply[o](x) activity sends the out-
put message of the operation o and then terminates. The
messages are prefixed by the name of the partner x (the part-
ner that is supposed to invoke this instance of o). The two
activities can be delayed.

receive[o](x)
?x.Input(o)−−−−−−−−−→ empty

receive[o](x)
χ−−→ receive[o](x)

reply[o](x)
!x.Output(o)−−−−−−−−−−→ empty

reply[o](x)
χ−−→ reply[o](x)

invoke[o]: It is applied to an operation that belongs to
one of the current process partners (o ∈ P ). Let ω.o ∈ P
and let ω′ be the name of the current partner.

invoke[ω.o]
χ−−→ invoke[ω.o]

invoke[ω.o]
!ω′.Input(ω.o)−−−−−−−−−−−→ empty where o = opName[?m1]

invoke[ω.o]
?ω′.Output(ω.o)−−−−−−−−−−−−→ empty where

o = opName[!m1]

invoke[ω.o]
!ω′.Input(ω.o)−−−−−−−−−−−→ invoke[ω.o′] where

ω.o′ = opName[!m2] and ω.o = opName[?m1, !m2]

invoke[ω.o]
?ω′.Output(ω.o)−−−−−−−−−−−−→ invoke[ω.o′] where

ω.o′ = opName[?m2] and ω.o = opName[!m1, ?m2]

The semantic of the invoke activity depends on the op-
eration type. For one-way operation, the semantic is quite



simple; the process executes the event according to the op-
eration signature and becomes empty. For two-ways op-
eration, after executing the first event (input or output), the
activity becomes another invoke where the parameter is a
one-way operation that have the same name and the same
owner. The events are prefixed by the name of the current
partner followed by the name of the operation owner5.

throw: It raises an exception e which must be han-
dled in some way (see below the scope process): ∀ e ∈
E, throw[E]

e−−→ 0

4.1.2 Structured activities

We review the sequence, switch, while, flow, scope and
pick operators of BPEL4WS. For space considerations, we
do not detail all the rules. They are similar to most pro-
cess algebra ones. The reader can refer to our previous
works [12][8] for details. In the sequel, we will complete
the AbBPEL algebra operational semantic by defining the
structured activities operational semantics. In the table 4.1.2
we give the operational semantic of BPEL structured activ-
ities.

By a modular application of the transition rules, we can
associate to each term of the process definition language
(defined by the BNF BPELProcess) a Labeled Transition
System.

Definition 5 The behavior of a partner ω = (P, In,B(X))
is a Labeled Transition System LTSB(X) = 〈Act =
L ∪ {τ, χ,

√}, T, s0〉:

• S Set of States. Each state is labeled by an expression
in BPELProcess;

• L ⊂ (?M∪!M) the set of sending and receiv-
ing messages (prefixed by partner names).L =⊎{Input(o)} ∪ {Output(o)} for o ∈ (P ∪ In);

• T ⊆ S × (L ∪ {t, χ,
√}) × S a transition Relation;

and

• s0 ∈ S initial state, s0 = B(X).

Since the LTS gives a semantic for the BPEL process defi-
nition language, it must take into account the time (discrete)
and the sending/receiving of messages. Such LTS is called
a Timed Input/Output Transitions System (TIOTS). In the
remainder of this paper, a partner involved in a choreogra-
phy within the instantiation function φi is defined by
ωi = (Pi, Ini, T IOTSBi) where TIOTSBi is the

5Note that, if a Web service uses invoke on an operation of a partner
and this operation starts with an input message then, the associated event
is an output message and vice versa

P ; Q Rseq1:∀ a 6= √
, P

a−−→P ′

P ; Q
a−−→P ′

Rseq2:∀ a, P

√
−−−→ and Q

a−−→Q′

P ; Q
a−−→Q′

switch

[{Pi}i∈I ] Rswitch:∀ i ∈ I, switch[{Pi | i ∈ I}] τ−−→ Pi

while[P ] R(while1 ): while[P ]
τ−−→ P ; while[P ]

Rwhile2:while[P ]
τ−−→ empty

flow

[{Pi}i∈I ] Rf1 : ∀ a ∈ Ex

S{τ},
∃ j∈I, Pj

a−−→P ′

flow[{Pi | i∈I}] a−−→flow[{Pi | i∈I\{j}}S{P ′}]
Rf2 : ∀m ∈ M,

∃ j∈I, Pj
∗m−−−−→P ′ and ∀ i6=j, ∀ a∈Ex

S{τ}, not (Pi
a−−→)

flow[{Pi | i∈I}] ∗m−−−−→flow[{Pi | i∈I\{j}}S{P ′}]

Rf3 : ∀ i∈I, Pi

√
−−−→P ′i

flow[{Pi | i∈I}]
√

−−−→0

Rf4 : ∃J /∈∅, J⊆I, ∀i∈J, Pi

χ−−→P ′i and ∀i∈I\J, Pi

√
−−−→

flow[{Pi}i∈I ]
χ−−→flow[{P ′i}i∈J

S{Pi}i∈I\J ]

scope(P, E) R(scop1): P

√
−−−→

scope(P,E)

√
−−−→0

Rscop2 : P
χ−−→P ′

scope(P,E1)
χ−−→Q

Rscop3 : ∀ i ∈ I, ∀ a∈EX
S {τ,

√}, not(P a−−→)

scope(P,E)
?mi−−−−→Pi

Rscop4 : ∀ j ∈ J, P
ej−−−→

scope(P,E)
τ−−→Rj

Rscop5 :∀ e /∈ EJ , P
e−−→

scope(P,E)
e−−→0

Table 1. Operational semantics of Abstract
BPEL structured activities

TIOTS obtained by applying rules on the expression
B(φi(X)). The figure 1 represents the partners’ TIOTS ac-
cording to the choreography of the Agency example.

5 The notion of Ambiguity of an abBPEL
process

By hiding computational details and especially the
boolean conditions and the state of the involved variables,
the observable behavior of the partners’ process becomes
non-deterministic over the internal transition (in addition
to non-determinism over communication actions due to
the service design itself). While the services’ behavior
contain external control (incoming messages), the non-
deterministic internal transition may lead to a deadlock. In
fact, the partners can not decide about the real state of the
service. In order to clarify this point, let us define another
version of the airline service; After receiving the customer
request, and according to the destination, the payment can
be done either using ”Creditcard” or ”Cash”. Operation
list:



0

1

	 ?C.A.getF	

2

	 !C.A.listF	

3

	 ?C.A.getCho	

4

	 ?C.A.cancel	 5

	 ?B.A.payment	

	 !A.C.conf	

0

1

	 ?C.B.orderPay	

2

	 t	

3

	 t	

4

	 !B.C.noCredit	 	 !B.A.payment	

0

1

	 !C.A.getF	

2

	 ?C.A.listF	

3

	 !C.A.getCho	

4

	 !C.B.orderPay	

5

	 ?B.C.noCredit	 	 ?A.C.conf	

Figure 1. TIOTSBA , TIOTSBB and TIOTSBC

of partners according to the choreography of
the Agency example

1

2

3

40 5

?A.flightInfo

?A.cardNumconf

?A.cash

!A.conf

t

t

Figure 2. TIOTS of the Airline process: Am-
biguous observable behaviour

• A.o1 = byticket[?flightInfor] ;
• A.o2 = cardPay[?cardNum, !conf ] ;
• A.o3 = cashPay[?cash, !conf ]
The A partner abstract process is (see 2): BA=
receive[o1] ; switch[{(receive[o2] ; reply[o2]),
(receive[o3]; reply[o3])}]

The partner that will be in charge of the payment, the
Bank in our example, has no way to know which payment
mode will be expected by the airline. We call such a ser-
vice “ambiguous”. The service has no possible compatible
partner. The interaction with such a service may lead to a
deadlock. For a given level of abstraction (the hidden fea-
tures), the designer of the process must adapt the services
behaviors in order to avoid such deadlocks.

In the following, we propose a relation that characterizes
the possible correct interaction (deadlock-free) between two
partners’ behaviors (TIOTS). Based on this relation, we de-
fine two algorithms, the first checks the ambiguity of part-
ners’ behavior and the second checks whether two TIOTS
(two partners’ processes) are “compatible”.

5.1 An interaction relation for Web ser-
vices

Let us briefly explain why the two main relations - the
language equivalence and the bisimulation equivalence - do
not match our needs. The language equivalence is unable to

express the different branching capabilities of the systems
(e.g. an immediate choice versus a delayed one) since it
does not require an equivalence relation between the inter-
mediate states of the two systems. The bisimulation equiv-
alence does not take into account the different nature of the
event: in an asynchronous communicating system, the send-
ing of a message is an action whereas the reception is a
reaction. Thus, the interaction relation that we introduce
can be viewed as a bi-simulation relation modified in order
to capture the nature of the events. As usual in the LTS
formalism, we define an observable transition relation be-
tween states given by s

a⇒ s′ iff s
τ∗aτ∗→ s′ and s

ε⇒ s′ iff

s
τ∗→ s′. Moreover, we suppose that the exception events

are not observable in the LTS of the service. If this is the
case, it means that the service does not catch an exception
and then must be modified.

We now derive the interaction relation from general con-
siderations. Let us focus on some instants of the execution.
If one LTS is able to send a message (action !m), the other
one must be able to receive this message (action ?m). If
one LTS is able to let the time pass (action χ), the other one
must also be able to let the time pass (action χ). At last, if
one LTS is terminating (action

√
), the other one must also

be able to terminate (action
√

).
The subtle point is about the reception of a message.

Assume that one LTS expects the reception of ?m, does it
mean that the other one is able to send this message? The
answer is not necessary yes since the latter LTS may evolve
in an indistinguishable way from one state to two states, one
where it is able to send m and the other one where it is not.
However, we require that in the other state, it is able to send
a message in order to avoid an infinite waiting of the first
LTS.

We introduce the following notation ?mc =!m,
!mc =?m (?ω.mc =!ω.m, !ω.mc =?ω.m) and ∀a /∈
(!M∪?M); ac = a.

Definition 6 Let LTS1 = (S1, L1,→1, s01) and LTS2 =
(S2, L2,→2, s02) be two labeled transition systems. Then
LTS1 and LTS2 correctly interact (noted LTS1 ³ LTS2)
iff ∃ ∼ ⊆ S1 × S2 such that:

• s01 ∼ s02

• ∀s1, s2 such that s1 ∼ s2

– Let a /∈ {?m}m∈M , if ∃s1
a=⇒1 s′1 then

∃s2
ac

=⇒2 s′2 with s′1 ∼ s′2 and if ∃s2
a=⇒2 s′2

then ∃s1
ac

=⇒1 s′1 with s′1 ∼ s′2

– Let m ∈ M , if s1
?m=⇒1 s′1 then

∗ ∃s−2 w=⇒2 s2, ∃s−2 w=⇒2 s+
2 , ∃s+

2
!m=⇒2 s′2

with s1 ∼ s+
2 and s′1 ∼ s′2 where w is a

word



∗ ∃s2
!m′

=⇒2 s′2

– Let m ∈ M , if s2
?m=⇒2 s′2 then

∗ ∃s−1 w=⇒1 s1, ∃s−1 w=⇒1 s+
1 , ∃s+

1
!m=⇒1 s′1

with s+
1 ∼ s2 and s′1 ∼ s′2 where w is a

word

∗ ∃s1
!m′

=⇒1 s′1

The interaction relation when is hold between two systems
insure two properties :

1. In spite of the internal non-determinism the interaction
is dead-lock free.

2. The two processes detect their mutual termination.

Note that the interaction relation restrict the two properties
to be hold for all the two systems functionalities (all the
produced traces). In spite of the fact that this may be too
restrictive in the context of Web services, this may have a
sense since we are in an open world and we cannot predict
the behavior of partners. We maintain that assumption for
the choreography correctness checking.

Definition 7 let ω1 = (P1, In1, T IOTSB1) and ω2 =
(P2, In2, T IOTSB2) be two partners definitions. The two
partners are compatible iff their behaviors are related with
the interaction relation, TIOTSB1 ³ TIOTSB1 .

Two partners are compatible if their behaviors are com-
patible. So the interaction between two compatible partners
is deadlock-free.

Definition 8 let ωi = (Pi, Ini, T IOTSBi) be a partner’s
definition. The partner’s behavior is ambiguous iff @ωj =
(Pj , Inj , T IOTSBj ) such that TIOTSBj ³ TIOTSBi

A service (or partner) is ambiguous if there is no possi-
ble partner’s behavior that insure a deadlock-free interaction
according the interaction relation.

According to the previous relation, the example of the
figure 2 is obviously ambiguous. In fact, the states s2 and
s3 are internally accessible, we call them black zone. Ser-
vices adopt a passive behavior which is not possible from all
the states of the black zone. Thus, s2 cannot receive cash
and s3 cannot receive cardNum. For more details on the
interaction relation, the interested readers can refer to [12]
and [9]. In the following we introduce two algorithms the
first check the compatibility between two TIOTS (i.e two
services behaviour) and the second check the ambiguity of
a TIOTS (i.e a service bahaviour).

5.2 The compatibility algorithm

We propose an algorithm that verifies whether two
TIOTS are related with the interaction relation (definition
6). While initial states must be related with the interac-
tion relation, the algorithm starts with the ε − closur of
s01 and s02 respectively noted εs01 and εs02 . The algo-
rithm maintains a stack of couples of states subset (to be
processed). Initially, the stack contains (εs01 , εs01). The
algorithm maintains also a set of couples called R repre-
senting the processed ones. Let us describe one step of the
algorithm.

• for a given couple (S1, S2) in the stack:

• if (S1, S2) ∈ R (which mean that ∃(S′1, S′2) ∈ R with
S1 ⊆ S′1 and S2 ⊆ S′2) then unstack next couple,
else;

• for each s1 ∈ S1:

– Let a ∈!M ∪{χ,
√} and s1

a=⇒1 s′1, if there is a

s2 ∈ S′2 where @s2
ac

=⇒2 s′2 then stop and return
“no compatible”. Else
stack(

⋃
si∈S1

εNext(si,a),
⋃

sj∈S2

εNext(sj ,ac))6

– Let a ∈?M and s1
a=⇒1 s′1, if there is a s2 ∈

S′2 where @s2
a′=⇒2 s′2 (a′ ∈!M ) then stop and

return “no compatible”. Else
stack(

⋃
si∈S1

εNext(si,a),
⋃

sj∈S2

εNext(sj ,ac))

• The same steps are executed for each s2 ∈ S2.

The algorithm checks if all the possible current states
of the two TIOTS accessible by the same complementary
actions are related by the interaction relation. It starts by
the two initial states of the two TIOTS then it calculates
their ε closures, if the interaction relation is correct for each
couple of states of the two set of states, then the algorithm
calculates the next set of states otherwise the two TIOTS are
“non compatible”. Note that the algorithm is similar to the
bi-simulation check algorithm but, in each step, instead of
checking the bi-simulation relation on the calculated set of
states we check our interaction relation properties.

5.3 The ambiguity check algorithm

According to the definition 8 a partner behaviours is am-
biguous if it do not admit a possible compatible partner.
The problem can be resolved by checking wether the part-
ner behaviour can admit a correct minimal client (the client
is a deterministic TIOTS that allow the use of the service

6The stack() function add only the couple if they are not in R.



without dead-lock). The correct client synthesis algorithm
builds the deterministic TIOTS following a kind of deter-
minization of the TIOTS of the service. Each state of the
potential client is associated to a subset of states of the ser-
vice. There is a stack of couples (s1, S

′
2) to be processed.

Let us describe one step of the algorithm.

• At first, one completes S′2 with ε=⇒2 transitions.

• If a state of the client s′1 is already associated to S′2
then one redirects all the input edges of s1 to s′1 and
one deletes s1.

• Otherwise for each s2
a=⇒2 s′2 with a and s2 ∈ S′2,

one builds a new vertex s′1 and a new edge s1
ac

=⇒1

s′1 and one stacks (s′1, S
∗
2 ) where S∗2 = {s′2|∃s2 ∈

S′2, ∃s2
a=⇒2 s′2}

• Let a /∈ {?m}m∈M such that s1
a=⇒1 s′1, if there

is a s2 ∈ S′2 with @s2
ac

=⇒2 s′2 then stop and return
“service ambiguous”.

• Let s1
?m=⇒1 s′1, if there is a s2 ∈ S′2 with @s2

!m′
=⇒2 s′2

then stop and return “service ambiguous”.

The algorithm starts with the couple (s01, s02) in the
stack and stops either when the stack is empty (i.e. the
client has been built) or when it has detected the ambigu-
ity of the service. The completeness of algorithm is easy to
proof since the deterministic equivalent algorithm is com-
plete in the case of discreet time event systems.

6 Choreography correctness

Let us recall the aim of our work. We have a set of
partners that would like to realize a specific choreography.
Each partner defines its observable behavior (its commu-
nication and time constraints). The choreography is de-
fined by fixing the interaction points between partners. We
would like to check if, according to their observable be-
haviors and the interaction points (the set of functions φi),
they are compatible from the interactional point of view
i.e. the whole choreography is deadlock-free. We con-
sider, for the following, the choreography C as C = {(ωi =
(Pi, Ini, T IOTSBi(Xi)), φi)}

According to the previous section, we can deduce from
the definition 8 the following corollary.

Corollary 1 Let C be a choreography and let ωi be a part
of it. If TIOTSBi is ambiguous then C is not deadlock free.

Given a choreography, if one of the involved partners
expose an ambiguous behavior, then the choreography is
not deadlock-free. The proof is simple, while an ambigu-
ous partner does not admit a possible compatible partner.

R(‖1): ∀ a ∈ AP
a−−→P ′,Q

ac−−−→Q′

P‖AQ
τ−−→P ′‖AQ′

R(‖2): P

√
−−−→P ′,Q

√
−−−→Q′

P‖AQ

√
−−−→P ′‖AQ′

R(‖3): P

√
−−−→P ′,Q

a−−→Q′

P‖AQ
τ−−→Q

where a 6= √

P ‖A Q R(‖4): P
χ−−→P ′,Q

χ−−→Q′

P‖AQ
χ−−→P ′‖AQ′

R(‖5): P
χ−−→P ′,Q

χ

6−→
P‖AQ

χ−−→P ′‖AQ

R(‖6): ∀ a 6∈ A ∪ {χ,
√} Pj

a−−→P ′

P‖AQ
a−−→P ′‖AQ

R(‖7): ∀ a 6∈ A ∪ {χ,
√} Q

a−−→Q′

P‖AQ
a−−→P‖AQ′

Table 2. The transition rules of the partners
composition operator

Whatever the partner’s behaviors, the interaction with the
ambiguous partner may lead to a deadlock i.e. the whole
choreography may also deadlock.

6.1 Partner Composition

Each partner interacts with a subset of partners involved
in the choreography. From its point of view, it could be
considered as interacting with a unique partner that simu-
lates the behavior of the partners composition. Thus, based
on the composition properties of process algebra, we intro-
duce a new operator to BPELProcess that aggregates two
partners in a new one in such a way that preserves the whole
choreography. We call the new language BPELProcessC
(see the table 2 for the operational semantics of this opera-
tor) defined by BPELProcessC = BPELProcess|P ‖A Q

where A ⊂ (?M∪!M)

The two composed partners act in parallel. Rules 1
describe the synchronization over communication actions.
The communication between partners is not observable
from the composed one. The rules 2 and 3 state that the two
composed services can terminate in the same time. If one of
the two services terminates before the other then its termi-
nation action will not be observed and the termination of the
composed one will be termination of the reminder service.
Rules 4 and 5 concern the composed Services face to time.
The time advance synchronously if the two partners can do
so (4) and asynchronously if only one of the two can let time
pass i.e. if at least one partner is timed, the resulted partner
is timed too (5). Rules 6 and 7 states that the resulted partner
can execute the union of transitions of the two partners. We
use Com(ωi, ωj) = {∗ω∗.m ∈ (Li ∩Lj)|ω∗ ∈ {ωi, ωj}∗}
to represent the set of all the exchanged messages between
two partners.

Definition 9 Let ωi = (Pi, Ini, T IOTSBi) and ωj =



(Pj , Inj , T IOTSBj
) two partner. The composition of the

two partner noted by ωi ‖ ωj is a partner ωk with:

• ωk = (Pk, Ink, T IOTSBk
)

• Pk = {ωl.o ∈ (Pj ∪ Pi)|l 6= i, j}
• Ink = (Ini ∪ Inj)

• TIOTSBk
= TIOTSBi‖ABj

with A = Com(ωi, ωj)

If more than two partners are involved in the choreography,
it is important to guarantee the associativity of pair wise
composition. Note that this is easy to prove since in C we
guarantee a unique identifier for each partner and a unique
target for each communication exchanged message. We use
the

∏
i=1...n

ωi = ω1‖....‖ωn.

6.2 Choreography correctness

From each partner, we can consider the choreography as
a dyadic interaction between the partner and the composi-
tion of all others partners.

Definition 10 We call the environment of a partner ωi ∈
C, noted by EnvC

ωi
=

∏
j 6=i

ωj . We note its TIOTS by

TIOTSωi
C .

We can now use our interaction relation to validate the
behavior of one partner in the choreography.

Definition 11 Let C be a valid choreography and ωi ∈ C
part of it. ωi is compatible with C iff

TIOTSBi(φi(X) ³ TIOTSωi
C

A partner is compatible with its choreography if the in-
teraction with the aggregation of its partners is deadlock
free (according the interaction relation 6).

Definition 12 Let C be a valid choreography, C is a cor-
rect choreography iff ∀ωi ∈ C we have ωi compatible
with C.

A choreography C is correct if each involved partner in
the choreography interacts correctly (full use, deadlock-free
and termination) with its partners. Our method can be ap-
plied in a distributed manner while each partner can decide
locally about its compatibility. If at least one partner is
not compatible then the choreography can deadlock. Note
that the compatibility check algorithm can gives an expla-
nation of the ambiguity (non-compatibility) which can be
used to help the service designer to adapt the behaviour to
the partners one. It is important to signal that this method
is incremental while it can be used in online choreography
establishing. An other use case of our method can be the

choreography repair, when one partner fails and we try to
replace it. In addition to the functionality equivalence the
new partner must be compatible with the choreography en-
vironment.

7 Conclusion

In this paper, we address the problem of choreography
correctness (deadlock-free and termination detection) in the
context of distributed complex Web services. In order to
achieve this goal, we give an operational semantic to ab-
stract BPEL in terms of Timed Input Output Transition Sys-
tems. Due to abstraction purposes, we show that the ob-
servable behaviors can be ambiguous (i.e. may deadlock)
under the assumption of full use of the services functionali-
ties. We characterize such ambiguity by defining a relation
between two communicating systems. The relation allows
to check the compatibility (in the interaction level) between
two services involved in the choreography. Using this rela-
tion, we propose an algorithm that checks the compatibility
between two TIOTS. The choreography correctness prob-
lem is then reduced to a bipartite compatibility problem by
introducing an aggregation operator. The method allows a
distributed checking since each partner can check locally
its correctness by checking its compatibility with the aggre-
gation of all its partners. The choreography is correct if all
the partners are compatible. The originality of our approach
against a central correctness checking, is that it can be used
incrementally, this is very useful in the case of online chore-
ography establishing or repairing (replacing a partner by an
other).
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