Audrey Legendre soutient sa thèse de doctorat le lundi 9 décembre 2019 : « Prédiction de structures secondaires d’ARN et de complexes d’ARN avec pseudonoeuds – Approches basées sur la programmation mathématique multi-objectif »

/, Equipe AROBAS, Evénements, Recherche, Soutenance de thèse/Audrey Legendre soutient sa thèse de doctorat le lundi 9 décembre 2019 : « Prédiction de structures secondaires d’ARN et de complexes d’ARN avec pseudonoeuds – Approches basées sur la programmation mathématique multi-objectif »

Audrey Legendre soutient sa thèse de doctorat le lundi 9 décembre 2019 : « Prédiction de structures secondaires d’ARN et de complexes d’ARN avec pseudonoeuds – Approches basées sur la programmation mathématique multi-objectif »

Audrey Legendre soutient sa thèse de doctorat le lundi 9 décembre 2019 à 14h30 dans la salle de réunion du 3ème étage de IBISC site IBGBI

Titre: Prédiction de structures secondaires d’ARN et de complexes d’ARN avec pseudonoeuds – Approches basées sur la programmation mathématique multi-objectif

Résumé:

Dans cette thèse, nous proposons de nouveaux algorithmes et outils pour la prédiction de structures secondaires d’ARN et de complexes d’ARN, incluant des motifs particuliers, difficiles à prédire, comme les pseudonoeuds. La prédiction de structures d’ARN reste une tâche difficile, et les outils existants, pourtant nombreux, ne donnent pas toujours de bonnes prédictions. Afin de prédire plus précisément ces structures, nous proposons ici des algorithmes qui :

i) prédisent les k-meilleures structures;

ii) combinent plusieurs modèles de prédiction, afin de bénéficier des avantages de chacun;

iii) sont capables de prendre en compte des contraintes utilisateurs et des données biologiques structurales telles que le SHAPE.

Nous avons développé trois outils: BiokoP pour la prédiction de structures secondaires d’un ARN, et RCPred et C-RCPred pour la prédiction de structures secondaires de complexes d’ARN. L’outil BiokoP propose plusieurs structures optimales et sous-optimales grâce à la combinaison de deux modèles de prédiction, le modèle énergétique MFE et le modèle probabiliste MEA. Cette combinaison est réalisée grâce à la programmation mathématique multi-objectif, où chaque modèle est assimilé à une fonction objectif. A cet effet, nous avons développé un algorithme générique retournant les k-meilleures courbes de Pareto d’un programme linéaire en nombres entiers bi-objectif. L’outil RCPred, basé sur le modèle MFE, propose plusieurs structures sous-optimales. Il tire parti des nombreux outils existants pour la prédiction de structures secondaires d’ARN seuls et d’interactions ARN-ARN, en prenant en compte des structures secondaires et interactions déjà prédites en entrée. L’objectif de RCPred est de trouver les meilleures combinaisons possibles parmi ces entrées. L’outil C-RCPred est une nouvelle version de RCPred, prenant en compte des contraintes utilisateurs et des données biologiques structurales (SHAPE, PARS et DMS). C-RCPred est basé sur un algorithme multi-objectif, où les différents objectifs correspondent au modèle MFE, au respect des contraintes utilisateurs et à l’accord avec les données biologiques structurales.

Mots-clés:  Bio-informatique des ARN; Prédiction de structures secondaires ; Pseudonoeud; Complexe d’ARN; Optimisation multi-objectif; Programmation linéaire

  • Date: lundi 09/12/2019, 14h30
  • Lieu: IBISC site IBGBI, salle de réunion du 3ème étage
  • Doctorante: Audrey LEGENDRE, IBISC équipe AROBAS
  • Direction de thèse coté IBISC: Fariza TAHI (PR Univ. Evry, IBISC équipe AROBAS) et Eric ANGEL (PR Univ. Evry, IBISC équipe AROBAS)